不同注水方式下断层动力学响应数值模拟研究

祝爱玉, 孙子涵, 蒋长胜, 陈石, 张东宁, 崔光磊

祝爱玉,孙子涵,蒋长胜,陈石,张东宁,崔光磊. 2021. 不同注水方式下断层动力学响应数值模拟研究. 地震学报,43(6):730−744. DOI: 10.11939/jass.20210137
引用本文: 祝爱玉,孙子涵,蒋长胜,陈石,张东宁,崔光磊. 2021. 不同注水方式下断层动力学响应数值模拟研究. 地震学报,43(6):730−744. DOI: 10.11939/jass.20210137
Zhu A Y,Sun Z H,Jiang C S,Chen S,Zhang D N,Cui G L. 2021. The dynamic mechanical response of the fault under different water injection schedules. Acta Seismologica Sinica43(6):730−744. DOI: 10.11939/jass.20210137
Citation: Zhu A Y,Sun Z H,Jiang C S,Chen S,Zhang D N,Cui G L. 2021. The dynamic mechanical response of the fault under different water injection schedules. Acta Seismologica Sinica43(6):730−744. DOI: 10.11939/jass.20210137

不同注水方式下断层动力学响应数值模拟研究

基金项目: 中国地震局地球物理研究所基本科研业务费专项(DQJB19A0125,DQJB21Y43)和国家科技部重点研发课题(2018YFC1503200)共同资助
详细信息
    通讯作者:

    祝爱玉: e-mail:aiyuzhu@cea-igp.ac.cn

  • 中图分类号: P315.1

The dynamic mechanical response of the fault under different water injection schedules

  • 摘要: 工业开采注水能导致现存断层活化,从而诱发大量的破坏型地震。因此,研究注水作用下断层的动力学响应对探索诱发地震的力学机理具有重要的意义。本文基于孔弹性弹簧-滑块模型,采用多孔介质弹性耦合数值模拟,计算分析了三类典型注水方式(上升型、迅速上升/下降型和间歇型)对断层稳定性的影响。研究结果表明:随着流体的不断注入,断层内部流体压力会经过缓慢上升、迅速上升和稳定上升三个阶段。针对于不同的注水方式,这三个阶段并不完全相同,体现形式存在差异;在注水方式相同的条件下,储层的渗透率越小,井口附近流体压力越大,断层处流体压力越小,两者间的流体压力差值越大;注水过程中断层临界刚度的变化与是否发生滑移并引发地震密切相关,数值越大越易诱发地震,其数值与注入储层流体的流体压力呈负相关,与流体压力变化率呈正相关;临界刚度由于流体压力变化率的增加在前期呈现快速增长趋势,后期则是由于流体压力的影响开始减小。迅速上升/下降型注水方式极大增加了注水前期诱发地震的可能性,间歇性注水方式在注水后期引起的临界刚度变化值较大,增大了诱发地震的可能性。该研究可以为注水诱发地震的危险性评价提供定量的科学依据。
    Abstract: Water injection used in industry can lead to the activation of existing faults and have induced many destructive earthquakes. Therefore, it is of great significance to study the dynamic response of faults under water injection to explore the mechanism of induced earthquakes. The poroelastic spring-slider model calculates the fault stability under three kinds of classical water injection schedules(ascending, rapidly ascending, descending and intermittent)using poroelastic coupling numerical simulation. The results show that, with the continuous injection of fluid, the pore pressure inside the fault will go through three stages: slow rise, rapid rise, and stable rise. For different water injection schedules, the three stages are not fully reflected, and the forms are different; under the same water injection schedule, the smaller the reservoir permeability is, the greater the pore pressure near the wellhead is, the smaller the pore pressure at fault is, and the greater the difference of pore pressure between the two is; the larger the value is, the easier the earthquake will be induced. The value is negatively correlated with the fluid pressure of injected reservoir fluid but positively correlated with the change rate of fluid pressure; the critical stiffness increases rapidly in the early stage due to the increase of the change rate of pore pressure and decreases in the later stage due to the influence of pore pressure. The rapid rising and falling water injection schedule greatly increase the possibility of inducing earthquake in the early stage of water injection. The intermittent water injection schedule causes a large change of necessary stiffness in the late stage of water injection, which increases the possibility of inducing an earthquake. This study can provide the quantitative scientific basis for the risk assessment of water injection-induced earthquakes and reduce the possibility of water injection-induced earthquakes.
  • 图  5   不同注水方式和不同渗透率下流体压力在储层(a)和断层(b)中随时间的变化

