Experiment and numerical simulation of co-seismic water level response in unconsolidated confined aquifer
-
摘要: 为深入理解井水位同震响应机理,本文开展了向完整井-松散含水层系统输入由不同频率和振幅(加速度)组成的正弦波荷载的振动台实验。以实验模型为物理模型,建立了振动作用下松散承压含水层中孔隙水压力响应的流固耦合模型和含水层水流与井流的相互作用模型,并运用多物理场耦合模拟软件COMSOL Multiphysics对实验过程进行了数值模拟。实验中观测到的四种典型水位变化形态与野外场地同震井水位变化形态相似。数值模拟结果显示,本研究建立的数学模型能较好地反映松散承压含水层中孔隙水压力和水位的响应情况。本文研究对解释地下水同震响应机制、岩体渗流稳定性和安全问题具有重要意义。Abstract: In order to promote understanding mechanisms of co-seismic response of water level in well shaking table experiments have been carried out with sinusoidal loading in different vibration frequencies and amplitudes (accelerations) for complete well unconsolidated confined aquifer system. The physical model has been built based on experimental model, and fluid-solid coupled model of pore pressure response in unconsolidated aquifer and mathematical model of flow interaction between aquifer well under vibrations have been established. The experimental processes have been simulated in COMSOL Multiphysics, a multi-field coupling simulation software. Four typical water level variation forms observed in experiment are similar to those of field studies, and the results of numerical simulation show that the mathematical model established in this study can well reflect the response of pore water pressure and water level in unconfined aquifer. This research is of great significance to explain the mechanism of co-seismic responses of groundwater, and stability and safety of seepage in rock and soil mass.
-
表 1 正弦波的振动参数
Table 1. Shaking parameters of different sine waves
工况编号 频率/Hz 加速度/g 加载时间/s 工况编号 频率/Hz 加速度/g 加载时间/s 1 0.5 0.1 35 4 5 0.25 35 2 2 0.25 35 5 10 0.25 35 3 5 0.15 35 6 15 0.15 35 注:1g=9.81 m/s2。 表 2 数值模拟中的参数取值
Table 2. Parameters used in numerical experiments.
参数 单位 数值 弹性模量$E$ Pa 2.63×1010 泊松比$\upsilon $ 1 0.25 渗透系数$K$ m/d 33 孔隙度$n$ 1 0.398 ${{{\rm{Biot}}'{\rm{s}}} }$系数 1 1 固相密度$\;{\rho _{\rm{s}}}$ kg/m3 2 650 液相密度$\;{\rho _{\rm{f}}}$ kg/m3 1 000 固相体积模量${E_{\rm{s}}}$ Pa 1.56×1010 液相体积模量${E_{\rm{f}}}$ Pa 1×108 储水率${S_{ {\rm{s} }} }$ 1 1×10−3 动力黏度系数$\;\mu$ Pa·s 1×10−4 -
车用太,鱼金子. 2014. 地壳流体对地震活动的影响与控制作用[J]. 国际地震动态,(8):1–9. doi: 10.3969/j.issn.0235-4975.2014.08.001 Che Y T,Yu J Z. 2014. Influence and controlling of fluid in the crust on earthquake activity[J]. Recent Developments in World Seismology,(8):1–9 (in Chinese). 谷洪彪,张璜,谷健芬,张艳,迟宝明. 2017. 静水条件下振动对测压水位影响实验[J]. 地震学报,39(3):407–419. Gu H B,Zhang H,Gu J F,Zhang Y,Chi B M. 2017. Experiments on response of piezometric level to vibrations under hydrostatic condition[J]. Acta Seismologica Sinica,39(3):407–419 (in Chinese). 贾化周,秦清娟. 1996. 利用地下水位预报地震的新思路与新方法[J]. 华北地震科学,14(3):28–37. Jia H Z,Qin Q J. 1996. A new idea and a new method for earthquake prediction by groundwater level[J]. North China Earthquake Sciences,14(3):28–37 (in Chinese). 刘春平. 2017. 地壳应力与地下水动力响应[M]. 北京: 地震出版社: 1−199. Liu C P. 2017. Crustal Stress and Groundwater Dynamic Response[M]. Beijing: Seismological Press: 1–199 (in Chinese). 许才军,周红波. 1998. 不排水循环荷载作用下饱和软粘土的孔压增长模型[J]. 勘察科学技术,(1):3–7. Xu C J,Zhou H B. 1998. Pore pressure increase model of saturated soft clay under undrained cyclic load[J]. Site Investigation Science and Technology,(1):3–7 (in Chinese). 阎澍旺. 1991. 往复荷载作用下重塑软粘土的变形特性[J]. 岩土工程学报,(1):48–53. doi: 10.3321/j.issn:1000-4548.1991.01.005 Yan P W. 1991. Deformation characteristics of remolded soft clay under cyclic loading[J]. Chinese Journal of Geotechnical Engineering,13(1):48–53. 翟泽宇. 2021. 浅层非固结含水层对简谐振动响应的水动力模型研究[D]. 廊坊: 防灾科技学院: 1−115. Zhai Z Y. 2021. Study on Hydrodynamic Model of Response of Shallow Unconsolidated Aquifer to Harmonic Vibration[D]. Langfang: Institute of Disaster Prevention: 1−115 (in Chinese). 张璜,谷洪彪,张艳,迟宝明. 2016. 