Comparative analysis and transformation relations between China and the US site classification systems in building seismic code provisions
-
摘要: 本文依据分布于全国的6 824个钻孔数据,按照双参数的不同取值,将GB50011—2010《建筑抗震设计规范》(以下简称中国建抗规)的场地类别进一步划分为更加同质的子类,分析了双参数体系对场地分类结果的影响,建立了每个子类与美国《NEHRP对新建建筑和结构物的推荐地震条款》(National Earthquake Hazards Reduction Program Recommended Provisions for Seismic Regulations for New Buildings and Other Structures,以下简称美国建抗规)的场地类别的对应关系,并对比分析中、美建抗规的场地类别差异,在此基础上建立了中国建抗规与美国建抗规场地类别相互转换的概率表达。研究结果表明:用vS20近似表示中国场地分类标准的等效剪切波速并不可靠;中国建抗规中Ⅱ类场地和Ⅲ类场地内部不同子类与美国建抗规中场地类别的对应关系截然不同;中国建抗规中覆盖层厚度有效地区分了浅部波速类似而深部波速不同的场地;中国建抗规的Ⅱ类和Ⅲ类场地主体均对应美国建抗规的D类场地,中国Ⅱ类场地略偏对应美国C类场地,中国Ⅲ类场地略偏对应美国E类场地;中国Ⅳ类场地对应美国E类场地,绝大多数美国C类和D类场地均对应中国Ⅱ类场地,说明中国Ⅱ类场地的范围极宽。Abstract: In this study, based on 6 824 borehole profiles, we subdivide the site classes in GB 50011-2010 Code for Seismic Design of Buildings (Chinese code) into more homogeneous sub-classes by different values of the equivalent shear wave velocity (vSe) and site overlaying layers (D), and quantitatively analysis the effect of each parameters in the site classification schedule in the code. We build the relation between these sub-classes of the China code and classes of the US seismic design code National Earthquake Hazards Reduction Program Recommended Provisions for Seismic Regulations for New Buildings and Other Structures, carry out comparative analysis on two classification schedules, and build the probabilistic transformation relations for interconverting China site classes and the US site classes. The results show that: It is not appropriate to take the average shear wave velocity to a depth of 20 m (vS20) as the proxy for vSe in site classification of China code; for China site class Ⅱ and Ⅲ, different sub-classes have significantly different corresponding relations with the US site classes; the D effectively distinguishes the sites those velocity structures are similar at shallow layers while different at deeper layers; the main part of China site class Ⅱ and Ⅲ are both corresponding to the US site class D, the China site class Ⅱ leans to the US site class C, while the China site class Ⅲ leans to the US site class E; China site class Ⅳ is corresponding to the US site class E; most of the US site class C and D are both corresponding to China site class Ⅱ.It implies that the range of China site class Ⅱ is relatively vast.
-
-
图 2 6 824个钻孔的各子类的D-vse分布
括号前的编号为本文定义的子类编码,括号内的数字为钻孔落在这个子类中的数量,vSe在500 m/s以上的部分为地面表层波速vS
Figure 2. 6 824 boreholes plotted on the D-vSe graph
The codes at left of the parentheses are the sub-classes codes defined in this article, The numbers in the parentheses are the numbers of boreholes belonged to these sub-classes,the ordinate value exceed 500 m/s represents instantaneous velocity at the surface layer instead of vSe
表 1 美国建抗规的场地分类(除F类外)
Table 1 Site classification in the US NEHRP provisions (without class F)
场地类别 VS30/(m·s−1) A >1500 B (760,1500] C (360,760] D (180,360] E ≤180 表 2 GB50011—2010《建筑抗震设计规范》场地子类划分标准表
