盈江地区构造应力场和断层识别的联合迭代式反演研究

冯兵, 朱良玉, 惠航, 王文青, 柴旭超, 姬东姣

冯兵,朱良玉,惠航,王文青,柴旭超,姬东姣. 2022. 盈江地区构造应力场和断层识别的联合迭代式反演研究. 地震学报,44(4):619−631. DOI: 10.11939/jass.20210027
引用本文: 冯兵,朱良玉,惠航,王文青,柴旭超,姬东姣. 2022. 盈江地区构造应力场和断层识别的联合迭代式反演研究. 地震学报,44(4):619−631. DOI: 10.11939/jass.20210027
Feng B,Zhu L Y,Hui H,Wang W Q,Chai X C,Ji D J. 2022. Joint iterative inversion of tectonic stress field and fault identification in Yingjiang area. Acta Seismologica Sinica44(4):619−631. DOI: 10.11939/jass.20210027
Citation: Feng B,Zhu L Y,Hui H,Wang W Q,Chai X C,Ji D J. 2022. Joint iterative inversion of tectonic stress field and fault identification in Yingjiang area. Acta Seismologica Sinica44(4):619−631. DOI: 10.11939/jass.20210027

盈江地区构造应力场和断层识别的联合迭代式反演研究

基金项目: 吉林长白山火山国家野外科学观测研究站研究课题(NORSCBS20-06)、地震科技星火计划青年项目(XH21065Y)、中国地震局第二监测中心科学技术基金(KJ20200202)和地震科技星火计划(XH20083)共同资助
详细信息
    通讯作者:

    冯兵,学士,助理工程师,主要从事震源机制构造应力场反演、震源物理破裂、测震数据应用等研究,e-mail:2662103261@qq.com

  • 中图分类号: P315.3+3

Joint iterative inversion of tectonic stress field and fault identification in Yingjiang area

  • 摘要: 搜集了盈江及其邻区5组地震序列震源机制解并反演得到该区域的构造应力场。研究结果显示:盈江地区整体主压应力以NNE向为主,主张应力以ESE向为主;但其局部应力场不完全一致,沿苏典断裂分布的主压应力轴走向随着断裂走向由北向南延伸角度逐渐向北偏移,而盈江地区的西南部,其主压应力走向更偏向于东,这可能与大盈江断裂的横向拉伸有关。此外,本研究通过应力场反演识别出了5组地震序列震源机制解的主发震断层节面的走向、倾角、滑动角及发震断层的摩擦系数,为今后该区域的地震研究及地壳动力学变迁提供了参考。
    Abstract: There has always been a problem in inversion of tectonic stress field by focal mechanism solution, it is impossible to determine which nodel plane is the correct seismogenic fault plane. The joint iterative stress inversion method can effectively avoid the error caused by incorrect fault selection by identifying the fault instability. In this paper, the focal mechanism solutions of five groups of earthquake sequences in Yingjiang and its adjacent areas are collected, and the tectonic stress field in this area is inversed. The results show that, in Yingjiang area, the main compressive stress is NNE, and the main tensile stress is ESE, which is basically consistent with the previous research results. However, the local stress field is not completely consistent. The strike of the principal stress axis along the Sudian fault extends from north to south, and the angle gradually shifts to the north. In the southwest of Yingjiang, the strike of the principal stress tends to the East, which may be related to the transverse extension of the Dayingjiang fault. In addition, the strike, dip angle, slip angle and friction coefficient of the main seismogenic fault nodal planes of the focal mechanism solutions of five groups of earthquake sequences are identified by stress field inversion. This provides a valuable reference for the future seismic and crustal dynamic changes research in this region.
  • 图  1   盈江区域地震序列震源机制解空间分布图

    F1:怒江断裂;F2:龙陵—瑞丽断裂;F3:瓦德龙断裂;F4:大盈江断裂;F5:昔马—盘龙山断裂;F6:苏典断裂;F7:槟榔断裂;F8:猴桥—中和断裂;F9:固东—腾冲断裂图中AE区分别代表2008年3月21日、8月21日及9月3日盈江地震序列、2011年3月10日盈江地震序列和2011年8月9日腾冲地震序列的震源机制解分区

    Figure  1.   Spatial distribution of focal mechanism solutions of earthquake sequences in Yingjiang region

