SV波入射下饱和地层浅埋平行隧道动力响应机制

禹海涛, 王治坤, 陈峰军, 刘中宪

禹海涛,王治坤,陈峰军,刘中宪. 2022. SV波入射下饱和地层浅埋平行隧道动力响应机制. 地震学报,44(1):132−144. DOI: 10.11939/jass.20210097
引用本文: 禹海涛,王治坤,陈峰军,刘中宪. 2022. SV波入射下饱和地层浅埋平行隧道动力响应机制. 地震学报,44(1):132−144. DOI: 10.11939/jass.20210097
Yu H T,Wang Z K,Chen F J,Liu Z X. 2022. Dynamic response mechanism of shallow parallel tunnels in saturated strata under incident of SV waves. Acta Seismologica Sinica44(1):132−144. DOI: 10.11939/jass.20210097
Citation: Yu H T,Wang Z K,Chen F J,Liu Z X. 2022. Dynamic response mechanism of shallow parallel tunnels in saturated strata under incident of SV waves. Acta Seismologica Sinica44(1):132−144. DOI: 10.11939/jass.20210097

SV波入射下饱和地层浅埋平行隧道动力响应机制

基金项目: 国家自然科学基金项目(41922059,42177134)、上海市科委重点课题(18DZ1205106)和中央高校基本科研业务费专项共同资助
详细信息
    作者简介:

    禹海涛,博士,教授,主要从事地下结构抗震基础理论与应用研究,e-mail: chenfengjun@scgtc.com.cn

    通讯作者:

    陈峰军,硕士,高级工程师,主要从事地下工程建造技术研究,e-mail:chenfengjun@scgtc.com.cn

  • 中图分类号: TU435

Dynamic response mechanism of shallow parallel tunnels in saturated strata under incident of SV waves

  • 摘要: 目前城市核心区交叠紧邻的隧道群大量涌现,其抗震安全性问题日益突出,但近邻隧道之间以及与地层的动力相互作用机制尚不清晰。本文针对饱和地层浅埋平行隧道,基于Biot两相介质理论,采用边界积分方程法分别建立了饱和地层水平和竖向双线隧道动力作用分析模型,并与典型算例精确解对比验证了本模型的有效性;在此基础上,研究了SV波入射频率变化和双线隧道间距变化对隧道结构及周围地层孔隙水压力的影响机制,并以单条隧道分析结果为参照进行对比分析。结果表明:相比单条隧道,相邻隧道的存在改变了既有隧道的动力响应特征,且随着隧道间距的减小隧道响应变化更为明显,同时衬砌环向应力峰值显著增加;双线隧道周围地层孔隙水压力分布主要集中在隧道之间的区域内,且SV波低频入射下孔隙水压力峰值随间距的变小而增大;水平双线隧道的动力响应特征与竖向双线隧道不同,随着相邻隧道间距的减小,水平双线隧道的存在会显著放大隧道结构及周围地层的动力响应,而竖向双线隧道则会对垂直入射的SV波的传播起到阻滞作用,从而导致隧道及上部地表动力响应减弱。本研究可为饱和地层浅埋平行隧道抗震设计提供科学依据。
    Abstract: At present, a large number of overlapping and adjacent tunnel groups have emerged in the core urban area, and the seismic safety problem of these tunnels has become increasingly prominent. However, the dynamic interaction mechanism between adjacent tunnels and the stratum remains unclear. This paper focuses on shallow parallel tunnels in saturated strata. Based on the Biot poroelasticity theory, the boundary integral equation method is used to establish the dynamic analysis models of horizontal and vertical double-line tunnels in saturated strata, and the proposed model is verified by providing comparisons with the known solutions of typical examples. Furthermore, the response mechanism of the tunnel structure and surrounding pore water pressure under the change of tunnel spacing and SV wave incidence frequency is studied, and the results of a single tunnel were compared and analyzed. The results show that the existence of adjacent tunnels changes the dynamic response characteristics of the existing tunnel compared with a single tunnel, and the tunnel response changes more obviously with the decrease of tunnel spacing. In the meantime, the peak stress of lining increased significantly. The distribution of formation pore water pressure around the double-track tunnel is mainly concentrated in the area between the tunnels, and it increases with the decrease of spacing under the low frequency incidence of SV wave. The dynamic response characteristics of the horizontal double-track tunnel are different from those of the vertical double-track tunnel. As the distance between adjacent tunnels decreases, the existence of horizontal double-track tunnels will significantly amplify the dynamic response of the tunnel structure and surrounding strata, while the vertical double-line tunnel will block the propagation of the vertical incident SV wave, which leads to the decrease of dynamic response of the tunnel and the upper surface. The research can provide a scientific basis for the seismic design of shallow parallel tunnels in saturated strata.
  • 图  1   计算模型

