2021年云南漾濞MS6.4地震动态应力对后续余震活动的触发作用

刘容 陈强 杨莹辉 钟霞 苑雨

刘容,陈强,杨莹辉,钟霞,苑雨. 2023. 2021年云南漾濞MS6.4地震动态应力对后续余震活动的触发作用. 地震学报,45(1):17−28 doi: 10.11939/jass.20210157
引用本文: 刘容,陈强,杨莹辉,钟霞,苑雨. 2023. 2021年云南漾濞MS6.4地震动态应力对后续余震活动的触发作用. 地震学报,45(1):17−28 doi: 10.11939/jass.20210157
Liu R,Chen Q,Yang Y H,Zhong X,Yuan Y. 2023. Impact of dynamic stress on aftershock triggering of the 2021 Yunnan Yangbi MS6.4 earthquake. Acta Seismologica Sinica,45(1):17−28 doi: 10.11939/jass.20210157
Citation: Liu R,Chen Q,Yang Y H,Zhong X,Yuan Y. 2023. Impact of dynamic stress on aftershock triggering of the 2021 Yunnan Yangbi MS6.4 earthquake. Acta Seismologica Sinica45(1):17−28 doi: 10.11939/jass.20210157

2021年云南漾濞MS6.4地震动态应力对后续余震活动的触发作用

doi: 10.11939/jass.20210157
详细信息
    通讯作者:

    刘容,硕士研究生,主要研究方向为地震震源破裂过程及其应力触发,e-mail:1327330109@qq.com

  • 中图分类号: P315.33,P315.727

Impact of dynamic stress on aftershock triggering of the 2021 Yunnan Yangbi MS6.4 earthquake

  • 摘要: 选取IRIS远震台站波形数据,反演了云南漾濞MS6.4地震震源破裂过程,计算了断层破裂在近场产生的动态库仑破裂应力变化,并讨论了主震对近场余震活动的动态应力触发作用。结果显示:动态库仑应力演化过程与震源破裂特征反演结果一致,其大小分布与地震序列分布的疏密程度也具有较好的相关性。主震产生的静态和动态库仑破裂应力均促进余震的发生,但相比静态应力,余震位于库仑破裂应力正值区域的比例提高了21%,余震与动态库仑应力变化的正负区域有更好的一致性,动态应力能更好地解释震后余震分布的空间特征。垂直于地震序列主干10 km处出现小震丛集,该现象可能是由主震产生的动态库仑破裂应力占主导作用所致。定量分析主震对余震的动态应力触发结果显示,主震后一周内MS4.0以上的8次余震接收点均受到了动态库仑破裂应力的触发作用。

     

  • 图  1  云南漾濞MS6.4地震震中区构造背景(a)、地震序列空间分布(b)及剖面上的投影(c)

    Figure  1.  Tectonic setting (a) of the epicentral area and spatial distribution (b) for Yunnan Yangbi MS6.4 earthquake sequence and its projection on profile (c)

    图  2  台站分布和P波垂向位移理论图(红线)与观测波形(黑线)的拟合情况(a)以及每2秒破裂快照(b)

    Figure  2.  Station distribution and the fitting of P-wave vertical displacement theoretical graph (red line) and observed waveform (black line) (a) and snapshot shown every 2 s (b)

    图  3  云南漾濞MS6.4地震静态应力变化(a)和地震序列密度分布及MS4.0以上余震震源机制(b)

    Figure  3.  Static stress change of the Yunnan Yangbi MS6.4 earthquake (a) and density distribution of the earthquake sequence and focal mechanisms of aftershocks above MS4.0

    4  ∆CFS动态演化

    图中百分数表示余震位于动态库仑破裂应力正值区域的比例

    4.  Dynamic evolution of ∆CFS

    The percentage in the figure shows the proportion of aftershocks in the positive value area of dynamic Coulomb stress

