云南漾濞M6.4地震震区三维速度结构

杜广宝 吴庆举 张雪梅

杜广宝,吴庆举,张雪梅. 2021. 云南漾濞M6.4地震震区三维速度结构. 地震学报,43(4):397−409 doi: 10.11939/jass.20210104
引用本文: 杜广宝,吴庆举,张雪梅. 2021. 云南漾濞M6.4地震震区三维速度结构. 地震学报,43(4):397−409 doi: 10.11939/jass.20210104
Du G B,Wu Q J,Zhang X M. 2021. Three-dimensional seismic velocity structure beneath the M6.4 Yangbi,Yunnan earthquake region. Acta Seismologica Sinica,43(4):397−409 doi: 10.11939/jass.20210104
Citation: Du G B,Wu Q J,Zhang X M. 2021. Three-dimensional seismic velocity structure beneath the M6.4 Yangbi,Yunnan earthquake region. Acta Seismologica Sinica43(4):397−409 doi: 10.11939/jass.20210104

云南漾濞M6.4地震震区三维速度结构

doi: 10.11939/jass.20210104
基金项目: 国家重点研发计划(2017YFC1500304)和国家自然科学基金(41874108,41774069)共同资助
详细信息
    作者简介:

    杜广宝,E-mail:dgb@seis.ac.cn

    通讯作者:

    吴庆举,e-mail:wuqj@cea-igp.ac.cn

  • 中图分类号: P315.2

Three-dimensional seismic velocity structure beneath the M6.4 Yangbi,Yunnan earthquake region

  • 摘要: 利用2015年1月至2021年5月28日期间我国云南省漾濞县及周边地区固定台站和漾濞地震后布设的流动台站所记录到的近震资料,使用双差层析成像方法获得了该地震震区的高分辨率地壳三维速度结构和震源位置。重定位结果显示,漾濞M6.4地震序列主要沿NW−SE向展布,与维西—乔后—巍山断裂走向一致,地震主要集中在4—10 km的深度范围,呈约80°高倾角分布。结合定位结果与三维速度结构显示:漾濞M6.4地震序列的空间分布与速度结构变化具有相关性,主震位于P波、S波高低速异常交界处,这种介质物性变化的交界地带可能有利于中强地震的孕育和发生,余震主要分布在低P波速度、高S波速度和低波速比的脆性区域;沿漾濞地震序列的分布走向,主震两侧呈现完全不同的速度结构,其西北部具有明显的高P波速度、低S波速度特征,该地区高密度、强韧性的地层可能是阻挡漾濞地震的NW向破裂而呈单向破裂特征的原因。

     

  • 图  1  漾濞地区构造背景、台站和2010年以来M4.0以上地震分布图

    Figure  1.  Tectonic settings,seismic stations and M≥4.0 earthquakes since 2010 in Yangbi region

    图  2  射线路径、台站及地震分布

    Figure  2.  Geographical distribution of seismic stations (triangles),earthquake hypocenters (circles) and ray paths (blue lines) considered in this study

    图  3  P波(左)和S波(右)的时距曲线

    Figure  3.  Time-distance curves of P (left) and S (right) waves

    图  4  本文选取的最佳阻尼因子(a)和平滑因子(b)的折中曲线图

    Figure  4.  Trade-off curves for determining optimal damping (a) and smoothing (b) parameters

    图  5  深度为5 km (a),10 km (b)和15 km (c)时P波(左)和S波(右)检测板的测试结果(0.1°×0.1°)

    Figure  5.  P (left) and S (right) wave checkboard resolution tests at the depth of 5 km (a),10 km (b) and 15 km (c) with the grid 0.1°×0.1°

    图  6  漾濞M6.4地震序列重定位前(a)、后(b)的空间分布变化

    Figure  6.  Spatial distribution variation of the Yangbi M6.4 earthquake sequence before (a) and after (b) relocation

    图  7  漾濞M6.4地震序列重定位前(a)、后(b)的震源深度变化

    Figure  7.  Focal depth variation of the Yangbi M6.4 earthquake sequence before (a) and after (b) relocation

    图  8  重定位前(红)、后(蓝)走时残差直方图

    Figure  8.  Histograms of travel time residual before (red) and after (blue) relocation

    图  9  不同深度zvP (左)和vS (右)分布

    黑色圆圈代表地震, 图(b)中AA′和BB′分别为平行、垂直于漾濞地震序列走向的剖面

    Figure  9.  vP (left) and vS (right) distribution at the depth z of 5,10 and 15 km

    The circles represent earthquakes,and in Fig. (b) AA′ and BB′ are the two profiles parallel to and perpendicular with the strike of the Yangbi sequence,respectively

