Characteristics of Arias intensity and Newmark displacement of strong ground motion in Lushan earthquake
-
摘要: 本文以芦山地震强地面运动记录为基础资料,研究了阿里亚斯强度和Newmark位移两个地震动参数的空间分布特征、衰减特征以及与其它地震动参数的相关性。研究结果表明:阿里亚斯强度的空间分布与地震断层空间展布和地震破裂方向具有相关性;阿里亚斯强度与峰值加速度(PGA)有较好的相关性,场地条件对二者的相关性具有显著影响,PGA相同时,场地越软,阿里亚斯强度越大;震级也是影响阿里亚斯强度与PGA相关性的重要因素,PGA相同时,震级越大,阿里亚斯强度也越大;Newmark位移与PGA和阿里亚斯强度均具有较好的相关性,与阿里亚斯强度的相关性更强,相关系数可达0.94以上。研究还表明,现有模型不能较好地描述芦山地震的阿里亚斯强度和Newmark位移衰减特征,这说明了芦山地震在持时和破裂过程上的特殊性。芦山地震的特殊性揭示了我国西部地震地质构造环境与其它地区有显著差异,因此应该研究适用于我国西部地区地震的地震动参数预测方程。本文的研究结果对我们从更多方面了解地震动特性以及我国地震灾害的预测预防具有重要的科学意义和应用价值。Abstract: The characteristics of spatial distribution, attenuation and correlation of ground motion parameters are important research contents in engineering seismology. In this paper, based on the ground motion records of Lushan earthquake, we study the spatial distribution and attenuation characteristics of Arias intensity and Newmark displacement as well as their correlation with other ground motion parameters, respectively. The results show that the spatial distribution of Arias intensity is related with the spatial distribution of seismic faults and the direction of earthquake rupture. Arias intensity has a good correlation with PGA. Furthermore, the site conditions have a significant effect on the correlation between the two: for the same PGA, the softer the site condition, the greater the Arias intensity. In addition, magnitude is also an important factor affecting the correlation between Arias intensity and PGA: with the same PGA, the greater the magnitude, the greater the Arias intensity. Newmark displacement has a good correlation with both PGA and Arias intensity, among which the correlation with Arias intensity is stronger, and the correlation coefficient can reach above 0.94. The research in this paper also shows that the existing models cannot describe the attenuation characteristics of Arias intensity and Newmark displacement of Lushan earthquake well, which indicates the particularity of Lushan earthquake in both the duration and rupture process. The particularity of Lushan earthquake reveals that the seismic geological and tectonic environment in Western China is significantly different from that in other regions. Therefore, the prediction equations of ground motion parameters suitable for earthquakes in Western China should be studied. The research results of this paper have important scientific significance and application value for us on both understanding the characteristics of ground motion and the prediction and prevention of earthquake disaster in China.
-
Keywords:
- Lushan eathquake /
- Arias intensity /
- Newmark displacement /
- PGA
-
-
图 3 Newmark滑块模型(引自Newmark,1965)
Figure 3. The Newmark slider model (after Newmark,1965)
图 4 Newmark位移计算示意图(引自Jibson et al,2000)
(a) 加速度时程;(b) 速度时程;(c) 位移时程
Figure 4. The schematic diagram of calculation of Newmark displacement (after Jibson et al,2000)
(a) Acceleration time history;(b) Velocity time history;(c) Displacement time history
图 7 阿里亚斯强度IA与峰值加速度PGA的相关性
(a) 采用所有观测数据拟合的IA与PGA的关系;(b) 根据B类场地数据拟合的IA与PGA的关系;(c) 根据C类场地数据拟合的IA与PGA的关系;(d) 不同场地条件下的IA与PGA的关系曲线
Figure 7. The correlation of IA with PGA