Table 2 Sub-site classification schedule of the GB 50011—2010 Code for Seismic Design of Building
Vse/(m·s−1) Ⅰ 0 Ⅰ 1 Ⅱ Ⅲ Ⅳ Ⅰ 1b Ⅰ 1c Ⅰ 1d Ⅰ 1e Ⅱ c1 Ⅱ c2 Ⅱ d1 Ⅱ d2 Ⅱ e Ⅲ d Ⅲ e1 Ⅲ e2 ≤150 D<3 D∈ [3,15] D∈ [15,20) D∈ [20,80) D> 80 (150,250] D<3 D∈ [3,20) D∈ [20,50] D>50 (250,500] D<5 D∈ [5,20) D≥20 (500,800] D=0 >800 D=0 注:D为覆盖层厚度,单位m。 表 3 Dai等(2013)的外推模型在5 m,10 m和15 m深度位置的回归系数和均方根误差
Table 3 The coefficients and RMSEs of extrapolation model (Dai et al,2013) at depth of 5 m,10 m,and 15 m
深度
d/m回归系数 RMSE a b 5 0.728 0.737 0.061 10 0.784 0.707 0.042 15 0.616 0.774 0.027 表 4 中国建抗规的场地子类与美国建抗规范场地类别的对应关系
Table 4 The relation between sub-classes in the Chinese code for seismic design of building and classes in the US NEHRP code
场地子类 子类
孔数子孔
占比vS30
孔数A类场地 B类场地 C类场地 D类场地 E类场地 总比例 备注* 孔数 比例 孔数 比例 孔数 比例 孔数 比例 孔数 比例 Ⅰ 0 7 0.10% 6 0 0 6 100% 0 0 0 0 0 0 100% 2,15 m;4,10 m Ⅰ 1b 10 0.15% 0 0 0 0 50.0% 0 50.0% 0 0 0 0 100% 无VS30 Ⅰ 1c 107 1.57% 27 0 0 5 18.5% 22 81.5% 0 0 0 0 100% 23,15 m Ⅰ 1d 46 0.67% 6 0 0 1 16.7% 5 83.3% 0 0 0 0 100% 4,15 m Ⅰ 1e 6 0.09% 3 0 0 1 33.3% 2 66.7% 0 0 0 0 100% 3,5 m Ⅱ c1 1415 20.7% 98 0 0 0 0 87 88.8% 11 11.2% 0 0 100% 实测VS30 Ⅱ c2 1790 26.2% 972 0 0 0 0 111 11.4% 861 88.6% 0 0 100% 实测VS30 Ⅱ d1 880 12.9% 52 0 0 0 0 24 46.2% 28 53.8% 0 0 100% 实测VS30 Ⅱ d2 1180 17.3% 907 0 0 0 0 0 0 869 95.8% 38 4.2% 100% 实测VS30 Ⅱ e 58 0.85% 30 0 0 0 0 1 3.3% 29 96.7% 0 0 100% 25,15 m Ⅲ d 838 12.3% 838 0 0 0 0 0 0 758 90.4% 80 9.6% 100% 实测VS30 Ⅲ e1 19 0.28% 14 0 0 0 0 0 0 14 100% 0 0 100% 13,15 m Ⅲ e2 272 3.99% 257 0 0 0 0 0 0 3 1.17% 254 98.8% 100% 实测VS30 Ⅳ 196 2.87% 196 0 0 0 0 0 0 0 0 196 100% 100% 实测VS30 全部分类 6824 100% 3406 0 13 252 2573 568 100% 注:备注中数字表示中国建抗规场地子类钻孔应用浅孔估计的vS30数据,逗号前的数字表示采用了估计值的钻孔数,逗号之后的数字表示应用的浅孔最小孔深,为了保证结果的可靠性,只有当估计vS30的上下两倍均方根误差均落在美国建抗规同一场地类别时,此vS30和相应的场地类别才会被采用。 表 5 中国建抗规场地类别与美国建抗规场地类别的换算关系
Table 5 The transformation table for converting Chinese code for seismic design of building site classes to the US NEHRP code site classes
中国场地分类 美国场地分类 A B C D E Ⅰ 0 100.00% Ⅰ 1 20.40% 79.60% Ⅱ 35.11% 63.97% 0.93% Ⅲ 69.10% 30.90% Ⅳ 100.00% 表 6 美国建抗规场地类别与中国建抗规场地子类的换算关系
Table 6 The relation between classes in the US NEHPR code and sub-classes in the Chinese code for seismic design of building
美国场地分类 中国场地分类 Ⅰ 0 Ⅰ 1b Ⅰ 1c Ⅰ 1d Ⅰ 1e Ⅱ c1 Ⅱ c2 Ⅱ d1 Ⅱ e Ⅱ d2 Ⅲ d Ⅲ e1 Ⅲ e2 Ⅳ B 16.9% 12.0% 47.8% 18.5% 4.8% C 0.3% 4.3% 1.9% 0.2% 62.7% 10.2% 20.3% 0.1% D 3.8% 37.9% 11.3% 1.3% 27.0% 18.1% 0.5% 0.1% E 8.3% 13.5% 45.2% 33.0% 表 7 美国建抗规场地类别与中国建抗规场地类别的换算关系
Table 7 The transformation table for converting the US NEHPR code site classes to Chinese code site classes
美国场地
分类中国场地分类 Ⅰ 0 Ⅰ 1 Ⅱ Ⅲ Ⅳ B 16.88% 83.13% C 6.72% 93.28% D 81.36% 18.64% E 8.32% 58.70% 32.98% -
地理国情监测云平台. 2015. 全国土地利用数据产品[DB/OL]. [2020-06-16]. http://www.dsac.cn/. Geographical Information Monitoring Cloud Platform. 2015. China land use data[DB/OL]. [2020-06-16]. http://www.dsac.cn/ (in Chinese).