    Figure  5.   Liquid pressure changes with time in reservoir (a) and fault (b) under different permeabilities and water injection schedules

    图  1   孔弹性弹簧-滑块模型示意图(引自Alghannam,Juanes,2020

    Figure  1.   Schematic diagram of poroelastic spring–slider model (after Alghannam,Juanes,2020

    图  2   研究区几何模型(a)和网格划分示意图(b)

    Figure  2.   Geometric model (a) and meshing schematic diagram (b) of the studied area

    图  3   不同注水方式下注水体积与注水时间的关系曲线

    Figure  3.   The relationship between injection volume and injection time under different water injection schedules

    图  4   不同注水方式下,断层上部、中部及下部流体压力与注水时间的关系曲线

    Figure  4.   The liquid pressure in the middle, upper and lowerparts of the fault under different water injection schedules

    图  6   方案AC (a)和方案B (b)的断层临界刚度随时间的变化

    Figure  6.   The fault critical stiffness changes with time under cases AC (a) and case B (b)

    图  7   方案AC (a)和方案B (b)在分别考虑流体压力(负半轴)及流体压力变化率(正半轴)时断层临界刚度随时间的变化

    Figure  7.   The critical stiffness changes of fault with time when considering the liquid pressure (the negative half axis) and liquid pressure change rate (the positive half axis) respectively for cases A,C (a)and case B (b)

    图  8   方案A中不同渗透率下断层临界刚度随时间的变化

    (a) 同时考虑流体压力(负半轴)及其变化率(正半轴);(b) 分别考虑流体压力(负半轴)及其变化率(正半轴)

    Figure  8.   The critical stiffness changes of fault with time under different permeability in case A

    (a) Considering both of liquid pressure (the negative half axis) and liquid pressure change rate (the positive half axis);(b) Considering liquid pressure (the negative half axis) and liquid pressure change rate (the positive half axis) respectively

    图  9   方案B中不同渗透率下断层临界刚度随时间的变化

    (a) 同时考虑流体压力(负半轴)及其变化率(正半轴);(b) 分别考虑流体压力(负半轴)及其变化率(正半轴)

    Figure  9.   The critical stiffness changes of fault with time under different permeability in case B

    (a) Considering both of liquid pressure (the negative half axis) and liquid pressure change rate (the positive half axis);(b) Considering liquid pressure (the negative half axis) and liquid pressure change rate (the positive half axis) respectively

    图  10   方案C中不同渗透率下断层临界刚度随时间的变化

    (a) 同时考虑流体压力(负半轴)及其变化率(正半轴);(b) 分别考虑流体压力(负半轴)及其变化率(正半轴)

    Figure  10.   The critical stiffness changes of fault with time under different permeability in case C

    (a) Considering both of liquid pressure (the negative half axis) and liquid pressure change rate (the positive half axis);(b) Considering liquid pressure (the negative half axis) and liquid pressure change rate (the positive half axis) respectively