渗流条件下振动对测压水位的影响实验[J]. 地球物理学进展,31(4):1857–1866. doi: 10.6038/pg20160459 Zhang H,Gu H B,Zhang Y,Chi B M. 2016. Effect experiment of the vibration on piezometric level under seepage condition[J]. Progress in Geophysics,31(4):1857–1866 (in Chinese). 张艳. 2020. 承压含水层井水位对循环荷载响应的水动力过程研究[D]. 哈尔滨: 中国地震局工程力学研究所: 1−163. Zhang Y. 2020. Research on Hydrodynamic Process of Response of Well Water Level of Confined Aquifer to Cyclic Loading[D]. Harbin: Institute of Engineering Mechanics, China Earthquake Administration: 1−163 (in Chinese). 张艳,谷洪彪,兰双双,迟宝明,姜海宁. 2017. 井-含水层系统水位响应规律振动台试验初探[J]. 科技通报,33(12):80–84. doi: 10.13774/j.cnki.kjtb.2017.12.016 Zhang Y,Gu H B,Lan S S,Chi B M,Jiang H N. 2017. Shaking table tests on water level response of well-aquifer system[J]. Bulletin of Science and Technology,33(12):80–84 (in Chinese). 张耀文,谷洪彪,那金,宋洋,张艳. 2019. 承压含水层中孔压变化规律的振动台实验研究[J]. 科学技术与工程,19(17):18–24. doi: 10.3969/j.issn.1671-1815.2019.17.003 Zhang Y W,Gu H B,Na J,Song Y,Zhang Y. 2019. Experimental study on the variation law of pore pressure in confined aquifer by vibration table[J]. Science Technology and Engineering,19(17):18–24 (in Chinese). 周健,屠洪权,安原一哉. 1996. 动力荷载作用下软粘土的残余变形计算模式[J]. 岩土力学,17(1):54–60. Zhou J,Tu H Q,Yaswhara K. 1996. A model for predicting the cyclic behaviour of soft clay[J]. Rock and Soil Mechanics,17(1):54–60 (in Chinese). 周健,陈小亮,杨永香,贾敏才. 2011. 饱和层状砂土液化特性的动三轴试验研究[J]. 岩土力学,32(4):967–972. doi: 10.3969/j.issn.1000-7598.2011.04.002 Zhou J,Chen X L,Yang Y X,Jia M C. 2011. Study of liquefaction characteristics of saturated stratified sands by dynamic triaxial test[J]. Rock and Soil Mechanics,32(4):967–972 (in Chinese). Barrash W,Clemo T,Fox J J,Johnson T C. 2006. Field,laboratory,and modeling investigation of the skin effect at wells with slotted casing,Boise hydrogeophysical research site[J]. J Hydrol,326(1/2/3/4):181–198. Biot M A. 1941. General theory of three-dimensional consolidation[J]. J Appl Phys,12(2):155–164. doi: 10.1063/1.1712886 Biot M A. 1955. Theory of elasticity and consolidation for a porous anisotropic solid[J]. J Appl Phys,26(2):182–185. doi: 10.1063/1.1721956 Biot M A. 1956a. General solutions of the equations of elasticity and consolidation for a porous material[J]. J Appl Mech,23(1):91–96. doi: 10.1115/1.4011213 Biot M A. 1956b. Theory of deformation of a porous viscoelastic anisotropic solid[J]. J Appl Phys,27(5):459–467. doi: 10.1063/1.1722402 Biot M A. 1962. Mechanics of deformation and acoustic propagation in porous media[J]. J Appl Phys,33(4):1482–1498. doi: 10.1063/1.1728759 Bowen R M. 1980. Incompressible porous media models by use of the theory of mixtures[J]. Int J Eng Sci,18(9):1129–1148. doi: 10.1016/0020-7225(80)90114-7 Bredehoeft J D,Cooper H H,Papadopulos I S. 1966. Inertial and storage effects in well-aquifer systems:An analog investigation[J]. Water Resour Res,2(4):697–707. doi: 10.1029/WR002i004p00697 Brodsky E E. 2003. A mechanism for sustained groundwater pressure changes induced by distant earthquakes[J]. J Geophys Res:Solid Earth,108(B8):2390. doi: 10.1029/2002JB002321 Carslaw H S, Jaeger J C. 1959. Conduction of Heat in Solids[M]. Oxford: Clarendon Press: 1–520. Cheung Y K,Tham L G. 1983. Numerical solutions for Biot’s consolidation of layered soil[J]. J Eng Mech,109(3):669–679. Cooper H H Jr,Bredehoeft J D,Papadopulos I S,Bennett R R. 1965. The response of well-aquifer systems to seismic waves[J]. J Geophys Res,70(16):3915–3926. doi: 10.1029/JZ070i016p03915 Crews J B, Cooper C A. 2014. Experimental investigation of remote seismic triggering by gas bubble growth in groundwater[C]//American Geophysical Union 2014 Fall Meeting. San Francisco, California: AGU. Elkhoury J E,Brodsky E E,Agnew D C. 2006. Seismic waves increase permeability[J]. Nature,441(7097):1135–1138. doi: 10.1038/nature04798 Ge S M,Stover S C. 2000. Hydrodynamic response to strike- and dip-slip faulting in a half-space[J]. J Geophys Res. :Solid Earth,105(B11):25513–25524. doi: 10.1029/2000JB900233 Gu H B,Lan S S,Zhang H,Wang M Y,Chi B M,Sauter M. 2021a. Water level response in wells to dynamic shaking in confined unconsolidated sediments:A laboratory study[J]. J Hydrol,597:126150. doi: 10.1016/j.jhydrol.2021.126150 Gu H B,Lan S S,Zhang H,Wang M Y,Sauter M . 