(a) The correlation between IA and PGA fitted with all the observed data;(b) The correlation between IA and PGA fitted with the data from the B site;(c) The correlation between IA and PGA fitted with the data from the C site;(d) The curves of correlation between IA and PGA under different site conditions
图 12 芦山地震阿里亚斯强度衰减均值(红线)及观测值与Travasarou等(2003)、Foulser-Piggott和Stafford (2012)模型及其一倍和两倍地震事件间标准偏差τ模型的比较
Figure 12. Comparison of the mean values (red line) and observed values of attenuation of Arias intensity in Lushan earthquake with Travasarou et al (2003) and Foulser-Piggott and Stafford (2012) models,in which the above two models respectively consider the plus or minus one and double standard deviation τ under two site conditions
图 13 Newmark位移与PGA的相关性及与Jibson和Michael (2009)模型的比较
Figure 13. Correlation between Newmark displacement and PGA and its comparison with Jibson and Michael (2009) model
图 14 Newmark位移与阿里亚斯强度IA的相关性及与Hsieh和Lee (2011)模型的比较
Figure 14. Correlation between Newmark displacement and IA and its comparison with Hsieh and Lee (2011) model
图 15 不同临界加速度下Newmark位移衰减特征及其与Du和Wang (2016)模型预测值的比较
Figure 15. The attenuation characteristics of Newmark displacement under different critical accelerations in Lushan earthquake and their comparison with the predicted values derived from Du and Wang (2016) model
图 16 不同场地条件下Newmark位移衰减特征及其与Du和Wang (2016)模型预测值的比较
Figure 16. The attenuation characteristics of Newmark displacement and its comparison with the predicted values of Du and Wang (2016) model under different site conditions
表 1 阿里亚斯强度衰减关系式中的系数及方差
Table 1 Coefficients and variances in the Arias intensity attenuation relationship
IA A B C ${\sigma _{\ln I_{\rm{A} } } }$ 水平分量 9.508 −2.682 15.216 0.91 竖向分量 9.011 −2.795 17.188 0.78 表 2 本研究中使用的阿里亚斯强度预测模型
Table 2 The prediction models of Arias intensity used in this study
衰减关系 地震事件数 震级范围 距离范围/km 强震记录条数 标准偏差 Travasarou等(2003) 75 M4.7—7.6 0.1—250 1 208 0.871—1.329 Stafford等(2009)模型3 23 M5.1—7.5 0—300 144 1.0190—1.1702 Stafford等(2009)模型4 23 M5.1—7.5 0—300 144 1.0324—1.1821 Lee等(2012) 62 M3.9—7.6 0.3—205 6 570 0.994 Foulser-Piggott和Stafford (2012) 114 M4.79—7.9 0.07—100 2 406 0.893—1.171 -
陈启国,葛华,周洪福. 2011. 利用Newmark方法进行地震滑坡制图:以映秀研究区为例[J]. 中国煤炭地质,23(11):44–48. doi: 10.3969/j.issn.1674-1803.2011.11.12 Chen Q G,Ge H,Zhou H F. 2011. Mapping of seismic triggered landslide through Newmark method:An example from study area Yingxiu[J]. Coal Geology of China,23(11):44–48 (in Chinese).
陈晓利,袁仁茂,庾露. 2013. Newmark方法在芦山地震诱发滑坡分布预测研究中的应用[J]. 地震地质,35(3):661–670. doi: 10.3969/j.issn.0253-4967.2013.03.019 Chen X L,Yuan R M,Yu L. 2013. Applying the Newmark’s model to the assessment of earthquake-triggered landslides during the Lushan earthquake[J]. Seismology and Geology,35(3):661–670 (in Chinese).
刘甲美,王涛,石菊松,栗泽桐. 2017. 四川九寨沟Ms7.0级地震滑坡应急快速评估[J]. 地质力学学报,23(5):639–645. doi: 10.3969/j.issn.1006-6616.2017.05.001 Liu J M,Wang T,Shi J S,Li Z T. 2017. Emergency rapid assessment of landslides induced by the Jiuzhaigou MS7.0 earthquake,Sichuan,China[J]. Journal of Geomechanics,23(5):639–645 (in Chinese).
刘甲美,王涛,石菊松,辛鹏,吴树仁. 2018. 基于不同位移预测模型的地震滑坡危险性评估研究:以天水地区为例[J]. 地质力学学报,24(1):87–95. doi: 10.12090/j.issn.1006-6616.2018.24.01.010 Liu J M,Wang T,Shi J S,Xin P,Wu S R. 2018. The influence of different Newmark displacement models on seismic landslide hazard assessment:A case study of Tianshui area,China[J]. Journal of Geomechanics,24(1):87–95 (in Chinese).