    图  4  ∆CFS动态演化

    图中百分数表示余震位于动态库仑破裂应力正值区域的比例

    Figure  4.  Dynamic evolution of ∆CFS

    The percentage in the figure shows the proportion of aftershocks in the positive value area of dynamic Coulomb stress

    图  5  图3b中8次余震震源接收点处的库仑破裂应力时程

    Figure  5.  Coulomb rupture stress time history at the receiving points of the aftershock source shown in Fig.3b

    表  1  云南漾濞MS6.4地震震源参数

    Table  1.   Focal mechanism parameters of the Yunnan Yangbi MS6.4 earthquake

    发震日期 震中位置MW深度/km节面Ⅰ节面Ⅱ来源
    年-月-日 北纬/°东经/°走向/°倾角/°滑动角/°走向/°倾角/°滑动角/°
    25.61 100.02 6.1 15.0 46 78 4 315 86 168 GCMT (2021)
    2021-05-21 25.73 100.01 6.1 9.0 135 82 −165 43 75 −9 USGS (2021)
    25.69 99.88 5.9 7.8 135 75 −168 42 78 −15 重定位(龙锋等,2021
    下载: 导出CSV

    表  2  云南漾濞MS6.4地震震源附近地壳分层模型

    Table  2.   Crustal layered model near the seismic source of the Yunnan Yangbi MS6.4 earthquake

    深度/kmvP/(km·s−1vS/(km·s−1地壳密度/(g·cm−3QPQS
    07.754.473.37600300
    44.852.803.37600300
    166.253.613.37600300
    226.403.703.37600300
    下载: 导出CSV

