松散承压含水层水位的同震响应实验与数值模拟

翟泽宇 谷洪彪 张艳 孔慧敏 迟宝明

翟泽宇,谷洪彪,张艳,孔慧敏,迟宝明. 2023. 松散承压含水层水位的同震响应实验与数值模拟. 地震学报,45(1):29−45 doi: 10.11939/jass.20210149
引用本文: 翟泽宇,谷洪彪,张艳,孔慧敏,迟宝明. 2023. 松散承压含水层水位的同震响应实验与数值模拟. 地震学报,45(1):29−45 doi: 10.11939/jass.20210149
Zhai Z Y,Gu H B,Zhang Y,Kong H M,Chi B M. 2023. Experiment and numerical simulation of co-seismic water level response in unconsolidated confined aquifer. Acta Seismologica Sinica,45(1):29−45 doi: 10.11939/jass.20210149
Citation: Zhai Z Y,Gu H B,Zhang Y,Kong H M,Chi B M. 2023. Experiment and numerical simulation of co-seismic water level response in unconsolidated confined aquifer. Acta Seismologica Sinica45(1):29−45 doi: 10.11939/jass.20210149

松散承压含水层水位的同震响应实验与数值模拟

doi: 10.11939/jass.20210149
基金项目: 国家自然科学基金(41877205)资助
详细信息
    通讯作者:

    谷洪彪,博士,教授,主要从事地震地下流体研究,e-mail:hongbiaosw@126.com

  • 中图分类号: P315.723

Experiment and numerical simulation of co-seismic water level response in unconsolidated confined aquifer

  • 摘要: 为深入理解井水位同震响应机理,本文开展了向完整井-松散含水层系统输入由不同频率和振幅(加速度)组成的正弦波荷载的振动台实验。以实验模型为物理模型,建立了振动作用下松散承压含水层中孔隙水压力响应的流固耦合模型和含水层水流与井流的相互作用模型,并运用多物理场耦合模拟软件COMSOL Multiphysics对实验过程进行了数值模拟。实验中观测到的四种典型水位变化形态与野外场地同震井水位变化形态相似。数值模拟结果显示,本研究建立的数学模型能较好地反映松散承压含水层中孔隙水压力和水位的响应情况。本文研究对解释地下水同震响应机制、岩体渗流稳定性和安全问题具有重要意义。

     

  • 图  1  实验装置示意图(单位:m)

    Figure  1.  Diagram of experimental device (unit:m)

    图  2  实验所记录的典型井水位变化形态(以G2井为例)

    (a) 振荡;(b) 上升;(c) 下降;(d) 阶变

    Figure  2.  Typical change forms of well water level in experiments (taking well G2 as an example)

    (a) Oscillation;(b) Rise;(c) Drop;(d) Step-like change

    图  3  初始平衡状态下承压含水层模型剖面图

    Figure  3.  Profile of confined aquifer model at initial equilibrium state

    图  4  压力扰动井-含水层系统的概念模型

    Figure  4.  Conceptual model of the well-aquifer system disturbing by a harmonic pressure

    图  5  井流运动示意图

    (a) 静止状态;(b) 运动状态

    Figure  5.  Schematic diagram of well flow

    (a) Stationary state;(b) Motion state

    图  6  工况1中孔隙水压力的实测值(a)与模拟值(b)时程变化对比图

    Figure  6.  Comparison diagram of time history changes between measured (a) and simulated (b) pore water pressure values in working condition 1

    图  7  工况2的孔隙水压力实测值(a)与模拟值(b)时程变化对比

    Figure  7.  Comparison diagram of time history changes between measured (a) and simulated (b) pore water pressure values in working condition 2

    图  8  工况3中孔隙水压力的实测值(a)与模拟值(b)时程变化对比图

    Figure  8.  Comparison diagram of time history changes between measured (a) and simulated (b) pore water pressure values in working condition 3

    图  9  工况4中孔隙水压力的实测值(a)与模拟值(b)时程变化对比图

    Figure  9.  Comparison diagram of time history changes between measured (a) and simulated (b) pore water pressure values in working condition 4

    图  10  工况5中孔隙水压力的实测值(a)与模拟值(b)时程变化对比图

    Figure  10.  Comparison diagram of time history changes between measured (a)and simulated (b) pore water pressure values in working condition 5

    图  11  工况6中孔隙水压力的实测值(a)与模拟值(b)时程变化对比图

    Figure  11.  Comparison diagram of time history changes between measured (a) and simulated (b) pore water pressure values in working condition 6

    图  12  G2井中各工况的水位的实测值与模拟值时程变化对比图

    Figure  12.  Comparison diagram of time history changes between measured and simulated water levels in well G2

    图  13  孔隙水压力(a)和井水位(b)的模拟值与实测值误差分析对比图

    Figure  13.  Comparison diagram of error analysis between simulated and experimental measured values of pore water pressure (a)and groundwater level (b)

    表  1  正弦波的振动参数

    Table  1.   Shaking parameters of different sine waves

    工况编号频率/Hz加速度/g加载时间/s工况编号频率/Hz加速度/g加载时间/s
    1 0.5 0.1 35 4 5 0.25 35
    2 2 0.25 35 5 10 0.25 35
    3 5 0.15 35 6 15 0.15 35
    注:1g=9.81 m/s2
    下载: 导出CSV

    表  2  数值模拟中的参数取值

    Table  2.   Parameters used in numerical experiments.

