基于地震监测能力的地方测震台网布局优化

祁国亮 袁川 余苗 唐淋

祁国亮,袁川,余苗,唐淋. 2022. 基于地震监测能力的地方测震台网布局优化. 地震学报,44(3):476−488 doi: 10.11939/jass.20210019
引用本文: 祁国亮,袁川,余苗,唐淋. 2022. 基于地震监测能力的地方测震台网布局优化. 地震学报,44(3):476−488 doi: 10.11939/jass.20210019
Qi G L,Yuan C,Yu M,Tang L. 2022. Optimization of local seismic network layout based on seismic monitoring capability. Acta Seismologica Sinica,44(3):476−488 doi: 10.11939/jass.20210019
Citation: Qi G L,Yuan C,Yu M,Tang L. 2022. Optimization of local seismic network layout based on seismic monitoring capability. Acta Seismologica Sinica44(3):476−488 doi: 10.11939/jass.20210019

基于地震监测能力的地方测震台网布局优化

doi: 10.11939/jass.20210019
基金项目: 国家重点研发计划(2018YFC1504501-02)、地震科技星火计划(XH19036YSX)和四川省地震局紧急地震信息创新团队(201801)联合资助
详细信息
    作者简介:

    祁国亮,硕士,高级工程师,现从事测震学研究和地震台网建设项目管理工作,e-mail:qiguoliang2004@163.com

    通讯作者:

    唐淋,硕士,高级工程师,现主要从事数字地震学研究,e-mail:feixue4272000@126.com

  • 中图分类号: P315.78

Optimization of local seismic network layout based on seismic monitoring capability

  • 摘要: 为解决带约束条件的台站选址问题,本文借鉴公共服务设施选址最优化理论,深入分析测震台网监测能力的构成要素,并考虑地形坡度、环境噪声水平、台站布局等约束条件,建立了基于地震检测能力、记录能力和定位精度的台网布局最优化模型。之后以成都市测震台网为例,经模拟退火算法求解,获得了分别满足重点监测区和非重点监测区地震监测能力需求的台网布局优化方案,明确给出了新增或新建监测台站的地理位置。

     

  • 图  1  需求点(a)与台站点(b)集合示意图

    Figure  1.  Schematic diagram of demand point collection (a) and station collection (b)

    图  2  成都市活动断裂、地震震中及测震台站分布

    Figure  2.  Distribution of active faults, epicenters and seismic stations in Chengdu

    图  3  成都市域外已建测震台站分布

    Figure  3.  Distribution of seismic stations outside Chengdu

    图  4  成都市地形坡度(a)和环境噪声水平(b)

    Figure  4.  Terrain slope (a) and ambient noise level (b) in Chengdu

    图  5  成都市区台站建设环境条件分布

    Figure  5.  Distribution of station built environmental condition in Chengdu

    图  6  成都市当前(a)和优化后(b)的测震台网地震检测能力

    Figure  6.  Current (a) and optimized (b) seismic detection capability of the seismic network in Chengdu

    图  7  成都市当前(a)和优化后(b)的测震台网地震记录能力

    Figure  7.  Current (a) and optimized (b) seismic recording capacity of seismic network in Chengdu

    图  8  成都市测震台网地震记录能力优化台站位置

    Figure  8.  Location of stations after optimization of recording capacity of Chengdu seismic network

    图  9  成都市测震台网地震定位精度优化

    (a) 当前台网ML1.0地震定位精度;(b) 优化后台网地震检测能力;(c) 优化后台网ML0.5地震定位精度

    Figure  9.  Optimization of seismic positioning accuracy of Chengdu seismic network

    (a) The positioning accuracy of the current network for ML1.0 earthquake;(b) Seismic detection capability of optimized network;(c) The positioning accuracy of optimized network for ML0.5 earthquake