王涛,吴树仁,石菊松,辛鹏. 2013. 基于简化Newmark位移模型的区域地震滑坡危险性快速评估:以汶川MS8.0级地震为例[J]. 工程地质学报,21(1):16–24. doi: 10.3969/j.issn.1004-9665.2013.01.003 Wang T,Wu S R,Shi J S,Xin P. 2013. Case study on rapid assessment of regional seismic landslide hazard based on simplified Newmark displacement model:Wenchuan MS8.0 earthquake[J]. Journal of Engineering Geology,21(1):16–24 (in Chinese).
许冲,王世元,徐锡伟,张合,田颖颖,马思远,房立华,鲁人齐,陈立春,谭锡斌. 2018. 2017年8月8日四川省九寨沟MS7.0地震触发滑坡全景[J]. 地震地质,40(1):232–260. doi: 10.3969/j.issn.0253-4967.2018.01.017 Xu C,Wang S Y,Xu X W,Zhang H,Tian Y Y,Ma S Y,Fang L H,Lu R Q,Chen L C,Tan X B. 2018. A panorama of landslides triggered by the 8 August 2017 Jiuzhaigou,Sichuan MS7.0 earthquake[J]. Seismology and Geology,40(1):232–260 (in Chinese).
徐光兴,姚令侃,李朝红,王晓放. 2012. 基于汶川地震强震动记录的边坡永久位移预测模型[J]. 岩土工程学报,34(6):1131–1136. Xu G X,Yao L K,Li C H,Wang X F. 2012. Predictive models for permanent displacement of slopes based on recorded strong-motion data of Wenchuan earthquake[J]. Chinese Journal of Geotechnical Engineering,34(6):1131–1136 (in Chinese).
Ambraseys N N,Menu J M. 1988. Earthquake-induced ground displacements[J]. Earthq Eng Struct Dyn,16(7):985–1006. doi: 10.1002/eqe.4290160704
Arias A. 1970. A measure of earthquake intensity[G]//Seismic Design for Nuclear Power Plants. Cambridge, MA, MIT Press: 438–483.
Bray J D,Travasarou T. 2007. Simplified procedure for estimating earthquake-induced deviatoric slope displacements[J]. J Geotech Geoenviron Eng,133(4):381–392.
Campbell K W. 2009. Estimates of shear-wave Q and κ0 for unconsolidated and semiconsolidated sediments in eastern North America[J]. Bull Seismol Soc Am,99(4):2365–2392. doi: 10.1785/0120080116
Campbell K W,Bozorgnia Y. 2012. A comparison of ground motion prediction equations for Arias intensity and cumulative absolute velocity developed using a consistent database and functional form[J]. Earthq Spectra,28(3):931–941. doi: 10.1193/1.4000067
Du W Q,Wang G. 2016. A one-step Newmark displacement model for probabilistic seismic slope displacement hazard analysis[J]. Eng Geol,205:12–23. doi: 10.1016/j.enggeo.2016.02.011
Egan J A, Rosidi D. 1991. Assessment of earthquake: Induced liquefaction using ground-motion energy characteristics[C]//Proceedings of the Pacific Conference on Earthquake Engineering. Auckland, New Zealand: 1–8.
Foulser-Piggott R,Stafford P J. 2012. A predictive model for Arias intensity at multiple sites and consideration of spatial correlations[J]. Earthq Eng Struct Dyn,41(3):431–451. doi: 10.1002/eqe.1137
Gaudio V D,Pierri P,Wasowski J. 2003. An approach to time-probabilistic evaluation of seismically induced landslide hazard[J]. Bull Seismol Soc Am,93(2):557–569.
Gülerce Z,Balal O. 2017. Probabilistic seismic hazard assessment for sliding displacement of slopes:An application in Turkey[J]. Bull Earthq Eng,15(7):2737–2760.
Harp E L,Wilson R C. 1995. Shaking intensity thresholds for rock falls and slides:Evidence from 1987 Whittier Narrows and Superstition Hills earthquake strong-motion records[J]. Bull Seismol Soc Am,85(6):1739–1757.
Hsieh S Y,Lee C T. 2011. Empirical estimation of the Newmark displacement from the Arias intensity and critical acceleration[J]. Eng Geol,122(1/2):34–42.
Jibson R W. 1993. Predicting earthquake-induced landslide displacements using Newmark’s sliding block analysis[J]. Transport Res Rec,1411:9–17.