    F1:Nujiang fault;F2:Longling-Ruili fault;F3:Wadelon fault;F4:Dayingjiang fault;F5:Xima-Panlongshan fault;F6:Sudian fault;F7:Binglang fault;F8:Houqiao-Zhonghe fault;F9:Gudong-Tengchong fault.AE in the figure represent the focal mechanism solution partition of Yingjiang earthquake sequences on 21 March 2008,21 August 2008,3 September 2008,10 March 2011 and Tengchong earthquake sequence on 9August 2011,respectively

    图  2   断层不稳定性的莫尔圆定义(Vavryčuk,2014

    红色圆点标出了以不稳定性为特征I=1的主断层上的牵引力,蓝色圆点标出了以任意不稳定性为特征I的主断层上的牵引力

    Figure  2.   Definition of the fault instability in Mohr’s diagram (Vavryčuk,2014

    The red solid circle marks the traction on the main fault characterized by instability I=1,and the blue solid circle marks the traction on the main fault characterized by arbitrary instability

    图  3   AE区(a—e)5组地震序列震源机制解联合迭代反演的应力场结果

    左侧为地震序列震源机制解反演的断层摩尔圆分布,右侧为主轴方向及PT

    Figure  3.   Stress field results of joint iterative inversion for focal mechanism solutions of five seismic sequences in areas AE (a−e)

    The left side is the fault Mohr’s circle distribution inversed by focal mechanism solutions of seismi sequences, and the right side is the main axis direction and PT axis

    图  4   5组地震序列构造应力场反演的应力形因子R的分布(左)及主应力轴方向(右)

    Figure  4.   Stress shape factor R distribution (left) and principal stress axis direction (right) of tectonic stress field inversion results for five earthquake sequences

    (a) 2008-13-21;(b) 2008-08-21;(c) 2008-09-03;(d) 2011-03-10;(e) 2011-08-09

    图  5   5组地震序列震源机制解应力反演识别出的主断层节面图

    Ⅰ :地震序列震源机制解的双节面下半球投影图;Ⅱ :最优断层节面下半球投影;Ⅲ :两组震源丛最优发震断层的主断层节面;Ⅳ :主断层节面的PT

    Figure  5.   Nodal map of main fault identified by stress inversion of focal mechanism solutions of five groups of earthquake sequences

    Ⅰ :Double-nodal lower hemispherical projection of focal mechanism solutions of the earthquake sequence;Ⅱ :Lower hemispherical projection of optimal fault nodal plane;Ⅲ :Optimal occurrence of the main fault nodal plane for the two sets of focal clusters;Ⅳ :The P and T axis of the main fault nodal plane (a) 2008-03-21;(b) 2008-08-21;(c) 2008-09-03;(d) 2011-03-10;(e) 2011-08-09

    图  6   主压应力轴应力场分布模型图

    Figure  6.   Stress field distribution model diagram of principal compressive stress axis

    表  1   构造应力场应力主轴反演结果

    Table  1   Inversion results of stress principal axis of tectonic stress field

    地震序列主震
    发震日期
    分区震源机制解
    个数
    σ1σ2σ3应力形因子R
    方位角/°倾角/°方位角/°倾角/°方位角/°倾角/°
    2008-03-21 A 17 44 3 258 86 135 2 0.78
    2008-08-21 B 36 215 33 40 57 306 2 0.40
    2008-09-03 C 48 34 3 212 87 304 0 0.75
    2011-03-10 D 61 193 15 333 70 99 12 0.57
    2011-08-09 E 23 195 1 294 83 105 7 0.65
    下载: 导出CSV

    表  2   迭代应力反演识别出的最优主断层节面

    Table  2   Optimal main fault nodal plane identified by iterative stress inversion

    地震序列主震
    发震日期
    反演识别的两组主断层节面地震序列主震
    发震日期
    反演识别的两组主断层节面
    走向/°倾角/°滑动角/°走向/°倾角/°滑动角/°
    2008-03-21 250 89 4 2011-03-10 158 88 161
    199 86 −178 223 72 −7
    2008-08-21 241 77 −31 2011-08-09 164 85 176
    12 73 −151 225 84 3
    2008-09-03 187 89 −177
    60 88 −3
    下载: 导出CSV
  • 邓菲,刘杰. 2014. 2008年盈江地震序列的震源参数和震源机制相关系数研究[J]. 地震,34(2):22–34. doi: 10.3969/j.issn.1000-3274.2014.02.003

    Deng F,Liu J. 2014. Source parameters and correlation coefficients of focal mechanisms for the 2008 Yingjiang earthquake sequence[J]. Earthquake,34(2):22–34 (in Chinese).