    图  10  不同深度z上的波速比vP/vS分布

    Figure  10.  vP/vS distribution at the depth z of 5,10 and 15 km

    图  11  vPvSvP/vS沿纵向剖面的变化及漾濞地震序列震中分布图

    Figure  11.  vPvS and vP/vS images along different vertical profiles and epicenter distribution of Yangbi earthquake sequence

    表  1  本文所用的P波初始速度模型

    Table  1.   Initial P wave velocity model used in this study

    深度/kmvP/(km·s−1深度/kmvP/(km·s−1
    0 4.4 20 6.0
    5 5.6 25 6.1
    10 5.8 30 6.3
    15 5.9 50 8.0
    下载: 导出CSV
  • [1] 常祖峰,张艳凤,周青云,虎雄林,臧阳. 2014. 2013年洱源MS5.5地震烈度分布及震区活动构造背景研究[J]. 中国地震,30(4):560–570. doi: 10.3969/j.issn.1001-4683.2014.04.009
    [2] Chang Z F,Zhang Y F,Zhou Q Y,Hu X L,Zang Y. 2014. Intensity distribution characteristics and active tectonic background in area of the 2013 Eryuan MS5.5 earthquake[J]. Earthquake Research in China,30(4):560–570 (in Chinese).
    [3] 常祖峰,常昊,臧阳,代博洋. 2016. 维西—乔后断裂新活动特征及其与红河断裂的关系[J]. 地质力学学报,22(3):517–530. doi: 10.3969/j.issn.1006-6616.2016.03.009
    [4] Chang Z F,Chang H,Zang Y,Dai B Y. 2016. Recent active features of Weixi-Qiaohou fault and its relationship with the Honghe fault[J]. Journal of Geomechanics,22(3):517–530 (in Chinese).
    [5] 胡亚平,王志,刘冠男,柳存喜,伏毅. 2017. 南北地震带地壳结构多参数成像及强震触发机制研究[J]. 地球物理学报,60(6):2113–2129. doi: 10.6038/cjg20170608
    [6] Hu Y P,Wang Z,Liu G N,Liu C X,Fu Y. 2017. Crustal structure imaging of multi-geophysical parameters and generating mechanisms of large earthquakes in North-South Seismic Zone[J]. Chinese Journal of Geophysics,60(6):2113–2129 (in Chinese).
    [7] 李大虎,詹艳,丁志峰,高家乙,吴萍萍,孟令媛,孙翔宇,张旭. 2021. 四川长宁MS6.0地震震区上地壳速度结构特征与孕震环境[J]. 地球物理学报,64(1):18–35. doi: 10.6038/cjg2021O0241
    [8] Li D H,Zhan Y,Ding Z F,Gao J Y,Wu P P,Meng L Y,Sun X Y,Zhang X. 2021. Upper crustal velocity and seismogenic environment of the Changning MS6.0 earthquake region in Sichuan,China[J]. Chinese Journal of Geophysics,64(1):18–35 (in Chinese).
    [9] 李姣,姜金钟,杨晶琼. 2020. 2017年漾濞MS4.8和MS5.1地震序列的微震检测及重定位[J]. 地震学报,42(5):527–542. doi: 10.11939/jass.20190161
    [10] Li J,Jiang J Z,Yang J Q. 2020. Microseismic detection and relocation of the 2017 MS4.8 and MS5.1 Yangbi earthquake sequence,Yunnan[J]. Acta Seismologica Sinica,42(5):527–542 (in Chinese).
    [11] 李敏娟,沈旭章,张元生,刘旭宙,梅秀苹. 2018. 基于密集台阵的青藏高原东北缘地壳精细结构及九寨沟地震震源区结构特征分析[J]. 地球物理学报,61(5):2075–2087. doi: 10.6038/cjg2018L0720
    [12] Li M J,Shen X Z,Zhang Y S,Liu X Z,Mei X P. 2018. Fine crustal structures of northeast margin of the Tibetan Plateau and structural features of Jiuzhaigou earthquake focal area constrained by the data from a high-density seismic array[J]. Chinese Journal of Geophysics,61(5):2075–2087 (in Chinese).
    [13] 李永华,吴庆举,安张辉,田小波,曾融生,张瑞青,李红光. 2006. 青藏高原东北缘地壳S波速度结构与泊松比及其意义[J]. 地球物理学报,49(5):1359–1368. doi: 10.3321/j.issn:0001-5733.2006.05.015
    [14] Li Y H,Wu Q J,An Z H,Tian X B,Zeng R S,Zhang R Q,Li H G. 2006. The Poisson ratio and crustal structure across the NE Tibetan Plateau determined from receiver functions[J]. Chinese Journal of Geophysics,49(5):1359–1368 (in Chinese).
    [15] 刘伟,吴庆举,张风雪. 2019. 利用双差层析成像方法反演青藏高原东南缘地壳速度结构[J]. 地震学报,41(2):155–168. doi: 10.11939/jass.20180083
    [16] Liu W,Wu Q J,Zhang F X. 2019. Crustal structure of southeastern Tibetan Plateau inferred from double-difference tomography[J]. Acta Seismologica Sinica,41(2):155–168 (in Chinese).