    参数单位数值
    弹性模量$E$Pa2.63×1010
    泊松比$\upsilon $10.25
    渗透系数$K$m/d33
    孔隙度$n$10.398
    ${{{\rm{Biot}}'{\rm{s}}} }$系数11
    固相密度$\;{\rho _{\rm{s}}}$kg/m32 650
    液相密度$\;{\rho _{\rm{f}}}$kg/m31 000
    固相体积模量${E_{\rm{s}}}$Pa1.56×1010
    液相体积模量${E_{\rm{f}}}$Pa1×108
    储水率${S_{ {\rm{s} }} }$11×10−3
    动力黏度系数$\;\mu$Pa·s1×10−4
    下载: 导出CSV
  • 车用太,鱼金子. 2014. 地壳流体对地震活动的影响与控制作用[J]. 国际地震动态,(8):1–9. doi: 10.3969/j.issn.0235-4975.2014.08.001
    Che Y T,Yu J Z. 2014. Influence and controlling of fluid in the crust on earthquake activity[J]. Recent Developments in World Seismology,(8):1–9 (in Chinese).
    谷洪彪,张璜,谷健芬,张艳,迟宝明. 2017. 静水条件下振动对测压水位影响实验[J]. 地震学报,39(3):407–419.
    Gu H B,Zhang H,Gu J F,Zhang Y,Chi B M. 2017. Experiments on response of piezometric level to vibrations under hydrostatic condition[J]. Acta Seismologica Sinica,39(3):407–419 (in Chinese).
    贾化周,秦清娟. 1996. 利用地下水位预报地震的新思路与新方法[J]. 华北地震科学,14(3):28–37.
    Jia H Z,Qin Q J. 1996. A new idea and a new method for earthquake prediction by groundwater level[J]. North China Earthquake Sciences,14(3):28–37 (in Chinese).
    刘春平. 2017. 地壳应力与地下水动力响应[M]. 北京: 地震出版社: 1−199.
    Liu C P. 2017. Crustal Stress and Groundwater Dynamic Response[M]. Beijing: Seismological Press: 1–199 (in Chinese).
    许才军,周红波. 1998. 不排水循环荷载作用下饱和软粘土的孔压增长模型[J]. 勘察科学技术,(1):3–7.
    Xu C J,Zhou H B. 1998. Pore pressure increase model of saturated soft clay under undrained cyclic load[J]. Site Investigation Science and Technology,(1):3–7 (in Chinese).
    阎澍旺. 1991. 往复荷载作用下重塑软粘土的变形特性[J]. 岩土工程学报,(1):48–53. doi: 10.3321/j.issn:1000-4548.1991.01.005
    Yan P W. 1991. Deformation characteristics of remolded soft clay under cyclic loading[J]. Chinese Journal of Geotechnical Engineering,13(1):48–53.
    翟泽宇. 2021. 浅层非固结含水层对简谐振动响应的水动力模型研究[D]. 廊坊: 防灾科技学院: 1−115.
    Zhai Z Y. 2021. Study on Hydrodynamic Model of Response of Shallow Unconsolidated Aquifer to Harmonic Vibration[D]. Langfang: Institute of Disaster Prevention: 1−115 (in Chinese).
    张璜,谷洪彪,张艳,迟宝明. 2016. 渗流条件下振动对测压水位的影响实验[J]. 地球物理学进展,31(4):1857–1866. doi: 10.6038/pg20160459
    Zhang H,Gu H B,Zhang Y,Chi B M. 2016. Effect experiment of the vibration on piezometric level under seepage condition[J]. Progress in Geophysics,31(4):1857–1866 (in Chinese).
    张艳. 2020. 承压含水层井水位对循环荷载响应的水动力过程研究[D]. 哈尔滨: 中国地震局工程力学研究所: 1−163.
    Zhang Y. 2020. Research on Hydrodynamic Process of Response of Well Water Level of Confined Aquifer to Cyclic Loading[D]. Harbin: Institute of Engineering Mechanics, China Earthquake Administration: 1−163 (in Chinese).
    张艳,谷洪彪,兰双双,迟宝明,姜海宁. 2017. 井-含水层系统水位响应规律振动台试验初探[J]. 科技通报,33(12):80–84. doi: 10.13774/j.cnki.kjtb.2017.12.016
    Zhang Y,Gu H B,Lan S S,Chi B M,Jiang H N. 2017. Shaking table tests on water level response of well-aquifer system[J]. Bulletin of Science and Technology,33(12):80–84 (in Chinese).
    张耀文,谷洪彪,那金,宋洋,张艳. 2019. 承压含水层中孔压变化规律的振动台实验研究[J]. 科学技术与工程,19(17):18–24. doi: 10.3969/j.issn.1671-1815.2019.17.003
    Zhang Y W,Gu H B,Na J,Song Y,Zhang Y. 2019. Experimental study on the variation law of pore pressure in confined aquifer by vibration table[J]. Science Technology and Engineering,19(17):18–24 (in Chinese).
    周健,屠洪权,安原一哉. 1996. 动力荷载作用下软粘土的残余变形计算模式[J]. 岩土力学,17(1):54–60.
