接收函数、面波与重力联合约束地壳厚度与波速比

任志远, 李永华, 强正阳, 石磊

任志远,李永华,强正阳,石磊. 2022. 接收函数、面波与重力联合约束地壳厚度与波速比. 地震学报,44(6):935−948. DOI: 10.11939/jass.20210065
引用本文: 任志远,李永华,强正阳,石磊. 2022. 接收函数、面波与重力联合约束地壳厚度与波速比. 地震学报,44(6):935−948. DOI: 10.11939/jass.20210065
Ren Z Y,Li Y H,Qiang Z Y,Shi L. 2022. Estimating of crustal thickness and vP/vS ratio using receiver function,surface wave and gravity data. Acta Seismologica Sinica44(6):935−948. DOI: 10.11939/jass.20210065
Citation: Ren Z Y,Li Y H,Qiang Z Y,Shi L. 2022. Estimating of crustal thickness and vP/vS ratio using receiver function,surface wave and gravity data. Acta Seismologica Sinica44(6):935−948. DOI: 10.11939/jass.20210065

接收函数、面波与重力联合约束地壳厚度与波速比

基金项目: 国家自然科学基金(U1839210,41874108,41874097)和中国地震局地球物理研究所基本科研业务费专项(DQJB20X47)联合资助
详细信息
    作者简介:

    任志远,硕士研究生,主要从事固体地球物理学研究,目前任职于山东省地震局,e-mail:353452580@qq.com

    通讯作者:

    李永华,博士,研究员,主要从事固体地球物理学研究,e-mail:liyh@cea-igp.ac.cn

  • 中图分类号: P315.31

Estimating of crustal thickness and vP/vS ratio using receiver function,surface wave and gravity data

  • 摘要: 提出了一种利用接收函数、面波频散和重力数据联合约束地壳厚度、vP/vS和平均P波速度的改进方法,并基于两种地壳模型对改进后的方法进行了验证。结果显示,改进后的方法不仅可以提高地壳厚度和波速比的估计精度,还能更准确地估计地壳平均P波速度。在此基础上,将该方法应用于华南地区两个固定台站的地壳结构分析,相关结果也证实了该方法在确定地壳结构中的可行性。
    Abstract: Crustal thickness H and vP/vS ratio are two basic parameters for deciphering the crustal structure. We present an improved technique to constrain crustal thickness, vP/vS ratio and average P-wave velocity by using receiver function, surface wave dispersion and gravity data. Synthetic tests show that the improved method not only can accurately estimate H and vP/vS ratio, but also can give a reliable determination of the average crustal vP. Field data from two stations of South China are analyzed by the improved method, and the results also show the feasibility of the new method in constraining crustal properties.
  • 图  1   用于正演测试的两个速度模型

    (a) 简单速度模型(模型Ⅰ);(b) 含低速层的速度模型(模型Ⅱ)

    Figure  1.   Two velocity models used for forward testing

    (a) Simple velocity model;(b) Velocity model including a low velocity layer

    图  2   基于图1中的模型Ⅰ(a)和Ⅱ(b)合成的接收函数(上)和瑞雷波群速度频散U (下)

    Figure  2.   Synthetic receiver function (upper panels) and Rayleigh wave group velocity dispersion U(lower panels) based on the models Ⅰ (a) and Ⅱ (b) shown in Fig. 1

    图  3   用于理论重力异常正演而构建的地壳厚度(a)和波速比(b)分布模型

    Figure  3.   The crustal thickness (a) and vP/vS ratio (b) used for synthetic gravity anomaly

    图  4   基于模型(图3)正演得到的布格重力异常

    (a) 莫霍面起伏引起的重力异常;(b) 地壳内密度不均匀引起的重力异常;(c) 理论合成的布格重力异常

    Figure  4.   Synthetic Bouguer gravity anomalies for the model in Fig. 3

    (a) The modeled gravity anomalies associated with undulation Moho interface;(b) The modeled gravity anomalies associated with crustal heterogeneous density distribution; (c) The modeled Bouguer gravity anomalies with 5% Gaussian noise

    图  5   基于模型Ⅰ(图1a)得到的地壳厚度H-波速比κ约束图(图中白线代表最优值68%的置信区间)

