The Lumped mass Chebyshev spectral element method for seismic response analysis of horizontally layered soil sites
-
摘要: 提出了一种用于水平成层场地地震反应分析的时域高阶显式算法. 首先,将覆盖土层和基岩划分为若干个切比雪夫谱单元,在模型底部设置多次透射人工边界;其次,以切比雪夫正交多项式构建高阶单元位移模式,通过高斯−洛巴托积分严格导出对角形式的切比雪夫谱单元集中质量矩阵,结合中心差分时域逐步积分格式,建立了高效的集中质量切比雪夫谱元波动模拟方法;最后,利用日本Kik-net强震台网提供的不同类型场地上获得的实际地震观测记录检验了本文方法的有效性. 该方法避免了传统切比雪夫谱元法由于具有一致质量矩阵形式而造成的计算效率不高的问题。数值结果表明,本文方法能够较好地预测Ⅰ1,Ⅱ和Ⅳ类场地在较弱地震和中等强度地震作用下的地面运动特征,每个波长内仅需布置少量单元即可取得较高精度的计算结果。Abstract: A time-domain high-order explicit method for the seismic response analysis of horizontally layered soil sites is proposed. The upper soil and bedrock are discretized by several Chebyshev spectral elements. The multi-transmitting artificial boundary is set at the bottom of the model. The Chebyshev orthogonal polynomials are employed for establishing high-order element displacement field. By means of the Gauss-Lobatto quadrature, the lumped mass matrix, which has diagonal form, for the Chebyshev spectral element is rigorously derived. Combined with the central difference time-stepping scheme, an efficient lumped mass Chebyshev spectral element method for simulating wave motion is constructed. Earthquake records obtained from different kinds of sites provided by the Kik-net strong earthquake network are used to examine the validity of the proposed method. This method overcomes the shortage in efficiency of conventional Chebyshev spectral element method resulted from having consistent form ofmass matrix. Numerical results show that the proposed method can give reasonable prediction on the ground motions of Ⅰ 1, Ⅱ and Ⅳ type sites under weak or moderate earthquakes, and good accuracy can be achieved only by deploying a small number of elements per wavelength.
-
-
表 1 GLC节点上的高斯−洛巴托积分权系数
Table 1 Gauss-Lobatto quadrature weights based on GLC points
谱单元阶次 GLC节点坐标 积分权系数 1 ±1 1 2 ±1, 0 0.333 3, 1.333 3 3 ±1, ±0.5 0.111 1, 0.888 9 4 ±1, ±0.707 1, 0 0.066 7, 0.533 3, 0.8 5 ±1, ±0.809 0, ±0.309 0 0.04, 0.360 7, 0.599 3 表 2 选用Kik-net台站的基本信息
Table 2 Basic information of selected Kik-net stations
台站名称 覆盖层厚度/m 等效剪切波速/(m·s−1) 场地类别 TCGH08 2 170 Ⅰ1 MYGH10 34 330 Ⅱ KMMH14 88 200 Ⅲ IKRH02 >108 112 Ⅳ 表 3 不同强度地震动作用下各台站计算PGA与实测PGA对比
Table 3 Comparison of computed PGA and recorded PGA for the stations under ground motions different intensities
台站名称 较弱地震动 中等强度地震动 较强地震动 计算PGA/g 实测PGA/g 计算PGA/g 实测PGA/g 计算PGA/g 实测PGA/g TCGH08 0.090 0.065 0.142 0.145 0.226 0.204 MYGH10 0.066 0.067 0.154 0.156 0.240 0.235 KMMH14 0.121 0.083 0.227 0.144 0.369 0.228 IKRH02 0.082 0.084 0.102 0.104 0.329 0.227 表 4 不同强度地震动作用下各台站PGA放大倍数
Table 4 Amplification factors of PGA for the stations under ground motions different intensities
台站名称 较弱地震动 中等强度地震动 较强地震动 井下实测
峰值/g计算放大
倍数实测放大
倍数井下实测
峰值/g计算放大
倍数实测放大
倍数井下实测
峰值/g计算放大
倍数实测放大
倍数TCGH08 0.015 5.96 4.31 0.037 3.80 3.89 0.028 8.21 7.40 MYGH10 0.016 4.14 4.22 0.042 3.67 3.71 0.065 3.69 3.62 KMMH14 0.016 7.36 5.07 0.031 7.36 4.69 0.035 10.48 6.48 IKRH02 0.018 4.54 4.63 0.023 4.45 4.55 0.069 4.75 3.28 -
丁海平,周正华. 1998. 土层地震反应的数值模拟[J]. 世界地震工程,14(3):26–31. Ding H P,Zhou Z H. 1998. Numerical simulation of seismic response of soil layers[J]. World Information on Earthquake Engineering,14(3):26–31 (in Chinese).
高武平,高孟潭,陈学良. 2012. 天津滨海软土场地的大震远场作用[J]. 地震学报,34(2):235–243. Gao W P,Gao M T,Chen X L. 2012. Far-field strong earthquake effect in Tianjin coastal soft site[J]. Acta Seismologica Sinica,34(2):235–243 (in Chinese).