    房立华,吴建平,张天中,黄静,王长在,杨婷. 2011. 2011年云南盈江MS5.8地震及其余震序列重定位[J]. 地震学报,33(2):262–267. doi: 10.3969/j.issn.0253-3782.2011.02.013

    Fang L H,Wu J P,Zhang T Z,Huang J,Wang C Z,Yang T. 2011. Relocation of mainshock and aftershocks of the 2011 Yingjiang MS5.8 earthquake in Yunnan[J]. Acta Seismologica Sinica,33(2):262–267 (in Chinese).

    郭祥云,陈学忠,王生文,王恒信. 2014. 川滇地区中小地震震源机制解及构造应力场的研究[J]. 地震工程学报,36(3):599–607. doi: 10.3969/j.issn.1000-0844.2014.03.0599

    Guo X Y,Chen X Z,Wang S W,Wang H X. 2014. Focal mechanism of small and moderate earthquakes and tectonic stress field in Sichuan-Yunnan areas[J]. China Earthquake Engineering Journal,36(3):599–607 (in Chinese).

    胡晓辉. 2020. 云南及邻区构造应力场研究[D]. 三河: 防灾科技学院: 45–46.

    Hu X H. 2020. The Study of Tectonic Stress Field in Yunnan and Its Adjacent Areas[D]. Sanhe: Institute of Disaster Prevention: 45–46 (in Chinese).

    黄小龙,吴中海,赵小艳,吴坤罡,黄小巾,杜锦锦. 2015. 2014年5月云南盈江MS5.6、MS6.1地震发震构造分析[J]. 地球学报,36(6):760–769.

    Huang X L,Wu Z H,Zhao X Y,Wu K G,Huang X J,Du J J. 2015. Seismogenic structure of 2014 MS5.6 and MS6.1 earthquakes in Yingjiang,Yunnan Province[J]. Acta Geoscientica Sinica,36(6):760–769 (in Chinese).

    季建清,钟大赉,张连生. 2000. 滇西南新生代走滑断裂运动学、年代学、及对青藏高原东南部块体运动的意义[J]. 地质科学,35(3):336–349. doi: 10.3321/j.issn:0563-5020.2000.03.009

    Ji J Q,Zhong D L,Zhang L S. 2000. Kinematics and dating of cenozoic strike-slip faults in the Tengchong area,West Yunnan:Implications for the block movement in the southeastern Tibet Plateau[J]. Scientia Geologica Sinica,35(3):336–349 (in Chinese).

    罗艳, 包丰, 倪四道, 陈颙, 陈棋福, 付虹. 2011. 2008年云南盈江MS5.9地震序列初步研究[C]//中国地球物理学会第二十七届年会论文集. 长沙: 中国科学技术大学出版社: 422.

    Luo Y, Bao F, Ni S D, Chen Y, Chen Q F, Fu H. 2011. Study on the 2008 MS5.9 earthquake sequence in Yingjiang, Yunnan Province[C]//Proceedings of the 27th Annual Meeting of Chinese Geophysical Society. Changsha: China University of Science and Technology Press: 422 (in Chinese).

    孙尧,吴中海,安美建,龙长兴. 2014. 川滇地区主要活动断裂的活动特征及其近十年的地震活动性[J]. 地震工程学报,36(2):320–330. doi: 10.3969/j.issn.1000-0844.2014.02.0320

    Sun Y,Wu Z H,An M J,Long C X. 2014. Activity characteristics of primary active faults in Yunnan-Sichuan area and their seismic activity in the past[J]. China Earthquake Engineering Journal,36(2):320–330 (in Chinese).

    万永革. 2012. 根据震源机制求解构造应力场的网格搜索法[J]. 国际地震动态,(6):19.

    Wan Y G. 2012. The grid search algorithm of tectonic stress tensor based on focal mechanism data[J]. Recent Developments in World Seismology,(6):19 (in Chinese).

    谢富仁,苏刚,崔效锋,舒赛兵,赵建涛. 2001. 滇西南地区现代构造应力场分析[J]. 地震学报,23(1):17–23. doi: 10.3321/j.issn:0253-3782.2001.01.003

    Xie F R,Su G,Cui X F,Shu S B,Zhao J T. 2001. Modern tectonic stress field in southwestern Yunnan,China[J]. Acta Seismologica Sinica,14(1):17–23 (in Chinese).