    (a) 接收函数H-κ叠加谱;(b,c) 初始P波速度为6.1和6.2 km/s时的面波H-κ似然谱;(d) 重力H-κ似然谱;(e,f) 初始P波速度为6.1和6.2 km/s时,接收函数与重力联合约束谱;(g) 接收函数、面波和重力联合约束谱

    Figure  5.   H-κ stacking map based on model Ⅰ(Fig.1a) where white lines delineate 68% confidence interval

    (a) The receiver function H-κ stacking map;(b,c) The surface wave H-κ likelihood map with initial vP=6.1 and 6.2 km/s;(d) The gravity H-κ likelihood map; (e,f) Normalized SRSG with vP=6.1 km/s and vP=6.2 km/s;(g) Joint H-κ stacking map

    图  6   基于模型Ⅱ(图1b)得到的H-κ约束图(图中白线代表最优值68%的置信区间)

    (a) 接收函数H-κ叠加谱;(b) 面波H-κ似然谱;(c) 重力H-κ似然谱;(d) 初始P波速度为6.1 km/s时,接收函数与重力联合约束谱;(e) 接收函数、面波和重力联合约束谱

    Figure  6.   H-κ stacking map based on model Ⅱ(Fig.1b) where white lines represent 68% confidence interval

    (a) Receiver function H-κ stacking map;(b) Surface wave H-κ likelihood map with vP=6.1 km/s;(c) Gravity H-κ likelihood map;(d) Normalized SRSG with vP=6.1 km/s;(e) Joint H-κ stacking map

    图  7   研究区布格重力异常

    Figure  7.   The complete Bouguer gravity anomalies in study area

    图  8   台站HB_NZH数据资料及计算得到的H-κ约束图(图中白线代表最优值68%的置信区间)

    (a) HB_NZH台站观测接收函数;(b) 实测瑞雷波群速度频散ULi et al,2013);(c) 接收函数H-κ叠加谱;(d) 面波H-κ似然谱;(e) 重力H-κ似然谱;(f) 联合约束谱

    Figure  8.   Data and H-κ stacking map of station HB_NZH where white lines in Figs. (c)–(f) represent the 68 percent confidence interval

    (a) Observed receiver functions of station HB_NZH;(b) Observed dispersions ULi et al,2013); (c) Receiver function H-κ stacking map;(d) Surface wave H-κ likelihood map; (e) Gravity H-κ likelihood map;(f) Joint H-κ stacking map

    图  9   台站HB_YDU数据资料及计算得到的H-κ约束图(图中白线代表最优值68%的置信区间)

    (a) HB_YDU台站实测接收函数;(b) 实测瑞雷波群速度频散ULi et al,2013);(c) 接收函数H-κ叠加谱;(d) 面波频散H-κ似然谱;(e) 重力H-κ似然谱;(f) 联合约束谱

    Figure  9.   Data and H-κ stacking map of station HB_YDU where white lines in Figs. (c)−(f) represent 68 percent confidence interval

    (a) Observed receiver functions;(b) Observed dispersions ULi et al,2013);(c) Receiver function H-κ stacking map; (d) Surface wave H-κ likelihood map;(e) Gravity H-κ likelihood map;(f) Joint H-κ stacking map

  • 邓阳凡,李守林,范蔚茗,刘佳. 2011. 深地震测深揭示的华南地区地壳结构及其动力学意义[J]. 地球物理学报,54(10):2560–2574. doi: 10.3969/j.issn.0001-5733.2011.10.013

    Deng Y F,Li S L,Fan W M,Liu J. 2011. Crustal structure beneath South China revealed by deep seismic soundings and its dynamics implications[J]. Chinese Journal of Geophysics,54(10):2560–2574 (in Chinese).

    王谦身. 2003. 重力学[M]. 北京: 地震出版社: 22–28.

    Wang Q S. 2003. Gravitology[M]. Beijing: Seismological Press: 22–28 (in Chinese).

    吴庆举,曾融生. 1998. 用宽频带远震接收函数研究青藏高原的地壳结构[J]. 地球物理学报,41(5):669–679. doi: 10.3321/j.issn:0001-5733.1998.05.010

    Wu Q J,Zeng R S. 1998. The crustal structure of Qinghai-Xizang Plateau inferred from broadband teleseismic waveform[J]. Acta Geophysica Sinica,41(5):669–679 (in Chinese).