    表  1   模型材料参数

    Table  1   The material parameters of the model

    变量含义变量含义
    ρf 流体密度 1 000 kg/m3 uf 流体动态粘度系数 0.001 Pa·s
    Cf 流体压缩系数 4×10−10 Pa−1 κf 储层渗透率 10−14 m2
    ϕf 储层孔隙率 0.1 E 储层弹性模量 20 GPa
    v 储层泊松比 0.25 αb Biot系数 1
    σy y方向应力 100 MPa σx x方向应力 80 MPa
    a 摩擦常数 0.015 b 摩擦常数 0.02
    Dc 滑移距离 100 μm $ \hat \alpha $ 摩擦常数 0.5
    p0 参考流体压力 0.1 MPa
    下载: 导出CSV
  • 管全中,董大忠,张华玲,孙莎莎,张素荣,郭雯. 2021. 富有机质页岩生物成因石英的类型及其耦合成储机制:以四川盆地上奥陶统五峰组—下志留统龙马溪组为例[J]. 石油勘探与开发,48(4):700–709.

    Guan Q Z,Dong D Z,Zhang H L,Sun S S,Zhang S R,Guo W. 2021. Types of biogenic quartz and its coupling storage mechanism in organic-rich shales:A case study of the upper Ordovician Wufeng formation to lower Silurian Longmaxi formation in the Sichuan basin,SW China[J]. Petroleum Exploration and Development,48(4):700–709 (in Chinese).

    洪汉净. 1994. 从地震模拟看匀阻段与大震的关系[J]. 地震地质,16(2):109–114.

    Hong H J. 1994. Seismic simulation:Correlation of resistance-homogeneous fault segment with large earthquakes[J]. Seismology and Geology,16(2):109–114 (in Chinese).

    李大虎,詹艳,丁志峰,高家乙,吴萍萍,孟令媛,孙翔宇,张旭. 2021. 四川长宁MS6.0地震震区上地壳速度结构特征与孕震环境[J]. 地球物理学报,64(1):18–35. doi: 10.6038/cjg2021O0241

    Li D H,Zhan Y,Ding Z F,Gao J Y,Wu P P,Meng L Y,Sun X Y,Zhang X. 2021. Upper crustal velocity and seismogenic environment of the Changning MS6.0 earthquake region in Sichuan,China[J]. Chinese Journal of Geophysics,64(1):18–35 (in Chinese).

    涂毅敏,陈运泰. 2002. 德国大陆超深钻井注水诱发地震的精确定位[J]. 地震学报,24(6):587–598. doi: 10.3321/j.issn:0253-3782.2002.06.004

    Tu Y M,Chen Y T. 2002. The acurate location of the injection-induced microearthquakes in German continental deep drilling program[J]. Acta Seismologica Sinica,24(6):587–598 (in Chinese).

    薛霆虓,傅容珊,陈宇卫,邵志刚. 2009. 大尺度断层活动性数值模拟及地震学类比[J]. 地球物理学进展,24(5):1616–1626. doi: 10.3969/j.issn.1004-2903.2009.05.010

    Xue T X,Fu R S,Chen Y W,Shao Z G. 2009. Numerical simulation of large scale fault activity and it's seismological analogy[J]. Progress in Geophysics,24(5):1616–1626 (in Chinese).

    易桂喜,龙锋,梁明剑,赵敏,王思维,宫悦,乔慧珍,苏金蓉. 2019. 2019年6月17日四川长宁MS6.0地震序列震源机制解与发震构造分析[J]. 地球物理学报,62(9):3432–3447. doi: 10.6038/cjg2019N0297

    Yi G X,Long F,Liang M J,Zhao M,Wang S W,Gong Y,Qiao H Z,Su J R. 2019. Focal mechanism solutions and seismogenic structure of the 17 June 2019 MS6.0 Sichuan Changning earthquake sequence[J]. Chinese Journal of Geophysics,62(9):3432–3447 (in Chinese).

