分布式地震数据采集器的高精度时间同步系统研制

李彩华, 滕云田, 周健超, 胡星星, 王喜珍, 李小军, 王玉石

李彩华,滕云田,周健超,胡星星,王喜珍,李小军,王玉石. 2022. 分布式地震数据采集器的高精度时间同步系统研制. 地震学报,44(6):1111−1120. DOI: 10.11939/jass.20210124
引用本文: 李彩华,滕云田,周健超,胡星星,王喜珍,李小军,王玉石. 2022. 分布式地震数据采集器的高精度时间同步系统研制. 地震学报,44(6):1111−1120. DOI: 10.11939/jass.20210124
Li C H,Teng Y T,Zhou J C,Hu X X,Wang X Z,Li X J,Wang Y S. 2022. Design on high-precision time-synchronization system for distributed seismic data acquisition. Acta Seismologica Sinica44(6):1111−1120. DOI: 10.11939/jass.20210124
Citation: Li C H,Teng Y T,Zhou J C,Hu X X,Wang X Z,Li X J,Wang Y S. 2022. Design on high-precision time-synchronization system for distributed seismic data acquisition. Acta Seismologica Sinica44(6):1111−1120. DOI: 10.11939/jass.20210124

分布式地震数据采集器的高精度时间同步系统研制

基金项目: 科技部重点研发计划项目(2019YFC1511000)和中国地震局地球物理研究所基本科研业务费(DQJB19B13)联合资助
详细信息
    作者简介:

    李彩华,博士,副研究员,主要从事地震观测技术研究,包含数据采集技术和地震传感技术研究等,e-mail:caihli_2004@163.com

    通讯作者:

    滕云田,博士,研究员,主要从事固体地球物理学和地震观测与信息技术研究,e-mail:tyt1966@sohu.com

  • 中图分类号: TH762.2

Design on high-precision time-synchronization system for distributed seismic data acquisition

  • 摘要: 为了解决分布式地震数据采集系统的同步授时问题,本文研制了一套高精度时间同步授时系统。该系统在通信过程中周期性地发送同步授时秒脉冲,并通过授时秒脉冲传输实现实时传输延时测量及时间校正,从而实现多通道高精度同步授时。基于此设计原理,采用高速硬件可编程器件研制了同步授时系统,并通过测试证实该系统在2 km通信距离时同步授时精度优于200 ns,表明该同步授时系统稳定、可靠并具有一定实用性。
    Abstract: In order to solve the time-synchronization problem of distributed seismic data acquisition system, we designed a new high-precision time-synchronization technical system in this paper. In this system, a synchronous timing pulse was transmitted periodically during data communication. Through transmitting time measurement and its transmission delay time correction of synchronous timing pulse, high-precision multi-channel time synchronization was achieved in this technical system. And a time-synchronization technical system designed with high-speed programed chips was used to carry out the time-synchronous test. The result proves that the synchronous timing accuracy of time-synchronous system is better than 200 ns when the optical fiber is 2 km, which indicates that the time-synchronization system is stable and practical.
  • 图  1   同步授时秒脉冲(a)及延时校正后的授时秒脉冲(b)

    Figure  1.   Synchronous timing second pulse (a) and timing second pulse after delay correction (b)

    图  2   时间同步授时系统结构图

    Figure  2.   Structure chart of synchronous timing system

    图  3   同步授时中心模块结构图

    Figure  3.   Structure chart of synchronous time center mudule

    图  4   同步授时模块原理图

    Figure  4.   Schematic diagram of synchronous timing module

    图  5   时间接收模块原理图

    Figure  5.   Schematic diagram of time receiving module

    图  6   同步授时工作流程图

    Figure  6.   Flow chart of synchronous timing program

    图  7   校正前(a)、后(b)的各模块时间脉冲时序图

    Figure  7.   Uncorrected (a) and corrected (b) timing pulse sequence diagrams of each module

    图  8   授时中心模块的授时脉冲与第一(a)、第二(b)和第三(c)通道时间接收模块的授时脉冲的时间差值数据曲线

    Figure  8.   The time difference data curves between the timing pulse of the timing central module and the timing pulse of the first (a),second (b) and third (c) channel time receiving module

  • 郭长发. 2018. 基于FPGA实现1 PPS高分辨率检测的研究与实现[J]. 科技经济导刊,26(16):6–8.

    Guo C F. 2018. Research and implementation of 1 PPS high resolution detection based on FPGA[J]. Technology and Economic Guide,26(16):6–8 (in Chinese).

    刘辰,李小军,景冰冰. 2018. 基于强震动台阵记录的震源破裂长度实时估测方法[J]. 地震学报,40(3):387–398. doi: 10.11939/jass.20170202

    Liu C,Li X J,Jing B B. 2018. Real-time estimation of rupture length of earthquake source based on records of strong motion array[J]. Acta Seismologica Sinica,40(3):387–398 (in Chinese).

    马红皎,吴华兵,李梦,王康,武建锋,何在民,胡永辉. 2014. 一种双向测距与时间同步系统的设计与分析[J]. 时间频率学报,37(1):18–24. doi: 10.3969/j.issn.1674-0637.2014.01.003

    Ma H J,Wu H B,Li M,Wang K,Wu J F,He Z M,Hu Y H. 2014. Design and analysis of system of dual ranging and time synchronization[J]. Journal of Time and Frequency,37(1):18–24 (in Chinese).

    彭栋,郭伟. 2018. 安全网络授时服务技术研究[J]. 时间频率学报,41(1):37–45. doi: 10.13875/j.issn.1674-0637.2018-01-0037-09

    Peng D,Guo W. 2018. Research of security network timing service technique[J]. Journal of Time and Frequency,41(1):37–45 (in Chinese).

    王向军,张亚元,张龙祥. 2016. 基于GPS和高精度实时时钟的时间同步方法[J]. 纳米技术与精密工程,14(1):66–70.

    Wang X J,Zhang Y Y,Zhang L X. 2016. Time synchronization based on GPS and high-accuracy real-time clock[J]. Nanotechnology and Precision Engineering,14(1):66–70 (in Chinese).

    魏丰,孙文杰. 2009. IEEE 1588协议时钟同步报文的精确时间标记方法研究[J]. 仪器仪表学报,30(1):162–169. doi: 10.19650/j.cnki.cjsi.2009.01.031

    Wei F,Sun W J. 2009. Precise time stamping method for IEEE 1588 clock synchronization message[J]. Chinese Journal of Scientific Instrument,30(1):162–169 (in Chinese).

    翟学明,杨磊,杨亮. 2016. 基于FPGA的GPS同步授时与授时方案设计与实现[J]. 测控技术,35(5):153–156. doi: 10.3969/j.issn.1000-8829.2016.05.037

    Zhai X M,Yang L,Yang L. 2016. Design on a GPS timing and time keeping scheme based on FPGA[J]. Measurement &Control Technology,35(5):153–156 (in Chinese).

    Meng L,Allen R M,Ampuero J P. 2014. Application of seismic array processing to earthquake early warning[J]. Bull Seismol Soc Am,104(5):2553–2561.

图(8)
计量
  • 文章访问数:  321
  • HTML全文浏览量:  137
  • PDF下载量:  95
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-12
  • 修回日期:  2022-05-25
  • 网络出版日期:  2022-10-24
  • 发布日期:  2022-12-12

目录

    /

    返回文章
    返回