李广军,赵艳,王文仲,张同伟. 2009. 场地条件对设计反应谱最大值的影响[J]. 工程抗震与加固改造,31(1):114–118. doi: 10.3969/j.issn.1002-8412.2009.01.020 Li G J,Zhao Y,Wang W Z,Zhang T W. 2009. Analysis to the effect of site condition to the maximum of design response spectra[J]. Earthquake Resistant Engineering and Retrofitting,31(1):114–118 (in Chinese).
李小军. 2013. 地震动参数区划图场地条件影响调整[J]. 岩土工程学报,35(增刊):21–29. Li X J. 2013. Adjustment of seismic ground motion parameters considering site effects in seismic zonation map[J]. Chinese Journal of Geotechnical Engineering,35(S2):21–29 (in Chinese).
李小军,彭青. 2001. 不同类别场地地震动参数的计算分析[J]. 地震工程与工程振动,21(1):29–36. doi: 10.3969/j.issn.1000-1301.2001.01.005 Li X J,Peng Q. 2001. Calculation and analysis of earthquake ground motion parameters for different site categories[J]. Earthquake Engineering and Engineering Vibration,21(1):29–36 (in Chinese).
刘培玄,刘红帅,赵纪生,刘艳琼. 2015. 基于KiK-net台站的中美场地类别对比分析[J]. 地震工程与工程振动,35(6):42–46. Liu P X,Liu H S,Zhao J S,Liu Y Q. 2015. Comparison of site classification between Chinese and American seismic codes based on data of Japanese Kik-net station[J]. Earthquake Engineering and Engineering Dynamics,35(6):42–46 (in Chinese).
吕红山,赵凤新. 2007. 适用于中国场地分类的地震动反应谱放大系数[J]. 地震学报,29(1):67–76. doi: 10.3321/j.issn:0253-3782.2007.01.008 Lü H S,Zhao F X. 2007. Site coefficients suitable to china site category[J]. Acta Seismologica Sinica,29(1):67–76 (in Chinese).
苏经宇,李虹. 1996. 场地划分规范方法的比较分析[J]. 工程抗震,(2):43–46. Su J Y,Li H. 1996. Comparison and analysis of site classification methods in seismic design codes provisions[J]. Seismic Fortification Engineering,(2):43–46 (in Chinese).
中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 2005. GB17741—2005 工程场地地震安全性评价[S]. 北京: 中国标准出版社: 5. General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. 2005. GB 17741—2005 Evaluation of Seismic Safety for Engineering Sites[S]. Beijing: Standards Press of China: 5 (in Chinese).
中华人民共和国建设部, 中华人民共和国国家质量监督检验检疫总局. 2009. GB 50021—2001岩土工程勘察规范[S]. 北京: 中国建筑工业出版社: 113. Ministry of Construction of the People’s Republic of China, General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. 2009. GB50021—2001 Code for Investigation of Geotechnical Engineering [S]. Beijing: China Architecture & Building Press: 113 (in Chinese).
中华人民共和国住房和城乡建设部, 中华人民共和国国家质量监督检验检疫总局. 2016. GB50011—2010 建筑抗震设计规范[S]. 北京: 中国建筑工业出版社: 18–20. Ministry of Housing and Urban-Rural Development of the People’s Republic of China, General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. 2016. GB50011—2010 Code for Seismic Design of Buildings[S]. Beijing: China Architecture & Building Press: 18–20 (in Chinese).
周锡元, 王广军, 苏经宇. 1990. 场地・地基・设计地震[M]. 北京: 地震出版社: 22–25. Zhou X Y, Wang G J, Su J Y. 1990. Site, Foundation, and Design Ground Motion[M]. Beijing: Seismological Press: 22–25(in Chinese).
周锡元,樊水荣,苏经宇. 1999. 场地分类和设计反应谱的特征周期:《建筑抗震设计规范》修订简介(八)[J]. 工程抗震,(4):3–8. Zhou X Y,Fan S Y,Su J Y. 1999. Site classification and characteristic period of the response spectrum:Introduction of the revised provisions for GB50011—1998Code for Seismic Design of Buildings (8th)[J]. Seismic Fortification Engineering,(4):3–8 (in Chinese).
American Society of Civil Engineers. 2013. Minimum Design Loads for Buildings and Other Structures (ASCE/SEI 7-10)[M]. Youngstown, Ohio: American Society of Civil Engineers: 203–204.