    张致伟,程万正,梁明剑,王晓山,龙锋,许艳,陈文康,王世元. 2012. 四川自贡—隆昌地区注水诱发地震研究[J]. 地球物理学报,55(5):1635–1645. doi: 10.6038/j.issn.0001-5733.2012.05.021

    Zhang Z W,Cheng W Z,Liang M J,Wang X S,Long F,Xu Y,Chen W K,Wang S Y. 2012. Study on earthquakes induced by water injection in Zigong-Longchang area,Sichuan[J]. Chinese Journal of Geophysics,55(5):1635–1645 (in Chinese).

    周仕勇. 2008. 川西及邻近地区地震活动性模拟和断层间相互作用研究[J]. 地球物理学报,51(1):165–174. doi: 10.3321/j.issn:0001-5733.2008.01.021

    Zhou S Y. 2008. Seismicity simulation in western Sichuan of China based on the fault interactions and its implication on the estimation of the regional earthquake risk[J]. Chinese Journal of Geophysics,51(1):165–174 (in Chinese).

    朱航,何畅. 2014. 注水诱发地震序列的震源机制变化特征:以四川长宁序列为例[J]. 地球科学——中国地质大学学报,39(12):1776–1782.

    Zhu H,He C. 2014. Focal mechanism changing character of earthquake sequence induced by water injection:A case study of Changning sequence,Sichuan Province[J]. Earth Science——Journal of China University of Geosciences,39(12):1776–1782 (in Chinese). doi: 10.3799/dqkx.2014.161

    邹才能,董大忠,王玉满,李新景,黄金亮,王淑芳,管全中,张晨晨,王红岩,刘洪林,拜文华,梁峰,吝文,赵群,刘德勋,杨智,梁萍萍,孙莎莎,邱振. 2016. 中国页岩气特征、挑战及前景(二)[J]. 石油勘探与开发,43(2):166–178. doi: 10.11698/PED.2016.02.02

    Zou C N,Dong D Z,Wang Y M,Li X J,Huang J L,Wang S F,Guan Q Z,Zhang C C,Wang H Y,Liu H L,Bai W H,Liang F,Lin W,Zhao Q,Liu D X,Yang Z,Liang P P,Sun S S,Qiu Z. 2016. Shale gas in China:Characteristics,challenges and prospects (Ⅱ)[J]. Petroleum Exploration and Development,43(2):166–178 (in Chinese).

    邹才能,赵群,董大忠,杨智,邱振,梁峰,王南,黄勇,端安详,张琴,胡志明. 2017. 页岩气基本特征、主要挑战与未来前景[J]. 天然气地球科学,28(12):1781–1796.

    Zou C N,Zhao Q,Dong D Z,Yang Z,Qiu Z,Liang F,Wang N,Huang Y,Duan A X,Zhang Q,Hu Z M. 2017. Geological characteristics,main challenges and future prospect of shale gas[J]. Natural Gas Geoscience,28(12):1781–1796 (in Chinese).

    Alghannam M,Juanes R. 2020. Understanding rate effects in injection-induced earthquakes[J]. Nat Commun,11(1):3053. doi: 10.1038/s41467-020-16860-y

    Andrés S,Santillán D,Mosquera J C,Cueto-Felgueroso L. 2019. Delayed weakening and reactivation of rate-and-state faults driven by pressure changes due to fluid injection[J]. J Geophys Res:Solid Earth,124(11):11917–11937. doi: 10.1029/2019JB018109

    Biot M A. 1941. General theory of three-dimensional consolidation[J]. J Appl Phys,12(2):155–164. doi: 10.1063/1.1712886

    Brace W F,Byerlee J D. 1966. Stick-slip as a mechanism for earthquakes[J]. Science,153(3739):990–992. doi: 10.1126/science.153.3739.990

    Cappa F,Scuderi M M,Collettini C,Guglielmi Y,Avouac J P. 2019. Stabilization of fault slip by fluid injection in the laboratory and in situ[J]. Sci Adv,5(3):eaau4065. doi: 10.1126/sciadv.aau4065