    [17] 马宏生,张国民,闻学泽,周龙泉,邵志刚. 2008. 川滇地区三维P波速度结构反演与构造分析[J]. 地球科学:中国地质大学学报,33(5):591–602.
    [18] Ma H S,Zhang G M,Wen X Z,Zhou L Q,Shao Z G. 2008. 3-D P wave velocity structure tomographic inversion and its tectonic interpretation in Southwest China[J]. Earth Science:Journal of China University of Geosciences,33(5):591–602 (in Chinese).
    [19] 缪思钰,张海江,陈余宽,谭玉阳,苗园园,黄振华,王飞,谢庆明. 2019. 基于微地震定位和速度成像的页岩气水力压裂地面微地震监测[J]. 石油物探,58(2):262–271. doi: 10.3969/j.issn.1000-1441.2019.02.012
    [20] Miao S Y,Zhang H J,Chen Y K,Tan Y Y,Miao Y Y,Huang Z H,Wang F,Xie Q M. 2019. Surface microseismic monitoring of shale gas hydraulic fracturing based on microseismic location and tomography[J]. Geophysical Prospecting for Petroleum,58(2):262–271 (in Chinese).
    [21] 孙权,裴顺平,苏金蓉,刘雁冰,薛晓添,李佳蔚,李磊,左洪. 2021. 2019年6月17日四川长宁MS6.0地震震源区三维速度结构[J]. 地球物理学报,64(1):36–53. doi: 10.6038/cjg2021O0246
    [22] Sun Q,Pei S P,Su J R,Liu Y B,Xue X T,Li J W,Li L,Zuo H. 2021. Three-dimensional seismic velocity structure across the 17 June 2019 Changning MS6.0 earthquake,Sichuan,China[J]. Chinese Journal of Geophysics,64(1):36–53 (in Chinese).
    [23] 王椿镛,Mooney W D,王溪莉,吴建平,楼海,王飞. 2002. 川滇地区地壳上地幔三维速度结构研究[J]. 地震学报,24(1):1–16.
    [24] Wang C Y,Mooney W D,Wang X L,Wu J P,Lou H,Wang F. 2002. Study on 3-D velocity structure of crust and upper mantle in Sichuan-Yunnan region,China[J]. Acta Seismologica Sinica,24(1):1–16 (in Chinese).
    [25] 王伟平. 2016. 鲜水河、安宁河和龙门山断裂带交汇区双差层析成像研究[D]. 北京: 中国地震局地球物理研究所: 39−70.
    [26] Wang W P. 2016. The Application of Double-Difference Tomography Method in the Intersection Zone of Xianshuihe Fault, Anninghe Fault and Longmenshan Fault[D]. Beijing: Institute of Geophysics, China Earthquake Administration: 39−70 (in Chinese).
    [27] 韦伟,孙若昧,石耀霖. 2010. 青藏高原东南缘地震层析成像及汶川地震成因探讨[J]. 中国科学:地球科学,40(7):831–839.
    [28] Wei W,Shi R M,Shi Y L. 2010. P-wave tomographic images beneath southeastern Tibet:Investigating the mechanism of the 2008 Wenchuan earthquake[J]. Science China Earth Science,53(9):1252–1259.
    [29] 吴建平,明跃红,王椿镛. 2006. 川滇地区速度结构的区域地震波形反演研究[J]. 地球物理学报,49(5):1369–1376. doi: 10.3321/j.issn:0001-5733.2006.05.016
    [30] Wu J P,Ming Y H,Wang C Y. 2006. Regional waveform inversion for crustal and upper mantle velocity structure below Chuan-Dian region[J]. Chinese Journal of Geophysics,49(5):1369–1376 (in Chinese).
    [31] 肖卓,高原. 2017. 利用双差成像方法反演青藏高原东北缘及其邻区地壳速度结构[J]. 地球物理学报,60(6):2213–2225. doi: 10.6038/cjg20170615
    [32] Xiao Z,Gao Y. 2017. Crustal velocity structure beneath the northeastern Tibetan Plateau and adjacent regions derived from double difference tomography[J]. Chinese Journal of Geophysics,60(6):2213–2225 (in Chinese).
    [33] 徐锡伟, 韩竹军, 杨晓平, 张世民, 于贵华, 周本刚, 李峰, 马保起, 陈桂华, 冉永康. 2016. 中国及邻区地震构造图[M]. 北京: 地震出版社: 1.
    [34] Xu X W, Han Z J, Yang X P, Zhang S M, Yu G H, Zhou B G, Li F, Ma B Q, Chen G H, Ran Y K. 2016. Seismotectonic Map in China and Its Adjacent Regions[M]. Beijing: Seismological Press: 1 (in Chinese).
    [35] 胥颐,杨晓涛,刘建华. 2013. 云南地区地壳速度结构的层析成像研究[J]. 地球物理学报,56(6):1904–1914. doi: 10.6038/cjg20130613
    [36] Xu Y,Yang X T,Liu J H. 2013. Tomographic study of crustal velocity structures in the Yunnan region southwest China[J]. Chinese Journal of Geophysics,56(6):1904–1914 (in Chinese).