Jibson R W,Harp E L,Michael J A. 2000. A method for producing digital probabilistic seismic landslide hazard maps[J]. Eng Geol,58(3/4):271–289.
Jibson R W. 2007. Regression models for estimating coseismic landslide displacement[J]. Eng Geol,91:209–218. doi: 10.1016/j.enggeo.2007.01.013
Jibson R W, Michael J A. 2009. Maps showing seismic landslide hazards in Anchorage, Alaska[Z]. U. S. Geological Survey Scientific Investigations Map 3077.
Kayen R E,Mitchell J K. 1997. Assessment of liquefaction potential during earthquakes by Arias intensity[J]. J Geotech Geoenviron Eng,123(12):1162–1174.
Keefer D K. 2002. Investigating landslides caused by earthquakes: A historical review[J]. Surv Geophys,23:473–510.
Kramer S L. 1989. Uncertainty in steady state liquefaction evaluation procedures[J]. J Geotech Eng,115(10):1402–1421.
Kramer S L,Mitchell R A. 2006. Ground motion intensity measures for liquefaction hazard evaluation[J]. Earthq Spectra,22(2):413–438.
Lee C T,Hsieh B S,Sung C H,Lin P S. 2012. Regional Arias intensity attenuation relationship for Taiwan considering vS30[J]. Bull Seismol Soc Am,102(1):129–142. doi: 10.1785/0120100268
Liu J M,Gao M T,Xie J J. 2015. Spatial variability and attenuation of Arias intensity during the 1999 Chi-Chi MW7.6 earthquake,Taiwan[J]. Bull Seismol Soc Am,105(3):1768–1778. doi: 10.1785/0120140157
Liu J M,Wang T,Wu S R,Gao M T. 2016. New empirical relationships between Arias intensity and peak ground acceleration[J]. Bull Seismol Soc Am,106(5):2168–2176. doi: 10.1785/0120150366
Melgar D,Bock Y,Sanchez D,Crowell B W. 2013. On robust and reliable automated baseline corrections for strong motion seismology[J]. J Geophys Res Solid Earth,118(3):1177–1187. doi: 10.1002/jgrb.50135
Newmark N M. 1965. Effects of earthquakes on dams and embankments[J]. Géotechnique,15(2):139–160.
Rathje E M,Saygili G. 2009. Probabilistic assessment of earthquake-induced sliding displacements of natural slopes[J]. Bull NZ Soc Earthq Eng,42(1):18–27.
Romeo R. 2000. Seismically induced landslide displacements:A predictive model[J]. Eng Geol,58(3/4):337–351.
Saygili G,Rathje E M. 2008. Empirical predictive models for earthquake-induced sliding displacements of slopes[J]. J Geotech Geoenviron Eng,134(6):790–803. doi: 10.1061/(ASCE)1090-0241(2008)134:6(790)
Stafford P J,Berrill J B,Pettinga J R. 2009. New predictive equations for Arias intensity from crustal earthquakes in New Zealand[J]. J Seismol,13(1):31–52. doi: 10.1007/s10950-008-9114-2
Travasarou T,Bray J D,Abrahamson N A. 2003. Empirical attenuation relationship for Arias intensity[J]. Earthq Eng Struct Dyn,32(7):1133–1155. doi: 10.1002/eqe.270
Urzúa A,Christian J T. 2013. Sliding displacements due to subduction-zone earthquakes[J]. Eng Geol,166:237–244. doi: 10.1016/j.enggeo.2013.08.005
USGS. 2013. M 6.6: 56 km WSW of Linqiong, China[EB/OL] [2020-03-11]. https://earthquake.usgs.gov/earthquakes/eventpage/usb000gcdd/executive.
Wald D J,Allen T I. 2007. Topographic slope as a proxy for seismic site conditions and amplification[J]. Bull Seismol Soc Am,97(5):1379–1395. doi: 10.1785/0120060267
Wang R J,Schurr B,Milkereit C,Shao Z G,Jin M P. 2011. An improved automatic scheme for empirical baseline correction of digital strong-motion records[J]. Bull Seismol Soc Am,101(5):2029–2044. doi: 10.1785/0120110039
Wilson R C. 1993. Relation of Arias intensity to magnitude and distance in California. Menlo Park, California, U.S. Geological Survey: 93–556.