基于混合波场地震动输入技术的近海场地地震反应分析方法

宝鑫, 刘晶波, 李述涛, 王菲

宝鑫,刘晶波,李述涛,王菲. 2022. 基于混合波场地震动输入技术的近海场地地震反应分析方法. 地震学报,44(1):5−14. DOI: 10.11939/jass.20210088
引用本文: 宝鑫,刘晶波,李述涛,王菲. 2022. 基于混合波场地震动输入技术的近海场地地震反应分析方法. 地震学报,44(1):5−14. DOI: 10.11939/jass.20210088
Bao X,Liu J B,Li S T,Wang F. 2022. Seismic response analysis method of offshore site based on the seismic wave input technique of hybrid wave field. Acta Seismologica Sinica44(1):5−14. DOI: 10.11939/jass.20210088
Citation: Bao X,Liu J B,Li S T,Wang F. 2022. Seismic response analysis method of offshore site based on the seismic wave input technique of hybrid wave field. Acta Seismologica Sinica44(1):5−14. DOI: 10.11939/jass.20210088

基于混合波场地震动输入技术的近海场地地震反应分析方法

基金项目: 国家自然科学基金(52108458,51878384),博士后创新人才支持计划(BX20200192),国家重点研发计划(2018YFC1504305)和清华大学“水木学者”计划 (2020SM005)共同资助
详细信息
    作者简介:

    宝鑫,博士,助理研究员,主要从事海域场地地震反应分析、地下结构抗震研究,e-mail:18810456710@163.com

    通讯作者:

    刘晶波,博士,教授,主要从事防灾减灾工程研究,e-mail:liujb@tsinghua.edu.cn

  • 中图分类号: P315.9, TB123

Seismic response analysis method of offshore site based on the seismic wave input technique of hybrid wave field

  • 摘要: 基于人工边界子结构模型,提出一种利用混合波场实现近海场地中地震P波和SV波垂直输入的方法。该方法中用于波动输入的混合波场由计算模型两侧截断边界的自由波场和底面边界的入射波场构成,避免了不规则近海场地的自由波场求解。同时采用基于声流体单元的流固耦合算法模拟场地-海水动力相互作用,利用流体介质人工边界和黏弹性人工边界单元模拟无限流、固介质的辐射阻尼,建立了近海场地动力相互作用分析模型。将该模型与基于混合波场的地震波动输入方法相结合,提出了近海场地地震反应时域整体分析方法。数值算例表明,本文的计算模型和分析方法可以较为准确地实现地震波在近海场地中的输入问题,对于近海场地及海洋工程的地震反应分析具有良好的适用性。
    Abstract: The seismic response analysis of offshore site is the foundation for the seismic safety evaluation of ocean engineering. Seismic wave input is a key part of site seismic response analysis. However, the slope of the offshore site inclines to the ocean, which interacts with the seawater directly, leading to natural difficulties in solving the free wave field and thus provides a challenge to the existing seismic wave input methods based on the free wave fields. In this study, we adopted and improved the seismic wave input method based on the substructure of artificial boundaries, and constructed a hybrid input wave field with the free wave field on two lateral boundaries and the incident wave field on the bottom boundary of the calculation model. On that basis, an offshore site seismic wave input method for vertically incident P and SV waves is proposed. The proposed method avoids calculating the free wave field of irregular offshore sites, therefore it can simplify the seismic response analysis of offshore engineering considering characteristics of offshore site and the soil-structure interaction. Meanwhile, the fluid-structure coupling algorithm based on the acoustic fluid element is used to simulate the dynamic interaction between the offshore site and the seawater, and the fluid dynamic artificial boundary and the uniform viscoelastic artificial boundary element are used to simulate the radiation damping of the infinite fluid and solid medium. On that basis, the dynamic interaction model of offshore site is established. Combine this model with the proposed seismic wave input method based on the hybrid wave field, thereby an overall time-domain analysis method for the seismic response of offshore sites is established. Numerical examples show that the analysis method and numerical model proposed in this study can accurately realize the input of seismic waves in offshore sites, and have good applicability for seismic response analysis of offshore engineering.
  • 图  1   近海场地地震反应分析模型

    Figure  1.   Seismic response analysis model of offshore site

    图  2   流体介质动力人工边界示意图

    Figure  2.   Schematic diagram of dynamic artificial boundaries of fluid medium

    图  3   基于混合波场的近海场地地震动输入方法

    Figure  3.   Seismic wave input method of offshore site based on hybrid wave field

    图  4   基于混合波场的近海场地地震波动输入方法实现步骤

    (a) 利用子结构模型求解等效地震荷载;(b) 在近海场地模型中施加等效地震荷载

    Figure  4.   Implementation steps of seismic wave input method of offshore site based on hybrid wave field

    (a) Solving equivalent seismic loads through the substructure model;(b) Applying equivalent seismic loads on the offshore site model