    [37] 云南省地震局. 2021. 云南漾濞6.4级地震烈度图发布[EB/OL]. [2021-05-25]. http://yndzj.gov.cn/yndzj/_300559/_300651/629959/index.html.
    [38] Yunnan Earthquake Agency. 2021. Seismic intensity map of the M6.4 Yangbi earthquake[EB/OL]. [2021-05-25]. http://yndzj.gov.cn/yndzj/_300559/_300651/629959/index.html (in Chinese).
    [39] Eberhart-Phillips D. 1986. Three-dimensional velocity structure in northern California Coast Ranges from inversion of local earthquake arrival times[J]. Bull Seismol Soc Am,76(4):1025–1052.
    [40] Lei J S,Zhao D P,Su Y J. 2009. Insight into the origin of the Tengchong intraplate volcano and seismotectonics in Southwest China from local and teleseismic data[J]. J Geophys Res:Solid Earth,114(B5):B05302. doi: 10.1029/2008JB005881
    [41] Lei J S,Zhao D P. 2016. Teleseismic P-wave tomography and mantle dynamics beneath eastern Tibet[J]. Geochem Geophys Geosyst,17(5):1861–1884. doi: 10.1002/2016gc006262
    [42] Lei J S,Zhao D P,Xu X W,Xu Y G,Du M F. 2019. Is there a big mantle wedge under eastern Tibet?[J]. Phys Earth Planet Inter,292:100–113.
    [43] Liu Y, Yao H J, Zhang H J, Fang H J. 2021. The community velocity model V.1.0 of Southwest China, constructed from joint body- and surface-wave travel-time tomography[J]. Seismol Res Lett: 1–16. doi: 10.1785/0220200318.
    [44] Nakajima J,Matsuzawa T,Hasegawa A,Zhao D P. 2001. Three-dimensional structure of vP,vS and vP/vS beneath northeastern Japan:Implications for arc magmatism and fluids[J]. J Geophys Res:Solid Earth,106(B10):21843–21857. doi: 10.1029/2000JB000008
    [45] Shen W S,Ritzwoller M H,Kang D,Kim Y H,Lin F C,Ning J Y,Wang W T,Zhang Y,Zhou L Q. 2016. A seismic reference model for the crust and uppermost mantle beneath China from surface wave dispersion[J]. Geophys J Int,206(2):954–979. doi: 10.1093/gji/ggw175
    [46] Waldhauser F,Ellsworth W. 2000. A double-difference earthquake location algorithm:Method and application to the northern Hayward fault,California[J]. Bull Seismol Soc Am,90(6):1353–1368. doi: 10.1785/0120000006
    [47] Xiao X,Cheng S H,Wu J P,Wang W L,Sun L,Wang X X,Wen L X. 2021. Shallow seismic structure beneath the continental China revealed by P-wave polarization,Rayleigh wave ellipticity and receiver function[J]. Geophys J Int,225(2):998–1019. doi: 10.1093/gji/ggab022
    [48] Zhang H J,Thurber C H. 2003. Double-difference tomography:The method and its application to the Hayward fault,California[J]. Bull Seismol Soc Am,93(5):1875–1889. doi: 10.1785/0120020190
    [49] Zhang H J,Thurber C H. 2006. Development and applications of double-difference seismic tomography[J]. Pure Appl Geophys,163(2/3):373–403. doi: 10.1007/s00024-005-0021-y
    [50] Zheng C,Zhang R Q,Wu Q J. 2019. Variations in crustal and uppermost mantle structures across eastern Tibet and adjacent regions:Implications of crustal flow and asthenospheric upwelling combined for expansions of the Tibetan Plateau[J]. Tectonics,38(8):3167–3181. doi: 10.1029/2018TC005276
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  468
  • HTML全文浏览量:  186
  • PDF下载量:  149
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-08
  • 修回日期:  2021-07-05
  • 网络出版日期:  2021-08-23
  • 刊出日期:  2021-07-15

目录

    /

    返回文章
    返回