    Zhou J,Tu H Q,Yaswhara K. 1996. A model for predicting the cyclic behaviour of soft clay[J]. Rock and Soil Mechanics,17(1):54–60 (in Chinese).
    周健,陈小亮,杨永香,贾敏才. 2011. 饱和层状砂土液化特性的动三轴试验研究[J]. 岩土力学,32(4):967–972. doi: 10.3969/j.issn.1000-7598.2011.04.002
    Zhou J,Chen X L,Yang Y X,Jia M C. 2011. Study of liquefaction characteristics of saturated stratified sands by dynamic triaxial test[J]. Rock and Soil Mechanics,32(4):967–972 (in Chinese).
    Barrash W,Clemo T,Fox J J,Johnson T C. 2006. Field,laboratory,and modeling investigation of the skin effect at wells with slotted casing,Boise hydrogeophysical research site[J]. J Hydrol,326(1/2/3/4):181–198.
    Biot M A. 1941. General theory of three-dimensional consolidation[J]. J Appl Phys,12(2):155–164. doi: 10.1063/1.1712886
    Biot M A. 1955. Theory of elasticity and consolidation for a porous anisotropic solid[J]. J Appl Phys,26(2):182–185. doi: 10.1063/1.1721956
    Biot M A. 1956a. General solutions of the equations of elasticity and consolidation for a porous material[J]. J Appl Mech,23(1):91–96. doi: 10.1115/1.4011213
    Biot M A. 1956b. Theory of deformation of a porous viscoelastic anisotropic solid[J]. J Appl Phys,27(5):459–467. doi: 10.1063/1.1722402
    Biot M A. 1962. Mechanics of deformation and acoustic propagation in porous media[J]. J Appl Phys,33(4):1482–1498. doi: 10.1063/1.1728759
    Bowen R M. 1980. Incompressible porous media models by use of the theory of mixtures[J]. Int J Eng Sci,18(9):1129–1148. doi: 10.1016/0020-7225(80)90114-7
    Bredehoeft J D,Cooper H H,Papadopulos I S. 1966. Inertial and storage effects in well-aquifer systems:An analog investigation[J]. Water Resour Res,2(4):697–707. doi: 10.1029/WR002i004p00697
    Brodsky E E. 2003. A mechanism for sustained groundwater pressure changes induced by distant earthquakes[J]. J Geophys Res:Solid Earth,108(B8):2390. doi: 10.1029/2002JB002321
    Carslaw H S, Jaeger J C. 1959. Conduction of Heat in Solids[M]. Oxford: Clarendon Press: 1–520.
    Cheung Y K,Tham L G. 1983. Numerical solutions for Biot’s consolidation of layered soil[J]. J Eng Mech,109(3):669–679.
    Cooper H H Jr,Bredehoeft J D,Papadopulos I S,Bennett R R. 1965. The response of well-aquifer systems to seismic waves[J]. J Geophys Res,70(16):3915–3926. doi: 10.1029/JZ070i016p03915
    Crews J B, Cooper C A. 2014. Experimental investigation of remote seismic triggering by gas bubble growth in groundwater[C]//American Geophysical Union 2014 Fall Meeting. San Francisco, California: AGU.
    Elkhoury J E,Brodsky E E,Agnew D C. 2006. Seismic waves increase permeability[J]. Nature,441(7097):1135–1138. doi: 10.1038/nature04798
    Ge S M,Stover S C. 2000. Hydrodynamic response to strike- and dip-slip faulting in a half-space[J]. J Geophys Res. :Solid Earth,105(B11):25513–25524. doi: 10.1029/2000JB900233
    Gu H B,Lan S S,Zhang H,Wang M Y,Chi B M,Sauter M. 2021a. Water level response in wells to dynamic shaking in confined unconsolidated sediments:A laboratory study[J]. J Hydrol,597:126150. doi: 10.1016/j.jhydrol.2021.126150
    Gu H B,Lan S S,Zhang H,Wang M Y,Sauter M . 2021b. Water level response in wells to dynamic shaking in confined unconsolidated sediments:A laboratory study[J]. Journal of Hydrology,597(2):126150.