    Chang K W,Yoon H,Kim Y,Lee M Y. 2020. Operational and geological controls of coupled poroelastic stressing and pore-pressure accumulation along faults:Induced earthquakes in Pohang,South Korea[J]. Sci Rep,10(1):2073. doi: 10.1038/s41598-020-58881-z

    Cheng H H,Zhang H,Zhu B J,Sun Y J,Zheng L,Yang S H,Shi Y L. 2012. Finite element investigation of the poroelastic effect on the Xinfengjiang reservoir-triggered earthquake[J]. Sci China Earth Sci,55(12):1942–1952. doi: 10.1007/s11430-012-4470-8

    Cheng H H,Zhang H,Shi Y L. 2016. High-resolution numerical analysis of the triggering mechanism of ML5.7 Aswan reservoir earthquake through fully coupled poroelastic finite[J]. Pure Appl Geophys,173(5):1593–1605. doi: 10.1007/s00024-015-1200-0

    Cueto-Felgueroso L,Santillán D,Mosquera J C. 2017. Stick-slip dynamics of flow-induced seismicity on rate and state faults[J]. Geophys Res Lett,44(9):4098–4106. doi: 10.1002/2016GL072045

    Dieterich J H. 1992. Earthquake nucleation on faults with rate-and state-dependent strength[J]. Tectonophysics,211(1/4):115–134.

    Dieterich J H,Richards-Dinger K B,Kroll K A. 2015. Modeling injection-induced seismicity with the physics-based earthquake simulator RSQSim[J]. Seismol Res Lett,86(4):1102–1109. doi: 10.1785/0220150057

    Ellsworth W L. 2013. Injection-induced earthquakes[J]. Science,341(6142):1225942. doi: 10.1126/science.1225942

    Frohlich C. 2012. Two-year survey comparing earthquake activity and injection-well locations in the Barnett Shale,Texas[J]. Proc Natl Acad Sci USA,109(35):13934–13938. doi: 10.1073/pnas.1207728109

    Goebel T H W,Walter J I,Murray K,Brodsky E E. 2017. Comment on “How will induced seismicity in Oklahoma respond to decreased saltwater injection rates?” by C. Langenbruch and M. D. Zoback[J]. Sci Adv,3(8):e1700441. doi: 10.1126/sciadv.1700441

    Goebel T H W,Brodsky E E. 2018. The spatial footprint of injection wells in a global compilation of induced earthquake sequences[J]. Science,361(6405):899–904. doi: 10.1126/science.aat5449

    Goebel T H W,Rosson Z,Brodsky E E,Walter J I. 2019. Aftershock deficiency of induced earthquake sequences during rapid mitigation efforts in Oklahoma[J]. Earth Planet Sci Lett,522:135–143. doi: 10.1016/j.jpgl.2019.06.036

    Jaeger J C, Cook N G W. 1969. Fundamentals of Rock Mechanics[M]. London: Methuen and Co. Ltd: 65–76.

    Jin L,Zoback M D. 2018. Fully dynamic spontaneous rupture due to quasi-static pore pressure and poroelastic effects:An implicit nonlinear computational model of fluid-induced seismic events[J]. J Geophys Res:Solid Earth,123(11):9430–9468. doi: 10.1029/2018JB015669

    Keranen K M,Weingarten M,Abers G A,Bekins B A,Ge S. 2014. Sharp increase in central Oklahoma seismicity since 2008 induced by massive wastewater injection[J]. Science,345(6195):448–451. doi: 10.1126/science.1255802

    Keranen K M,Weingarten M. 2018. Induced seismicity[J]. Annu Rev Earth Planet Sci,46:149–174. doi: 10.1146/annurev-earth-082517-010054

    Langenbruch C,Zoback M D. 2016. How will induced seismicity in Oklahoma respond to decreased saltwater injection rates?[J]. Sci Adv,2(11):e1601542. doi: 10.1126/sciadv.1601542