    表  3  主震对MS≥4.0余震应力触发情况

    Table  3.   The stress trigger of the main shock to MS≥4.0 aftershocks

    地震序号与主震震中的
    距离/km
    开始变化
    时间/s
    达到峰值
    时间/s
    ∆CFS峰值
    /MPa
    趋于稳定
    时间/s
    稳定值
    /MPa
    应力触发
    1 8.67 2.0 3.7 0.13 13 0.09 动态、静态应力触发
    2 12.68 1.7 5.3 0.83 16 −0.001 动态应力触发
    3 13.49 2.0 5.3 0.47 13 0.01 动态应力触发,静态应力可能触发
    4 13.49 1.9 5.7 0.27 14 −0.02 动态应力触发
    5 2.22 3.0 3.5 0.39 动态应力触发
    6 1.00 1.8 8.4 0.50 12 0.48 动态、静态应力触发
    7 8.98 2.0 7.4 0.12 11 0.09 动态、静态应力触发
    8 11.17 5.0 7.5 0.18 13 0.02 动态应力触发,静态应力可能触发
    下载: 导出CSV
  • 常祖峰,常昊,李鉴林,代博洋,周青云,朱家龙,罗宗其. 2016. 维西—乔后断裂南段正断层活动特征[J]. 地震研究,39(4):579–586. doi: 10.3969/j.issn.1000-0666.2016.04.007
    Chang Z F,Chang H,Li J L,Dai B Y,Zhou Q Y,Zhu J L,Luo Z Q. 2016. The characteristic of active normal faulting of the southern segment of Weixi−Qiaohou fault[J]. Journal of Seismological Research,39(4):579–586 (in Chinese).
    郝平,刘杰,韩竹军,傅征祥. 2006. 印尼MS8.7地震对中国大陆3次后续中强地震的动应力触发研究[J]. 地震,26(3):26–36.
    Hao P,Liu J,Han Z J,Fu Z X. 2006. Dynamic stress triggering of three subsequent moderately strong earthquakes in China’s mainland following the Indonesia MS8.7 earthquake[J]. Earthquake,26(3):26–36 (in Chinese).
    冀战波,王琼,王海涛,解朝娣. 2014. 2008年新疆于田MS7.3地震对后续地震的完全库仑应力触发作用[J]. 地震学报,36(6):997–1009.
    Ji Z B,Wang Q,Wang H T,Xie C D. 2014. Impact of complete Coulomb failure stress changes of the 2008 Xinjiang Yutian MS7.3 earthquake on the subsequent earthquakes[J]. Acta Seismologica Sinica,36(6):997–1009 (in Chinese).
    李传友,张金玉,王伟,孙凯,单新建. 2021. 2021年云南漾濞 6.4 级地震发震构造分析[J]. 地震地质,43(3):706–721. doi: 10.3969/j.issn.0253-4967.2021.03.015
    Li C Y,Zhang J Y,Wang W,Sun K,Shan X J. 2021. The seismogenic fault of the 2021 Yunnan Yangbi MS6.4 earthquake[J]. Seismology and Geology,43(3):706–721 (in Chinese).
    龙锋,祁玉萍,易桂喜,吴微微,王光明,赵小艳,彭关灵. 2021. 2021年5月21日云南漾濞MS6.4地震序列重新定位与发震构造分析[J]. 地球物理学报,64(8):2631–2646.
    Long F,Qi Y P ,Yi G X,Wu W W,Wang G M,Zhao X Y,Peng G L. 2021. Relocation of the MS6.4 Yangbi earthquake sequence on May 21,2021 in Yunnan Province and its seismogenic structure analysis[J]. Chinese Journal of Geophysics,64(8):2631–2646 (in Chinese).
    缪淼,朱守彪. 2013. 2013年芦山MS7.0地震产生的静态库仑应力变化及其对余震空间分布的影响[J]. 地震学报,35(5):619–631.
    Miao M,Zhu S B. 2013. The static Coulomb stress change of the 2013 Lushan MS7.0 earthquake and its impact on the spatial distribution of aftershocks[J]. Acta Seismologica Sinica,35(5):619–631 (in Chinese).
    缪淼,朱守彪. 2016. 2014年鲁甸地震(MS=6.5)静态库仑应力变化及其影响[J]. 地震地质,38(1):169–181.
    Miao M ,Zhu S B. 2016. The static Coulomb stress change of the 2014 Ludian earthquake and its influence on the aftershocks and surrounding faults[J]. Seismology and Geology,38(1):169–181 (in Chinese).
    潘睿,姜金钟,付虹,李姣. 2019. 2017年云南漾濞MS5.1及MS4.8地震震源机制解和震源深度测定[J]. 地震研究,42(3):338–348. doi: 10.3969/j.issn.1000-0666.2019.03.005
    Pan R,Jiang J Z,Fu H,Li J. 2019. Focal mechanism and focal depth determination of Yunnan Yangbi MS5.1 and MS4.8 earthquakes in 2017[J]. Journal of Seismological Research,42(3):338–348 (in Chinese).
    盛书中,万永革,蒋长胜,卜玉菲. 2015. 2015年尼泊尔MS8.1强震对中国大陆静态应力触发影响的初探[J]. 地球物理学报,58(5):1834–1842.
    Sheng S Z,Wan Y G,Jiang C S,Bu Y F. 2015. Preliminary study on the static stress triggering effects on China mainland with the 2015 Nepal MS8.1 earthquake[J]. Chinese Journal Of Geophysics,58(5):1834–1842 (in Chinese).