    杨晓瑜,李永华. 2021. 中国华南地区地壳厚度与波速比分布特征及其地质意义[J]. 地球物理学报,64(1):146–156. doi: 10.6038/cjg2021N0320

    Yang X Y,Li Y H. 2021. Crustal thicknesses and vP/vS ratios beneath South China estimated from receiver function analysis and their geological implications[J]. Chinese Journal of Geophysics,64(1):146–156 (in Chinese).

    郑秀芬,欧阳飚,张东宁,姚志祥,梁建宏,郑洁. 2009. “国家数字测震台网数据备份中心”技术系统建设及其对汶川大地震研究的数据支撑[J]. 地球物理学报,52(5):1412–1417. doi: 10.3969/j.issn.0001-5733.2009.05.031

    Zheng X F,Ouyang B,Zhang D N,Yao Z X,Liang J H,Zheng J. 2009. Technical system construction of Data Backup Centre for China Seismograph Network and the data support to researches on the Wenchuan earthquake[J]. Chinese Journal of Geophysics,52(5):1412–1417 (in Chinese).

    Ammon C J,Randall G E,Zandt G. 1990. On the nonuniqueness of receiver function inversions[J]. J Geophys Res,95:15303–15318.

    Balmino G,Vales N,Bonvalot S,Briais A. 2012. Spherical harmonic modelling to ultra-high degree of Bouguer and isostatic anomalies[J]. J Geod,86(7):499–520.

    Blakely R J. 1995. Potential Theory in Gravity and Magnetic Applications[M]. New York: Cambridge University Press: 43–63.

    Burdick L J,Langston C A. 1977. Modeling crustal structure through the use of converted phases in teleseismic body-wave forms[J]. Bull Seismol Soc Am,67(3):677–691.

    Christensen N I,Fountain D M. 1975. Constitution of the lower continental crust based on experimental studies of seismic velocities in granulite[J]. GSA Bull,86(2):227–236. doi: 10.1130/0016-7606(1975)86<227:COTLCC>2.0.CO;2

    Christensen N I. 1996. Poisson’s ratio and crustal seismology[J]. J Geophys Res:Solid Earth,101(B2):3139–3156.

    Delph J R,Levander A,Niu F L. 2019. Constraining crustal properties using receiver functions and the autocorrelation of earthquake-generated body waves[J]. J Geophys Res:Solid Earth,124(8):8981–8997. doi: 10.1029/2019JB017929

    Eaton D W,Dineva S,Mereu R. 2006. Crustal thickness and vP/vS variations in the Grenville orogen (Ontario,Canada) from analysis of teleseismic receiver functions[J]. Tectonophysics,420(1/2):223–238.

    Guo L H,Meng X H,Chen Z X,Li S L,Zheng Y M. 2013. Preferential filtering for gravity anomaly separation[J]. Comput Geosci,51:247–254. doi: 10.1016/j.cageo.2012.09.012

    Guo L H,Gao R. 2018. Potential-field evidence for the tectonic boundaries of the central and western Jiangnan belt in South China[J]. Precambrian Res,309:45–55. doi: 10.1016/j.precamres.2017.01.028

    Guo L H,Gao R,Shi L,Huang Z R,Ma Y W. 2019. Crustal thickness and Poisson’s ratios of South China revealed from joint inversion of receiver function and gravity data[J]. Earth Planet Sci Lett,510:142–152. doi: 10.1016/j.jpgl.2018.12.039

    He C S, Dong S W, Santosh M, Chen X H. 2013. Seismic evidence for a geosuture between the Yangtze and Cathaysia blocks, South China[J]. Sci Rep, 3: 2200. http://dx.doi.org/10.1038/srep02200.