    徐彦. 2013. 云南地区ML3.0级以上中小地震震源机制解汇编2008—2012[M]. 云南: 云南科技出版社: 168–186.

    Xu Y. 2013. Decollection of Focal Mechanism of Moderate and Small Earthquakes With ML3.0 or Higher in Yunnan Area (2008−2012)[M]. Yunnan: Yunnan Science and Technology Press: 168–186 (in Chinese).

    张丽娜,韩立波,罗艳. 2016. 2014年5月云南盈江两次中强地震震源参数研究[J]. 地震,36(1):59–68. doi: 10.3969/j.issn.1000-3274.2016.01.007

    Zhang L N,Han L B,Luo Y. 2016. Source parameters of May 24,2014 MS5.6 and May 30,2014 MS6.1 earthquakes in Yingjiang,Yunnan Province[J]. Earthquake,36(1):59–68 (in Chinese).

    张艳凤,常祖峰,彭永中,张亚宏. 2018. 2014年云南盈江6.1级地震宏观异常及其与构造关联性讨论[J]. 地震研究,41(1):148–156. doi: 10.3969/j.issn.1000-0666.2018.01.019

    Zhang Y F,Chang Z F,Peng Y Z,Zhang Y H. 2018. Discuss on macro-anomalies of the Yunnan Yingjiang M6.1 earthquake and its relation of tectonics[J]. Journal of Seismological Research,41(1):148–156 (in Chinese).

    赵小艳,韩立波,龙锋. 2012. 2011年盈江MS≥4.0地震序列震源机制解与发震构造研究[J]. 地震研究,35(4):477–484. doi: 10.3969/j.issn.1000-0666.2012.04.006

    Zhao X Y,Han L B,Long F. 2012. Focal mechanism solutions and seismogenic structures of Yingjiang MS≥4.0 earthquake sequences in 2011[J]. Journal of Seismological Research,35(4):477–484 (in Chinese).

    Gephart J W,Forsyth D W. 1984. An improved method for determining the regional stress tensor using earthquake focal mechanism data:Application to the San Fernando earthquake sequence[J]. J Geophys Res,89(B11):9305–9320. doi: 10.1029/JB089iB11p09305

    Hardebeck J L,Michael A J. 2006. Damped regional-scale stress inversions:Methodology and examples for southern California and the Coalinga aftershock sequence[J]. J Geophys Res,111(B11):B11310.

    Harris R A. 1998. Introduction to special section:Stress triggers,stress shadows,and implications for seismic hazard[J]. J Geophys Res,103(B10):24347–24358. doi: 10.1029/98JB01576

    Jacques A. 2002. Inversion of earthquake focal mechanisms to obtain the seismotectonic stress IV:A new method free of choice among nodal planes[J]. Geophys J Int,150(3):588–609. doi: 10.1046/j.1365-246X.2002.01713.x

    Lund B,Slunga R. 1999. Stress tensor inversion using detailed microearthquake information and stability constraints:Application to Őlfus in southwest Iceland[J]. J Geophys Res,104(B7):14947–14964. doi: 10.1029/1999JB900111

    Martínez-Garzón P,Kwiatek G,Ickrath M,Bohnhoff M. 2014. MSATSI:A MATLAB package for stress inversion combining solid classic methodology,a new simplified user-handling,and a visualization tool[J]. Seismol Res Lett,85(4):896–904. doi: 10.1785/0220130189

    Michael A J. 1984. Determination of stress from slip data:Faults and folds[J]. J Geophys Res,89(B13):11517–11526. doi: 10.1029/JB089iB13p11517

    Michael A J. 1987. Use of focal mechanisms to determine stress:A control study[J]. J Geophys Res,92(B1):357–368. doi: 10.1029/JB092iB01p00357

    Vavryčuk V,Bouchaala F,Fischer T. 2013. High-resolution fault image from accurate locations and focal mechanisms of the 2008 swarm earthquakes in West Bohemia,Czech Republic[J]. Tectonophysics,590:189–195. doi: 10.1016/j.tecto.2013.01.025

    Vavryčuk V. 2014. Iterative joint inversion for stress and fault orientations from focal mechanisms[J]. Geophys J Int,199(1):69–77. doi: 10.1093/gji/ggu224

图(6)  /  表(2)
计量
  • 文章访问数:  734
  • HTML全文浏览量:  368
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-22
  • 修回日期:  2021-08-16
  • 网络出版日期:  2022-06-26
  • 发布日期:  2022-08-15

目录

    /

    返回文章
    返回