    Figure  1.   Calculation model

    图  2   波场构造示意图

    Figure  2.   Schematic diagram of wave field structure

    图  3   地表水平(左)和竖向(右)位移幅值与解析解对比

    Figure  3.   Comparison of the horizontal (left) and vertical (right) displacement amplitudes of the surface with analytical solutions

    图  4   本文环向应力(左)和地表位移幅值(右)与精确解对比

    Figure  4.   Comparison of the hoop stress (left) and surface displacement (right) in this paper with the exact solution

    图  5   水平双线隧道地表x (a)和y (b)方向无量纲位移幅值曲线

    Figure  5.   The amplitude curves of the ground x-direction (a) and y-direction (b) displacement of the horizontal twin tunnels

    图  6   竖向双线隧道地表x (a)和y (b)方向无量纲位移幅值曲线

    Figure  6.   The amplitude curves of the ground x-direction (a) and y-direction (b) displacement of the vertical twin tunnels

    图  7   水平双线隧道(a)和竖向双线隧道(b)的动应力集中因子$ \sigma _{\theta \theta }^*$幅值曲线

    Figure  7.   Amplitude curves of dynamic stress concentration factor of the horizontal twin tunnels (a) and the vertical twin tunnels (b)

    图  8   不同频率入射下单隧道周围地层孔隙水压力分布图

    Figure  8.   Distribution of pore water pressure around a single tunnel under different incident frequencies

    图  9   不同频率入射下隧道间距比为3 (a),5 (b),8 (c)时水平双线隧道周围地层的孔隙水压力分布图

    Figure  9.   Distribution of pore water pressure in the formation around the horizontal twin tunnels under different incident frequencies for tunnel spacing ratio S=3 (a),5 (b),8 (c)

    图  10   不同频率入射下隧道间距比为3 (a),5 (b),8 (c)时竖向双线隧道周围地层的孔隙水压力分布图

    Figure  10.   Distribution of pore water pressure in the formation around the vertical twin tunnels under different incident frequencies for tunnel spacing ratio S=3 (a),5 (b),8 (c)

  • 陈波. 2008. 地下洞室群对弹性波的散射[D]. 天津: 天津大学: 30–47.

    Chen B. 2008. Scattering of Elastic Waves by Underground Group Cavities[D]. Tianjin: Tianjin University: 30–47 (in Chinese).

    李鹏,刘光磊,宋二祥. 2014. 饱和地基中地下结构地震反应若干问题研究[J]. 地震工程学报,36(4):843–849. doi: 10.3969/j.issn.1000-0844.2014.04.0843

    Li P,Liu G L,Song E X. 2014. Research on seismic response of underground structures in saturated foundation[J]. China Earthquake Engineering Journal,36(4):843–849 (in Chinese).

    李玉峰,彭立敏,雷明锋. 2015. 高速铁路交叉隧道动力学问题研究综述[J]. 现代隧道技术,52(2):8–15.

    Li Y F,Peng L M,Lei M F. 2015. Dynamics issues regarding high-speed railway crossing tunnels[J]. Modern Tunnelling Technology,52(2):8–15 (in Chinese).

    梁建文,张浩,Lee V W. 2004. 平面P波入射下地下洞室群动应力集中问题解析解[J]. 岩土工程学报,26(6):815–819. doi: 10.3321/j.issn:1000-4548.2004.06.017

    Liang J W,Zhang H,Lee V W. 2004. An analytical solution for dynamic stress concentration of underground cavities under incident plane P waves[J]. Chinese Journal of Geotechnical Engineering,26(6):815–819 (in Chinese).

    梁建文,张季,巴振宁. 2012. 层状半空间中洞室群对地震动的时域放大作用[J]. 土木工程学报,45(增刊):152–157.