    Lei X L,Wang Z W,Su J R. 2019a. Possible link between long-term and short-term water injections and earthquakes in salt mine and shale gas site in Changning,south Sichuan Basin,China[J]. Earth Planet Phys,3(6):510–525. doi: 10.26464/epp2019052

    Lei X L,Wang Z W,Su J R. 2019b. The December 2018 ML5.7 and January 2019 ML5.3 earthquakes in South Sichuan Basin induced by shale gas hydraulic fracturing[J]. Seismol Res Lett,90(3):1099–1110. doi: 10.1785/0220190029

    Lei X L,Su J R,Wang Z W. 2020. Growing seismicity in the Sichuan Basin and its association with industrial activities[J]. Sci China Earth Sci,63(11):1633–1660. doi: 10.1007/s11430-020-9646-x

    Li T,Sun J B,Bao Y X,Zhan Y,Shen Z K,Xu X W,Lasserre C. 2021. The 2019 MW5.8 Changning,China earthquake:A cascade rupture of fold-accommodation faults induced by fluid injection[J]. Tectonophysics,801:228721. doi: 10.1016/j.tecto.2021.228721

    Lick W. 1965. The instability of a fluid layer with time-dependent heating[J]. J Fluid Mech,21(3):565–576. doi: 10.1017/S0022112065000332

    Liu J Q,Zahradník J. 2020. The 2019 MW5.7 Changning earthquake,Sichuan Basin,China:A shallow doublet with different faulting styles[J]. Geophys Res Lett,47(4):e2019GL085408.

    Meng L Y,Mcgarr A,Zhou L Q,Zang Y. 2019. An investigation of seismicity induced by hydraulic fracturing in the Sichuan Basin of China based on data from a temporary seismic network[J]. Bull Seismol Soc Am,109(1):348–357. doi: 10.1785/0120180310

    Norbeck J H,Horne R N. 2018. Maximum magnitude of injection-induced earthquakes:A criterion to assess the influence of pressure migration along faults[J]. Tectonophysics,733:108–118. doi: 10.1016/j.tecto.2018.01.028

    Rajesh R,Gupta H K. 2021. Characterization of injection-induced seismicity at north central Oklahoma,USA[J]. J Seismol,25(1):327–337. doi: 10.1007/s10950-020-09978-5

    Rao C V,Arkin A P. 2003. Stochastic chemical kinetics and the quasi-steady-state assumption:Application to the Gillespie algorithm[J]. J Chem Phys,118(11):4999–5010. doi: 10.1063/1.1545446

    Rice J R,Cleary M P. 1976. Some basic stress diffusion solutions for fluid-saturated elastic porous media with compressible constituents[J]. Rev Geophys,14(2):227–241. doi: 10.1029/RG014i002p00227

    Robinson J L. 1976. Theoretical analysis of convective instability of a growing horizontal thermal boundary layer[J]. Phys Fluids,19(6):778–791. doi: 10.1063/1.861570

    Rubinstein J L,Ellsworth W L,Dougherty S L. 2018. The 2013-2016 induced earthquakes in harper and Sumner counties,southern Kansas[J]. Bull Seismol Soc Am,108(2):674–689. doi: 10.1785/0120170209

    Ruina A. 1983. Slip instability and state variable friction laws[J]. J Geophys Res:Solid Earth,88(B12):10359–10370. doi: 10.1029/JB088iB12p10359

    Scholz C H. 2002. The Mechanics of Earthquakes and Faulting[M]. Cambridge: Cambridge University Press: 76−87.