Boore D M. 2004. Estimating VS30(or NEHRP site classes)from shallow velocity models(depths<30 m)[J]. Bull Seismol Soc Am,94(2):591–597. doi: 10.1785/0120030105
Boore D M,Thompson E M,Cadet H. 2011. Regional correlations of VS30 and velocities averaged over depths less than and greater than 30 m[J]. Bull Seismol Soc Am,101(6):3046–3059. doi: 10.1785/0120110071
Borcherdt R D,Glassmoyer G. 1992. On the characteristics of local geology and their influence on ground motions generated by the Loma Prieta earthquake in the San Francisco Bay region,California[J]. Bull Seismol Soc Am,82(2):603–641.
Borcherdt R D. 1994. Estimates of site-dependent response spectra for design:Methodology and justification[J]. Earthq Spectra,10(4):617–653. doi: 10.1193/1.1585791
Borcherdt R D. 2002. Empirical evidence for site coefficients in building code provisions[J]. Earthq Spectra,18(2):189–217. doi: 10.1193/1.1486243
Cadet H,Dural A M. 2009. A shear wave velocity study based on the Kik-net borehole data:A short note[J]. Seismol Res Lett,80(3):440–445. doi: 10.1785/gssrl.80.3.440
Castellaro S,Mulargia F,Rossi P L. 2008. VS30:Proxy for seismic amplification?[J]. Seismol Res Lett,79(4):540–543. doi: 10.1785/gssrl.79.4.540
Dai Z J,Li X J,Hou C. 2013. A shear-wave velocity model for VS30 estimation based on a conditional independence property[J]. Bull Seismol Soc Am,103(6):3354–3361. doi: 10.1785/0120130025
Dobry R,Borcherdt R D,Crouse C B,Idriss I M,Joyner W B,Martin G R,Power M S,Rinne E E,Seed R B. 2000. New site coeffi-cients and site classification system used in recent building seismic code provisions[J]. Earthq Spectra,16(1):41–67. doi: 10.1193/1.1586082
Lee V W,Trifunac M D. 2010. Should average shear-wave velocity in the top 30 m of soil be used to describe seismic amplification? [J]. Soil Dyn Earthq Eng,30(11):1250–1258. doi: 10.1016/j.soildyn.2010.05.007
Moss R E S. 2008. Quantifying measurement uncertainty of thirty-meter shear-wave velocity[J]. Bull Seismol Soc Am,98(3):1399–1411. doi: 10.1785/0120070101
National Earthquake Hazards Reduction Program. 2015. Recommended Provisions for Seismic Regulations for New Buildings and Other Structures (2015 edition)[S]. Washington D C: Building Seismic Safety Council: 14.
Ohta Y,Goto N. 1978. Empirical shear wave velocity equations in terms of characteristic soil indexes[J]. Earthq Eng Struct Dyn,6(2):167–187. doi: 10.1002/eqe.4290060205
Scasserra G,Stewart J P,Kayen R E,Lanzo G. 2009. Database for earthquake strong motion studies in Italy[J]. J Earthq Eng,13(6):852–881. doi: 10.1080/13632460802566997
Seyhan E,Stewart J P. 2014. Semi-Empirical nonlinear site amplification from NGA-West2 data and simulations[J]. Earthq Spectra,30(3):1241–1256. doi: 10.1193/063013EQS181M
Thompson E M,Baise L G,Kayen R E. 2007. Spatial correlation of shear-wave velocity in the San Francisco Bay Area sediments[J]. Soil Dyn Earthq Eng,27(2):144–152. doi: 10.1016/j.soildyn.2006.05.004
The European Committee for Standardization. 2004. Eurocode 8: Design of Structures for Earthquake Resistance, Part 1: General Rules, Seismic Actions and Rules for Buildings[S]. Brussels: European Committee for Standardization: 10–12.
Wang H Y,Wang S Y. 2015. A new method for estimating VS30 from a shallow shear-wave velocity profile (depth<30 m)[J]. Bull Seismol Soc Am,105(3):1359–1370. doi: 10.1785/0120140103
Wills C J,Petersen M D,Bryant W A,Reichle M,Saucedo G J,Tan S,Taylor G C,Treiman J A. 2000. A site-conditions map for California based on geology and shear-wave velocity[J]. Bull Seismol Soc Am,90(6B):S187–S208. doi: 10.1785/0120000503
Zhou J,Li X J,Dai Z J,Chen K. 2021. Parametrical model for estimating VS30 from shallow borehole profiles using a database for China[J]. Bull Seismol Soc Am,111(3):1199–1220. doi: 10.1785/0120200178