基于移动窗解卷积法的2011年日本东北 MW9.0大地震场地非线性时变识别

Identification of the temporal changes of site nonlinearity during 2011 MW9.0 Tohoku earthquake by moving time window deconvolution method

  • 摘要: 利用模拟记录和2011年日本东北MW9.0大地震观测记录分析了基于移动窗解卷积法识别场地非线性时变特征的可行性,并与移动窗谱比法的结果进行了对比分析。研究表明:基于移动窗解卷积法可以较好地揭示场地非线性随地震动水平的变化过程,识别非线性发生的阈值、非线性变化程度及强震动后的恢复程度;与移动窗谱比法相比,移动窗解卷积法更容易获得较为稳定的土体非线性时变过程,但对于存在强阻抗比的浅表层土体,移动窗谱比法可以获得更准确的非线性程度。对2011年日本东北MW9.0大地震中8个KiK-net台站进行了非线性时变分析,结果表明;两种方法识别的非线性阈值较接近,约在40—100 cm/s2之间,且与场地vS30没有明显的相关性;在峰值加速度PGA较低的IBRH20台站,非线性引起的波速下降较小(3%)且震后几乎完全恢复;PGA 处于386—822 cm/s2之间的其余7个台站,场地等效剪切波速下降13%—37%,产生了显著的场地非线性,且震后未完全恢复;PGA大于380 cm/s2时,非线性所导致的场地波速下降、恢复与PGA无明显相关性。

     

    Abstract: In this paper, the feasibility of identifying nonlinear temporal changes of sites by moving time window deconvolution method is analyzed based on the simulation records and observation records from the 2011 MW9.0 Tohoku earthquake, and the results are compared with those by the moving time window spectral ratio method. The results show that the moving time window deconvolution method can reveal the nonlinear change process of the site with ground motion level. Based on this method, the threshold of nonlinearity, the degree of nonlinearity change and the recovery degree after strong ground motion process can be identified. Compared with the moving time window spectrum ratio method, the moving time window deconvolution method can obtain more stable nonlinear temporal changes process of soil, but for the shallow surface soil with strong impedance ratio, the moving time window spectrum ratio method can obtain more accurate nonlinear degree results. The nonlinear temporal changes analysis of eight KiK-net stations during the 2011 MW9.0 Tohoku earthquake shows that the nonlinear thresholds identified by the two methods are close to each other, ranging from 40 cm/s2 to 100 cm/s2, and there is no obvious correlation with site vS30. At IBRH20 station with low PGA, the decrease of wave velocity caused by nonlinearity was small (3%) and the recovery was almost complete after the earthquake. At the other seven stations with high PGA (range of 386—822 cm/s2), the site equivalent shear wave velocity decreased by 13%—37%, resulting in significant site nonlinearity and not fully recovered after the earthquake. As PGA is larger than 380 cm/s2, there is no significant correlation between PGA and the decrease/recovery of wave velocity caused by nonlinearity.

     

/

返回文章
返回