    Gulley A K,Dudley Ward N F,Cox S C,Kaipio J P. 2013. Groundwater responses to the recent Canterbury earthquakes:A comparison[J]. J Hydrol,504:171–181. doi: 10.1016/j.jhydrol.2013.09.018
    Houben G J. 2015. Review:Hydraulics of water wells—head losses of individual components[J]. Hydrogeol J,23(8):1659–1675. doi: 10.1007/s10040-015-1313-7
    Jaeger J C, Cook N G W, Zimmerman R W. 2009. Fundamentals of Rock Mechanics[M]. John Wiley & Sons: 1–488.
    Manga M, Wang C Y. 2007. Earthquake hydrology[G]// Treatise on Geophysics. London: Elsevier:4:293–320.
    Matsumoto N,Roeloffs E A. 2003. Hydrological response to earthquakes in the Haibara well,central Japan:Ⅱ. Possible mechanism inferred from time-varying hydraulic properties[J]. Geophys J Int,155(3):899–913. doi: 10.1111/j.1365-246X.2003.02104.x
    Muir-Wood R,King G C P. 1993. Hydrological signatures of earthquake strain[J]. J Geophys Res:Solid Earth,98(B12):22035–22068. doi: 10.1029/93JB02219
    Oka F,Yashima A,Shibata T,Kato M,Uzuoka R. 1994. FEM-FDM coupled liquefaction analysis of a porous soil using an elasto-plastic model[J]. Appl Sci Res,52(3):209–245. doi: 10.1007/BF00853951
    Quilty E G,Roeloffs E A. 1997. Water-level changes in response to the 20 December 1994 earthquake near Parkfield,California[J]. Bull Seismol Soc Am,87(2):310–317. doi: 10.1785/BSSA0870020310
    Ramey H J Jr,Agarwal R G. 1972. Annulus unloading rates as influenced by wellbore storage and skin effect[J]. Soc Petrol Eng J,12(5):453–462. doi: 10.2118/3538-PA
    Rexin E E,Oliver J,Prentiss D. 1962. Seismically-induced fluctuations of the water level in the Nunn-Bush well in Milwaukee[J]. Bull Seismol Soc Am,52(1):17–25. doi: 10.1785/BSSA0520010017
    Shi Z,Wang G,Manga M,Wang C Y. 2015. Continental-scale water-level response to a large earthquake[J]. Geofluids,15(1/2):310–320.
    Stearns H T. 1928. Record of earthquake made by automatic recorders on wells in California[J]. Bull Seismol Soc Am,18(1):9–15. doi: 10.1785/BSSA0180010009
    Terzaghi K. 1943. Theoretical Soil Mechanics[M]. New York: Wiley:1−528.
    Wakita H. 1975. Water wells as possible indicators of tectonic strain[J]. Science,189(4202):553–555. doi: 10.1126/science.189.4202.553
    Wang C Y,Chia Y. 2008. Mechanism of water level changes during earthquakes:Near field versus intermediate field[J]. Geophys Res Lett,35(12):L12402.
    Wang C Y, Manga M. 2009. Earthquakes and Water[M]. Berlin, Heidelberg: Springer: 1–225.
    Wang C Y, Manga M. 2014. Encyclopedia of complexity and systems science[M]//Earthquakes and Water .Berlin, Heidelberg: Springer: 1–38.
    Wang C Y,Chia Y,Wang P L,Dreger D. 2009. Role of S waves and Love waves in coseismic permeability enhancement[J]. Geophys Res Lett,36(9):L09404.
    Zlotnik V A,McGuire V L. 1998a. Multi-level slug tests in highly permeable formations:1. Modification of the Springer-Gelhar (SG) model[J]. J Hydrol,204(1/2/3/4):271–282.
    Zlotnik V A,McGuire V L. 1998b. Multi-level slug tests in highly permeable formations:2. Hydraulic conductivity identification,method verification,and field applications[J]. J Hydrol,204(1/2/3/4):283–296.
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  250
  • HTML全文浏览量:  110
  • PDF下载量:  97
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-14
  • 修回日期:  2021-12-23
  • 网络出版日期:  2023-01-03
  • 刊出日期:  2023-01-17

目录

    /

    返回文章
    返回