    图  5   计算模型示意图

    Figure  5.   Diagram of calculation model

    图  6   脉冲波时程

    Figure  6.   Time history of pulse wave

    图  7   SV波入射下近海场地的水平(a)和垂直(b)位移波形

    Figure  7.   Displacement waveforms in horizontal (a) and vertical (b) directions on offshore site under incident SV wave

    图  8   SV波入射下近海场地位移峰值放大系数的空间分布

    Figure  8.   Spatial distributions of peak displacement amplification coefficient on offshore site under incident SV wave

    图  9   P波入射下近海场地的水平(a)和垂直(b)位移波形

    Figure  9.   Displacement waveforms in horizontal (a) and vertical (b) directions on offshore site under incident P wave

    图  10   P波入射下近海场地位移峰值放大系数的空间分布

    Figure  10.   Spatial distributions of peak displacement amplification coefficient on offshore site under incident P wave

    表  1   介质材料参数

    Table  1   Material parameters of media

    流体介质固体介质
    密度ρF
    /(kg·m−3
    声速cF
    /(m·s−1
    密度ρ
    /(kg·m−3
    剪切波波速cS
    /(m·s−1
    泊松比γ
    1000 1435.27 2 000 200 0.25
    下载: 导出CSV
  • 宝鑫,刘晶波. 2017. 考虑流-固耦合效应的含液容器动力响应有限元分析方法[J]. 核动力工程,38(2):111–114.

    Bao X,Liu J B. 2017. Dynamic finite element analysis methods for liquid container considering fluid-structure interaction[J]. Nuclear Power Engineering,38(2):111–114 (in Chinese).

    陈苏,周越,李小军,傅磊. 2018. 近海域地震动的时频特征与工程特性[J]. 振动与冲击,37(16):227–233.

    Chen S,Zhou Y,Li X J,Fu L. 2018. Time-frequency and engineering characteristics on offshore ground motion[J]. Journal of Vibration and Shock,37(16):227–233 (in Chinese).

    陈少林,柯小飞,张洪翔. 2019. 海洋地震工程流固耦合问题统一计算框架[J]. 力学学报,51(2):594–606. doi: 10.6052/0459-1879-18-333

    Chen S L,Ke X F,Zhang H X. 2019. A unified computational framework for fluid-solid coupling in marine earthquake engineering[J]. Chinese Journal of Theoretical and Applied Mechanics,51(2):594–606 (in Chinese).

    杜修力. 2009. 工程波动理论与方法[M]. 北京: 科学出版社: 215–216.

    Du X L. 2009. Theories and Methods of Wave Motion for Engineering[M]. Beijing: Science Press: 215–216 (in Chinese).

    冯启民. 1990. 海洋工程场址地震动的分析方法[J]. 地震工程与工程振动,10(1):81–88.

    Feng Q M. 1990. Analytical method of seismic motion at offshore engineering site[J]. Earthquake Engineering and Engineering Vibration,10(1):81–88 (in Chinese).

    胡进军,郑旭,郝彦春,谢礼立. 2017. 俯冲带地震动特征及其衰减规律探讨[J]. 地球物理学报,60(5):1773–1787. doi: 10.6038/cjg20170514

    Hu J J,Zheng X,Hao Y C,Xie L L. 2017. Characterization of strong motion of subduction earthquakes and its attenuation relationship[J]. Chinese Journal of Geophysics,60(5):1773–1787 (in Chinese).

    李小军. 2006. 海域工程场地地震安全性评价的特殊问题[J]. 震灾防御技术,1(2):97–104. doi: 10.3969/j.issn.1673-5722.2006.02.002

    Li X J. 2006. Special problems on evaluation of seismic safety for offshore engineering site[J]. Technology for Earthquake Disaster Prevention,1(2):97–104 (in Chinese).

    刘晶波,吕彦东. 1998. 结构-地基动力相互作用问题分析的一种直接方法[J]. 土木工程学报,31(3):55–64.

    Liu J B,Lü Y D. 1998. A direct method for analysis of dynamic soil-structure interaction[J]. China Civil Engineering Journal,31(3):55–64 (in Chinese).

    刘晶波,谷音,杜义欣. 2006. 一致粘弹性人工边界及粘弹性边界单元[J]. 岩土工程学报,28(9):1070–1075. doi: 10.3321/j.issn:1000-4548.2006.09.004

    Liu J B,Gu Y,Du Y X. 2006. Consistent viscous-spring artificial boundaries and viscous-spring boundary elements[J]. Chinese Journal of Geotechnical Engineering,28(9):1070–1075 (in Chinese).

    刘晶波,宝鑫,谭辉,王建平,郭东. 2017. 波动问题中流体介质的动力人工边界[J]. 力学学报,49(6):1418–1427. doi: 10.6052/0459-1879-17-199

    Liu J B,Bao X,Tan H,Wang J P,Guo D. 2017. Dynamical artificial boundary for fluid medium in wave motion problems[J]. Chinese Journal of Theoretical and Applied Mechanics,49(6):1418–1427 (in Chinese).