2021b. Water level response in wells to dynamic shaking in confined unconsolidated sediments:A laboratory study[J]. Journal of Hydrology,597(2):126150. Gulley A K,Dudley Ward N F,Cox S C,Kaipio J P. 2013. Groundwater responses to the recent Canterbury earthquakes:A comparison[J]. J Hydrol,504:171–181. doi: 10.1016/j.jhydrol.2013.09.018 Houben G J. 2015. Review:Hydraulics of water wells—head losses of individual components[J]. Hydrogeol J,23(8):1659–1675. doi: 10.1007/s10040-015-1313-7 Jaeger J C, Cook N G W, Zimmerman R W. 2009. Fundamentals of Rock Mechanics[M]. John Wiley & Sons: 1–488. Manga M, Wang C Y. 2007. Earthquake hydrology[G]// Treatise on Geophysics. London: Elsevier:4:293–320. Matsumoto N,Roeloffs E A. 2003. Hydrological response to earthquakes in the Haibara well,central Japan:Ⅱ. Possible mechanism inferred from time-varying hydraulic properties[J]. Geophys J Int,155(3):899–913. doi: 10.1111/j.1365-246X.2003.02104.x Muir-Wood R,King G C P. 1993. Hydrological signatures of earthquake strain[J]. J Geophys Res:Solid Earth,98(B12):22035–22068. doi: 10.1029/93JB02219 Oka F,Yashima A,Shibata T,Kato M,Uzuoka R. 1994. FEM-FDM coupled liquefaction analysis of a porous soil using an elasto-plastic model[J]. Appl Sci Res,52(3):209–245. doi: 10.1007/BF00853951 Quilty E G,Roeloffs E A. 1997. Water-level changes in response to the 20 December 1994 earthquake near Parkfield,California[J]. Bull Seismol Soc Am,87(2):310–317. doi: 10.1785/BSSA0870020310 Ramey H J Jr,Agarwal R G. 1972. Annulus unloading rates as influenced by wellbore storage and skin effect[J]. Soc Petrol Eng J,12(5):453–462. doi: 10.2118/3538-PA Rexin E E,Oliver J,Prentiss D. 1962. Seismically-induced fluctuations of the water level in the Nunn-Bush well in Milwaukee[J]. Bull Seismol Soc Am,52(1):17–25. doi: 10.1785/BSSA0520010017 Shi Z,Wang G,Manga M,Wang C Y. 2015. Continental-scale water-level response to a large earthquake[J]. Geofluids,15(1/2):310–320. Stearns H T. 1928. Record of earthquake made by automatic recorders on wells in California[J]. Bull Seismol Soc Am,18(1):9–15. doi: 10.1785/BSSA0180010009 Terzaghi K. 1943. Theoretical Soil Mechanics[M]. New York: Wiley:1−528. Wakita H. 1975. Water wells as possible indicators of tectonic strain[J]. Science,189(4202):553–555. doi: 10.1126/science.189.4202.553 Wang C Y,Chia Y. 2008. Mechanism of water level changes during earthquakes:Near field versus intermediate field[J]. Geophys Res Lett,35(12):L12402. Wang C Y, Manga M. 2009. Earthquakes and Water[M]. Berlin, Heidelberg: Springer: 1–225. Wang C Y, Manga M. 2014. Encyclopedia of complexity and systems science[M]//Earthquakes and Water .Berlin, Heidelberg: Springer: 1–38. Wang C Y,Chia Y,Wang P L,Dreger D. 2009. Role of S waves and Love waves in coseismic permeability enhancement[J]. Geophys Res Lett,36(9):L09404. Zlotnik V A,McGuire V L. 1998a. Multi-level slug tests in highly permeable formations:1. Modification of the Springer-Gelhar (SG) model[J]. J Hydrol,204(1/2/3/4):271–282. Zlotnik V A,McGuire V L. 1998b. Multi-level slug tests in highly permeable formations:2. Hydraulic conductivity identification,method verification,and field applications[J]. J Hydrol,204(1/2/3/4):283–296. -