    Segall P,Lu S. 2015. Injection-induced seismicity:Poroelastic and earthquake nucleation effects[J]. J Geophys Res:Solid Earth,120(7):5082–5103. doi: 10.1002/2015JB012060

    Segel L A,Slemrod M. 1989. The quasi-steady-state assumption:A case study in perturbation[J]. SIAM Rev,31(3):446–477. doi: 10.1137/1031091

    Walter J I,Chang J C,Dotray P J. 2017. Foreshock seismicity suggests gradual differential stress increase in the months prior to the 3 September 2016 MW5.8 Pawnee earthquake[J]. Seismol Res Lett,88(4):1032–1039. doi: 10.1785/0220170007

    Wang H F. 2000. Theory of Linear Poroelasticity with Applications to Geomechanics and Hydrogeology[M]. Princeton: Princeton University Press: 71−95.

    Weingarten M,Ge S,Godt J W,Bekins B A,Rubinstein J L. 2015. High-rate injection is associated with the increase in U. S. mid-continent seismicity[J]. Science,348(6241):1336–1340. doi: 10.1126/science.aab1345

    Xu P,Yu B M. 2008. Developing a new form of permeability and Kozeny–Carman constant for homogeneous porous media by means of fractal geometry[J]. Adv Water Resour,31(1):74–81. doi: 10.1016/j.advwatres.2007.06.003

    Yeo I W,Brown M R M,Ge S,Lee K K. 2020. Causal mechanism of injection-induced earthquakes through the MW5.5 Pohang earthquake case study[J]. Nat Commun,11(1):2614. doi: 10.1038/s41467-020-16408-0

    Zhu W Q,Allison K L,Dunham E M,Yang Y Y. 2020. Fault valving and pore pressure evolution in simulations of earthquake sequences and aseismic slip[J]. Nat Commun,11(1):4833. doi: 10.1038/s41467-020-18598-z

  • 期刊类型引用(8)

    1. 田优平,沈平,万永革,唐红亮,康承旭,姚海东,佘旭明,叶世山. 湖南地区应力场定量结果及置信区间分析. 地震研究. 2023(04): 483-490 . 百度学术
    2. Xiaobin Li,Mingpei Jin,Ya Huang,Wenjian Cha,Jun Wang,Sihai Li. Temporal evolution of the focal mechanism consistency of the 2021 Yangbi M_S6.4 earthquake sequence in Yunnan. Earthquake Research Advances. 2022(02): 11-20 . 必应学术
    3. 田优平,唐红亮,康承旭,万永革,黄骥超,姚海东,佘旭明. 综合震源机制解法反演湖南地区构造应力场的初步结果. 地球物理学报. 2020(11): 4080-4096 . 百度学术
    4. 何永锋,李锴,曾乐贵,姚国政,赵克常,张献兵,刘炳灿. 利用全元素矩张量反演方法识别地下核爆炸. 爆炸与冲击. 2018(05): 985-992 . 百度学术
    5. 何永锋,李锴,刘炳灿,姚国政,赵克常,张献兵,曾乐贵. 基于面波数据的地下核爆炸的全元素矩张量反演方法. 爆炸与冲击. 2017(05): 945-950 . 百度学术
    6. 王志铄,王明亮,赵显刚,万娜,马兴全,于浩雨. 太康隆起南缘新郑-太康断裂的新生代活动形迹与地震活动. 地震地质. 2017(01): 117-129 . 百度学术
    7. 孙杰,胡凤英,杨龙翔,阎楷,李源. 2010年10月24日周口太康M_s4.6地震的震源机制解. 地震地磁观测与研究. 2014(Z2): 8-14 . 百度学术
    8. 郑建常,王鹏,林眉,穆娟,徐长朋,李冬梅. 区域全波形反演美国三次中强地震的震源矩张量. 地球物理学进展. 2013(06): 2825-2837 . 百度学术

    其他类型引用(1)

图(10)  /  表(1)
计量
  • 文章访问数:  1273
  • HTML全文浏览量:  176
  • PDF下载量:  150
  • 被引次数: 9
出版历程
  • 收稿日期:  2021-08-18
  • 修回日期:  2021-11-04
  • 网络出版日期:  2021-11-22
  • 发布日期:  2021-12-30

目录

    /

    返回文章
    返回