    Liang J W, Zhang J, Ba Z N. 2012. Time-domain amplification of seismic ground motion by group cavities in layered half-space[J]. China Civil Engineering Journal. 45(S1): 152-157 (in Chinese).

    刘中宪,琚鑫,梁建文. 2015. 饱和半空间中隧道衬砌对平面SV波的散射IBIEM求解[J]. 岩土工程学报,37(9):1599–1612.

    Liu Z X,Ju X,Liang J W. 2015. IBIEM solution to scattering of plane SV waves by tunnel lining in saturated poroelastic half-space[J]. Chinese Journal of Geotechnical Engineering,37(9):1599–1612 (in Chinese).

    王国波,徐海清,于艳丽. 2013. “群洞效应”对紧邻交叠盾构隧道及场地土地震响应影响的初步分析[J]. 岩土工程学报,35(5):968–973.

    Wang G B,Xu H Q,Yu Y L. 2013. Effect of group cavities on seismic response of adjacent overlapping shield tunnels and site soils[J]. Chinese Journal of Geotechnical Engineering,35(5):968–973 (in Chinese).

    王国波,王亚西,于艳丽,陈斌. 2015. 土体-隧道群相互作用体系地震响应研究[J]. 中国公路学报,28(7):66–76. doi: 10.3969/j.issn.1001-7372.2015.07.009

    Wang G B,Wang Y X,Yu Y L,Chen B. 2015. Study on seismic responses of soil-tunnel group interaction system[J]. China Journal of Highway and Transport,28(7):66–76 (in Chinese).

    Alielahi H,Adampira M. 2016. Effect of twin-parallel tunnels on seismic ground response due to vertically in-plane waves[J]. Int J Rock Mech Min Sci,85:67–83. doi: 10.1016/j.ijrmms.2016.03.010

    Balendra T,Thambiratnam D P,Koh C G,Lee S L. 1984. Dynamic response of twin circular tunnels due to incident SH-waves[J]. Earthq Eng Struct Dyn,12(2):181–201. doi: 10.1002/eqe.4290120204

    Biot M A. 1962. Mechanics of deformation and acoustic propagation in porous media[J]. J Appl Phys,33(4):1482–1498. doi: 10.1063/1.1728759

    Fang X Q,Jin H X,Wang B L. 2015. Dynamic interaction of two circular lined tunnels with imperfect interfaces under cylindrical P-waves[J]. Int J Rock Mech Min Sci,79:172–182.

    Hashash Y M A,Hook J J,Schmidt B,Yao J I C. 2001. Seismic design and analysis of underground structures[J]. Tunn Undergr Space Technol,16(4):247–293. doi: 10.1016/S0886-7798(01)00051-7

    Lin S Y,Hung H H,Yang J P,Yang Y B. 2017. Seismic analysis of twin tunnels by a finite/infinite element approach[J]. Int J Geomech,17(9):04017060. doi: 10.1061/(ASCE)GM.1943-5622.0000940

    Liu Q J,Wang R Y. 2012. Dynamic response of twin closely-spaced circular tunnels to harmonic plane waves in a full space[J]. Tunn Undergr Space Technol,32:212–220. doi: 10.1016/j.tust.2012.07.001

    Liu Z X,Ju X,Wu C Q,Liang J W. 2017. Scattering of plane P1 waves and dynamic stress concentration by a lined tunnel in a fluid-saturated poroelastic half-space[J]. Tunn Undergr Space Technol,67:71–84. doi: 10.1016/j.tust.2017.04.017

    Luco J E,De Barros F C P. 1994. Dynamic displacements and stresses in the vicinity of a cylindrical cavity embedded in a half-space[J]. Earthq Eng Struct Dyn,23(3):321–340. doi: 10.1002/eqe.4290230307

    Tsinidis G. 2018. Response of urban single and twin circular tunnels subjected to transversal ground seismic shaking[J]. Tunn Undergr Space Technol,76:177–193. doi: 10.1016/j.tust.2018.03.016

图(10)
计量
  • 文章访问数:  247
  • HTML全文浏览量:  111
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-01
  • 修回日期:  2021-08-26
  • 网络出版日期:  2022-02-16
  • 发布日期:  2022-03-17

目录

    /

    返回文章
    返回