    刘晶波,谭辉,宝鑫,王东洋,李述涛. 2018. 土-结构动力相互作用分析中基于人工边界子结构的地震波动输入方法[J]. 力学学报,50(1):32–43. doi: 10.6052/0459-1879-17-336

    Liu J B,Tan H,Bao X,Wang D Y,Li S T. 2018. The seismic wave input method for soil-structure dynamic interaction analysis based on the substructure of artificial boundaries[J]. Chinese Journal of Theoretical and Applied Mechanics,50(1):32–43 (in Chinese).

    荣棉水,李小军,卢滔,黄雅虹,吕悦军. 2013. 对含厚软表层海域工程场地设计地震动参数确定的一点建议[J]. 地震学报,35(2):262–271. doi: 10.3969/j.issn.0253-3782.2013.02.012

    Rong M S,Li X J,Lu T,Huang Y H,Lü Y J. 2013. Suggestion on determination of design ground motion parameters for offshore engineering sites with deep soft surface layers[J]. Acta Seismologica Sinica,35(2):262–271 (in Chinese).

    杨铭,胡进军,谭景阳,公茂盛. 2020. 日本DONET1海域地震动数据及其特征初步分析[J]. 地震工程与工程振动,40(3):139–147.

    Yang M,Hu J J,Tan J Y,Gong M S. 2020. Offshore ground motion data in DONET1 of Japan and preliminary analysis on its characteristics[J]. Earthquake Engineering and Engineering Vibration,40(3):139–147 (in Chinese).

    郑天愉,姚振兴,谢礼立. 1985. 海底强地面运动计算[J]. 地震工程与工程振动,5(3):13–22.

    Zheng T Y,Yao Z X,Xie L L. 1985. Strong motions of ocean bottom[J]. Earthquake Engineering and Engineering Vibration,5(3):13–22 (in Chinese).

    朱镜清. 1988. 地震作用下海水与海床土的耦合运动[J]. 地震工程与工程振动,8(2):37–43.

    Zhu J Q. 1988. Coupled motion between sea water and sea bed-soil under earthquake action[J]. Earthquake Engineering and Engineering Vibration,8(2):37–43 (in Chinese).

    Bao X,Liu J B,Li S T,Wang F,Wang P G. 2020. Seismic response analysis of the reef-seawater system under obliquely incident P and SV waves[J]. Ocean Eng,200:107021. doi: 10.1016/j.oceaneng.2020.107021

    Bielak J,Loukakis K,Hisada Y,Yoshimura C. 2003. Domain reduction method for three-dimensional earthquake modeling in localized regions,part I:Theory[J]. Bull Seismol Soc Am,93(2):817–824. doi: 10.1785/0120010251

    Brekhovskikh L M. 1980. Waves in Layered Media[M]. 2nd ed. New York: Academic Press.

    Chen B K,Wang D S,Li H N,Sun Z G,Li C. 2017. Vertical-to-horizontal response spectral ratio for offshore ground motions:Analysis and simplified design equation[J]. J Cent South Univ,24(1):203–216. doi: 10.1007/s11771-017-3421-0

    Li C,Hao H,Li H N,Bi K M,Chen B K. 2017. Modeling and simulation of spatially correlated ground motions at multiple onshore and offshore sites[J]. J Earthq Eng,21(3):359–383. doi: 10.1080/13632469.2016.1172375

    Lindsay R B. 1939. Filtration of oblique elastic waves in stratified media[J]. J Acoust Soc Am,11(2):178–183. doi: 10.1121/1.1916021

    Link G,Kaltenbacher M,Breuer M,Döllinger M. 2009. A 2D finite-element scheme for fluid-solid-acoustic interactions and its application to human phonation[J]. Comput Methods Appl Mech Eng,198(41/42/43/44):3321–3334.

    Okamoto T,Takenaka H,Nakamura T,Hara T. 2017. FDM simulation of earthquakes off western Kyushu,Japan,using a land-ocean unified 3D structure model[J]. Earth Planets Space,69:88. doi: 10.1186/s40623-017-0672-9

    Yoshimura C,Bielak J,Hisada Y,Fernández A. 2003. Domain reduction method for three-dimensional earthquake modeling in localized regions,part II:Verification and applications[J]. Bull Seismol Soc Am,93(2):825–841. doi: 10.1785/0120010252

图(10)  /  表(1)
计量
  • 文章访问数:  334
  • HTML全文浏览量:  128
  • PDF下载量:  80
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-28
  • 修回日期:  2021-07-11
  • 网络出版日期:  2022-03-16
  • 发布日期:  2022-03-17

目录

    /

    返回文章
    返回