  • [1] 傅再扬. 1999. 数字地震仪记录近震震级范围估算[J]. 福建地震,15(2):42–43.
    [2] Fu Z Y. 1999. Evaluation on the range of local magnitude recorded by digital seismograph[J]. Fujian Seismology,15(2):42–43 (in Chinese).
    [3] 葛焕称. 1998. 区域地震台网的动态监测能力[J]. 地震地磁观测与研究,19(4):26–30.
    [4] Ge H C. 1998. Dynamic detectability of the regional seismic network[J]. Seismological and Geomagnetic Observation and Research,19(4):26–30 (in Chinese).
    [5] 巩思园,窦林名,曹安业,贺虎,杜涛涛,江衡. 2010. 煤矿微震监测台网优化布设研究[J]. 地球物理学报,53(2):457–465. doi: 10.3969/j.issn.0001-5733.2010.02.025
    [6] Gong S Y,Dou L M,Cao A Y,He H,Du T T,Jiang H. 2010. Study on optimal configuration of seismological observation network for coal mine[J]. Chinese Journal of Geophysics,53(2):457–465 (in Chinese).
    [7] 巩思园,窦林名,马小平,牟宗龙,陆菜平. 2012. 提高煤矿微震定位精度的台网优化布置算法[J]. 岩石力学与工程学报,31(1):8–17. doi: 10.3969/j.issn.1000-6915.2012.01.002
    [8] Gong S Y,Dou L M,Ma X P,Mu Z L,Lu C P. 2012. Optimization algorithm of network configuration for improving location accuracy of microseism in coal mine[J]. Chinese Journal of Rock Mechanics and Engineering,31(1):8–17 (in Chinese).
    [9] 刘栋. 2018. 福建省测震台网监测能力研究[D]. 哈尔滨: 中国地震局工程力学研究所: 35–36.
    [10] Liu D. 2018. Research on Monitoring Capacity of Seismological Network in Fujian Province[D]. Harbin: Institute of Engineering Mechanics, China Earthquake Administration: 35–36 (in Chinese).
    [11] 刘瑞丰. 2016. 中国地震台网的建设与发展[J]. 地震地磁观测与研究,37(4):201.
    [12] Liu R F. 2016. Construction and development of China Seismic Network[J]. Seismological and Geomagnetic Observation and Research,37(4):201 (in Chinese).
    [13] 邱宇,蒋长胜,司政亚. 2020. 地震监测台网优化布局技术方法综述[J]. 地球物理学进展,35(3):866–873. doi: 10.6038/pg2020DD0069
    [14] Qiu Y,Jiang C S,Si Z Y. 2020. Summary of technical methods for optimizing layout of seismic monitoring network[J]. Progress in Geophysics,35(3):866–873 (in Chinese).
    [15] 宋巨龙, 王香柯, 冯晓慧. 2012. 最优化方法[M]. 西安: 西安电子科技大学出版社: 1–2.
    [16] Song J L, Wang X K, Feng X H. 2012. Optimization Methods[M]. Xi’an: Xidian University Press: 1–2 (in Chinese).
    [17] 王强. 1993. 模拟退火算法的改进及其应用[J]. 应用数学,6(4):392–397.
    [18] Wang Q. 1993. The improved simulated annealing algorithm and its application[J]. Mathematica Applicata,6(4):392–397 (in Chinese).
    [19] 中国地震局. 2016. DB/T 66—2016 地震编目规范[S]. 北京: 地震出版社: 1–2.
    [20] China Earthquake Administration. 2016. DB/T 66-2016 Specification for Earthquake Cataloguing[S]. Beijing: Seismological Press: 1–2 (in Chinese).
    [21] 中国地震局监测预报司. 2017. 测震学原理与方法[M]. 北京: 地震出版社: 223–225.
    [22] Monitoring and Forecasting Department of China Earthquake Administration. 2017. Surveying Principles and Methods[M]. Beijing: Seismological Press: 223–225 (in Chinese).
    [23] 庄灿涛, 杨晓源. 2007. 我国地震台网发展回顾[C]//辉煌的历程: 回顾中国地球物理学会60周年专刊. 北京: 中国地球物理学会: 17.
    [24] Zhuang C T, Yang X Y. 2007. Review of the development of seismic network in China[C]//Brilliant History: Review of the Special Issue of the 60th anniversary of the Chinese Geophysical Society. Beijing: Chinese Geophysical Society: 17 (in Chinese).
    [25] Aarts, Korst. 1988. Simulated Annealing and Boltzmann Machines[M]. Massachusetts: MIT Press: 17–21.
    [26] Bartal Y. 2000. Optimal seismic networks in Israel in the context of the comprehensive test ban treaty[J]. Bull Seismol Soc Am,90(1):151–165. doi: 10.1785/0119980164
    [27] Bormann P. 2002. New Manual of Seismological Observatory Practice[M]. Potsdam: GeoForschungs Zentrum.
    [28] García-Fernandez M,Kijko A,Carracedo J C,Soler V. 1988. Optimum station distribution to monitor seismic activity of Teide volcano,Tenerife,Canary Islands[J]. J Volcanol Geoth Res,35(3):195–204. doi: 10.1016/0377-0273(88)90016-9
    [29] Ghalib H A A,Russell D R,Kijko A. 1984. Optimal design of a regional seismological network for the Arab countries[J]. Pure Appl Geophys,122(5):694–712. doi: 10.1007/BF01101875
    [30] Kijko A. 1977. An algorithm for the optimum distribution of a regional seismic network:I[J]. Pure Appl Geophys,115(4):999–1009. doi: 10.1007/BF00881222
    [31] Kirkpatrick S. 1984. Optimization by simulated annealing:Quantitative studies[J]. J Stat Phys,34(5):975–986.
    [32] Mendecki A J. 1997. Seismic Monitoring in Mines[M]. London: Chapman & Hall: 87–106.
    [33] Rabinowitz N,Steinberg D M. 1990. Optimal configuration of a seismographic network:A statistical approach[J]. Bull Seismol Soc Am,80(1):187–196. doi: 10.1785/BSSA0800010187
    [34] Steinberg D M,Rabinowitz N,Shimshoni Y,Mizrachi D. 1995. Configuring a seismographic network for optimal monitoring of fault lines and multiple sources[J]. Bull Seismol Soc Am,85(6):1847–1857. doi: 10.1785/BSSA0850061847
  • 加载中
图(9)
计量
  • 文章访问数:  157
  • HTML全文浏览量:  65
  • PDF下载量:  64
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-29
  • 修回日期:  2021-05-03
  • 网络出版日期:  2022-05-10
  • 刊出日期:  2022-06-27

目录

    /

    返回文章
    返回