    Herrmann R B. 2013. Computer programs in seismology:An evolving tool for instruction and research[J]. Seismol Res Lett,84(6):1081–1088. doi: 10.1785/0220110096

    Huang R,Xu Y X,Zhu L P,He K. 2015. Detailed Moho geometry beneath southeastern China and its implications on thinning of continental crust[J]. J Asian Earth Sci,112:42–48. doi: 10.1016/j.jseaes.2015.09.002

    Julià J,Mejía J. 2004. Thickness and vP/vS ratio variation in the Iberian crust[J]. Geophys J Int,156(1):59–72. doi: 10.1111/j.1365-246X.2004.02127.x

    Li Y H,Wu Q J,Pan J T,Zhang F X,Yu D X. 2013. An upper-mantle S-wave velocity model for East Asia from Rayleigh wave tomography[J]. Earth Planet Sci Lett,377/378:367–377. doi: 10.1016/j.jpgl.2013.06.033

    Li Y H,Gao M T,Wu Q J. 2014. Crustal thickness map of the Chinese mainland from teleseismic receiver functions[J]. Tectonophysics,611:51–60. doi: 10.1016/j.tecto.2013.11.019

    Lowry A R,Pérez-Gussinyé M. 2011. The role of crustal quartz in controlling Cordilleran deformation[J]. Nature,471(7338):353–357. doi: 10.1038/nature09912

    Luo S,Zhu L P,Huang R,Luo Y H,Jiang X H,Hua Y Y. 2019. Determination of crustal thickness and velocities by using receiver functions and PmP travel times[J]. Geophys J Int,216(2):1304–1312. doi: 10.1093/gji/ggy500

    Ma Y L,Zhou H L. 2007. Crustal thicknesses and Poisson’s ratios in China by joint analysis of teleseismic receiver functions and Rayleigh wave dispersion[J]. Geophys Res Lett,34(12):L12304. doi: 10.1029/2007GL029848

    Oldenburg D W. 1974. The inversion and interpretation of gravity anomalies[J]. Geophysics,39(4):526–536. doi: 10.1190/1.1440444

    Shen W S,Ritzwoller M H,Kang D,Kim Y,Lin F C,Ning J Y,Wang W T,Zheng Y,Zhou L Q. 2016. A seismic reference model for the crust and uppermost mantle beneath China from surface wave dispersion[J]. Geophys J Int,206(2):954–979. doi: 10.1093/gji/ggw175

    Shi L,Guo L H,Ma Y W,Li Y H,Wang W L. 2018. Estimating crustal thickness and vP/vS ratio with joint constraints of receiver function and gravity data[J]. Geophys J Int,213(2):1334–1344. doi: 10.1093/gji/ggy062

    Teng J W,Zhang Z J,Zhang X K,Wang C Y,Gao R,Yang B J,Qiao Y H,Deng Y F. 2013. Investigation of the Moho discontinuity beneath the Chinese mainland using deep seismic sounding profiles[J]. Tectonophysics,609:202–216. doi: 10.1016/j.tecto.2012.11.024

    Vinnik L P. 1977. Detection of waves converted from P to SV in the mantle[J]. Phys Earth Planet Inter,15(1):39–45. doi: 10.1016/0031-9201(77)90008-5

    Wang C Y,Zhu L P,Lou H,Huang B S,Yao Z X,Luo X H. 2010. Crustal thicknesses and Poisson’s ratios in the eastern Tibetan Plateau and their tectonic implications[J]. J Geophys Res:Solid Earth,115(B11):B11301. doi: 10.1029/2010JB007527

    Zhao Y,Guo L H,Shi L,Li Y H. 2018. The crustal structure of the North-South Earthquake Belt in China revealed from deep seismic soundings and gravity data[J]. Pure Appl Geophys,175(1):193–205. doi: 10.1007/s00024-017-1691-y

    Zhou L Q,Xie J Y,Shen W S,Zheng Y,Yang Y J,Shi H X,Ritzwoller M H. 2012. The structure of the crust and uppermost mantle beneath South China from ambient noise and earthquake tomography[J]. Geophys J Int,189(3):1565–1583. doi: 10.1111/j.1365-246X.2012.05423.x

    Zhu L P,Kanamori H. 2000. Moho depth variation in southern California from teleseismic receiver functions[J]. J Geophys Res:Solid Earth,105(B2):2969–2980. doi: 10.1029/1999JB900322

图(9)
计量
  • 文章访问数:  601
  • HTML全文浏览量:  282
  • PDF下载量:  161
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-29
  • 修回日期:  2021-06-17
  • 网络出版日期:  2022-08-31
  • 发布日期:  2022-12-12

目录

    /

    返回文章
    返回