李平,薄景山,齐文浩,刘德东,肖瑞杰. 2012. 土层结构对汉源烈度异常的影响[J]. 地震学报,34(6):851–857. Li P,Bo J S,Qi W H,Liu D D,Xiao R J. 2012. Effects of soil structure on abnormal intensity in Hanyuan old town[J]. Acta Seismologica Sinica,34(6):851–857 (in Chinese).
廖振鹏. 1989. 地震小区划: 理论与实践[M]. 北京: 地震出版社: 250−265. Liao Z P. 1989. Seismic Microzonation: Theory and Application[M]. Beijing: Seismological Press: 250−265 (in Chinese).
廖振鹏. 2002. 工程波动理论导论[M]. 2版. 北京: 科学出版社: 59−63. Liao Z P. 2002. Introduction to Wave Motion Theories in Engineering[M]. 2nd ed. Beijing: Science Press: 59−63 (in Chinese).
栾茂田,林皋. 1992. 场地地震反应一维非线性计算模型[J]. 工程力学,9(1):94–103. Luan M T,Lin G. 1992. Computational model for nonlinear analysis of soil site seimic response[J]. Engineering Mechanics,9(1):94–103 (in Chinese).
齐文浩,薄景山. 2007. 土层地震反应等效线性化方法综述[J]. 世界地震工程,23(4):221–226. Qi W H,Bo J S. 2007. Summarization on equivalent linear method of seismic responses for soil layers[J]. World Earthquake Engineering,23(4):221–226 (in Chinese).
孙锐,袁晓铭. 2021. 全局等效线性化土层地震反应分析方法[J]. 岩土工程学报,43(4):603–612. Sun R,Yuan X M. 2021. Holistic equivalent linearization approach for seismic response analysis of soil layers[J]. Chinese Journal of Geotechnical Engineering,43(4):603–612 (in Chinese).
王志良,韩清宇. 1981. 粘弹塑性土层地震反应的波动分析法[J]. 地震工程与工程振动,1(1):117–137. Wang Z L,Han Q Y. 1981. Analysis of wave propagation for the site seismic response,using the viscoelastoplastic model[J]. Earthquake Engineering and Engineering Vibration,1(1):117–137 (in Chinese).
邢浩洁,李鸿晶,杨笑梅. 2017. 基于切比雪夫谱元模型的成层场地地震反应分析[J]. 岩土力学,38(2):593–600. Xing H J,Li H J,Yang X M. 2017. Seismic response analysis of horizontal layered soil sites based on chebyshev spectral element model[J]. Rock and Soil Mechanics,38(2):593–600.
袁晓铭,李瑞山,孙锐. 2016. 新一代土层地震反应分析方法[J]. 土木工程学报,49(10):95–102. Yuan X M,Li R S,Sun R. 2016. A new generation method for earthquake response analysis of soil layers[J]. China Civil Engineering Journal,49(10):95–102 (in Chinese).
中华人民共和国住房和城乡建设部, 中华人民共和国国家质量监督检验检疫总局. 2010. GB 50011—2010 建筑抗震设计规范[S]. 北京: 中国建筑工业出版社: 18–20. Ministry of Housing and Urban-Rural Development of the People’s Republic of China, General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. 2010. GB 50011−2010 Code for Seismic Design of Buildings[S]. Beijing: China Architecture & Building Press: 18–20 (in Chinese).
Boore D M. 2016. Determining generic velocity and density models for crustal amplification calculations,with an update of the Boore and Joyner (1997) generic site amplification for`VS(Z)=760 m/s[J]. Bull Seismol Soc Am,106(1):313–317. doi: 10.1785/0120150229
Fried I,Malkus D S. 1975. Finite element mass matrix lumping by numerical integration with no convergence rate loss[J]. Int J Solids Struct,11(4):461–466. doi: 10.1016/0020-7683(75)90081-5
Hinton E,Rock T,Zienkiewicz O C. 1976. A note on mass lumping and related processes in the finite element method[J]. Earthq Eng Struct Dyn,4(3):245–249. doi: 10.1002/eqe.4290040305
Idriss I M,Seed H B. 1968. Seismic response of horizontal soil layers[J]. J Soil Mech Found Div,94(4):1003–1031. doi: 10.1061/JSFEAQ.0001163
Liao Z P,Wong H L. 1984. A transmitting boundary for the numerical simulation of elastic wave propagation[J]. Int J Soil Dyn Earthq Eng,3(4):174–183.
National Research Institute for Earth Science and Disaster Resilience (NIED). 2021. Strong-motion seismograph networks(K-NET, Kik-net)[EB/OL]. [2021-05-10]. http://www.kyoshin.bosai.go.jp/.
Thomson W T,Calkins T,Caravani P. 1974. A numerical study of damping[J]. Earthq Eng Struct Dyn,3(1):97–103. doi: 10.1002/eqe.4290030108
Zalachoris G,Rathje E M. 2015. Evaluation of one-dimensional site response techniques using borehole arrays[J]. J Geotech Geoenviron Eng,141(12):04015053. doi: 10.1061/(ASCE)GT.1943-5606.0001366
Zienkiewicz O C, Taylor R L, Zhu J Z. 2013. The Finite Element Method: Its Basis and Fundamentals[M]. 7th ed. London: Elsevier: 383–386.