    王琼,解朝娣,冀战波,刘建明. 2016. 2014年于田MS7.3地震对后续余震和远场小震活动的动态应力触发[J]. 地球物理学报,59(4):1383–1393.
    Wang Q,Xie C D,Ji Z B,Liu J M. 2016. Dynamically triggered aftershock activity and far-field microearthquakes following the 2014 MS7.3 Yutian,Xinjiang earthquake[J]. Chinese Journal of Geophysics,59(4):1383–1393 (in Chinese).
    吴建平,明跃红,王椿镛. 2004. 云南地区中小地震震源机制及构造应力场研究[J]. 地震学报,26(5):457–465. doi: 10.3321/j.issn:0253-3782.2004.05.001
    Wu J P,Ming Y H,Wang C Y. 2004. Source mechanism of small-to-moderate earthquakes and tectonic stress field in Yunnan Province[J]. Acta Seismologica Sinica,26(5):457–465 (in Chinese).
    许才军,汪建军,熊维. 2018. 地震应力触发回顾与展望[J]. 武汉大学学报信息科学版,43(12):2085–2092.
    Xu C J,Wang J J,Xiong W. 2018. Retrospection and perspective for earthquake stress triggering[J]. Geomatics and Information Science of Wuhan University,43(12):2085–2092 (in Chinese).
    杨智娴,于湘伟,郑月军,陈运泰,倪晓晞,Chan W. 2004. 中国中西部地区地震的重新定位和三维地壳速度结构[J]. 地震学报,26(1):19–19. doi: 10.3321/j.issn:0253-3782.2004.01.003
    Yang Z X,Yu X W,Zheng Y J,Chen Y T,Ni X X,Chan W. 2004. Earthquake relocation and 3-dimensional crustal structure of P-wave velocity in central-western China[J]. Acta Seismologica Sinica,26(1):19 (in Chinese).
    赵立波,赵连锋,谢小碧,曹俊兴,姚振兴. 2016. 2014年2月12日新疆于田MW7.0地震源区静态库仑应力变化和地震活动率[J]. 地球物理学报,59(10):3732–3743.
    Zhao L B,Zhao L F,Xie X B,Cao J X,Yao Z X. 2016. Static Coulomb stress changes and seismicity rate in the source region of the 12 February,2014 MW7.0 Yutian earthquake in Xinjiang,China[J]. Chinese Journal of Geophysics,59(10):3732–3743 (in Chinese).
    Bouchon M. 1981. A simple method to calculate Green’s functions for elastic layered media[J]. Bull Seism Soc Am,71(4):959–971.
    Bouchon M. 2003. A review of the discrete wavenumber method[J]. Pure Appl Geophys,160(3):445–465.
    Brodsky E E,Karakostas V,Kanamori H. 2000. A new observation of dynamically triggered regional seismicity:Earthquakes in Greece following the August 1999 Izmit,Turkey earthquake[J]. Geophys Res Lett,27(1):2741–2744.
    Cotton F,Coutant O. 1997. Dynamic stress variations due to shear faults in a plane-layered medium[J]. Geophys J Int,128(3):676–688.
    GCMT. 2021. 202105211348A Yunnan, China[DB/OL]. [2021-05-28]. https://www.globalcmt.org/.
    Harris R A. 1998. Introduction to special section:Stress triggers,stress shadows,and implications for seismic hazard[J]. J Geophys Res:Solid Earth,103(B10):24347–24358. doi: 10.1029/98JB01576
    Hartzell S H,Heaton T H. 1983. Inversion of strong ground motion and teleseismic waveform data for the fault rupture history of the 1979 Imperial Valley,California,earthquake[J]. Bull Seism Soc Am,73(6A):1553–1583.
    Hill D P,Reasenberg P A,Michael A,Arabaz W J,Beroza G,Brumbaugh D,Brune J N,Castro R,Davis S,Depolo D,Ellsworth W L,Gomberg J,Harmsen S,House L,Jackson S M,Johnston M J S,Jones L,Keller R,Malone S,Munguia L,Nava S,Pechmann J C,Sanford A,Simpson R W,Smith R B,Stark M,Stickney M,Vidal A,Walter S,Wong V,Zollweg J. 1993. Seismicity remotely triggered by the magnitude 7.3 Landers,California,earthquake[J]. Science,260(5114):1617–1623. doi: 10.1126/science.260.5114.1617
    Kilb D,Gomberg J,Bodin P. 2000. Triggering of earthquake aftershocks by dynamic stresses[J]. Nature,408:570–574.
    Meyer M,Kearnes K. 2013. Introduction to special section:Intermediaries between science,policy and the market[J]. Sci Public Policy,40(4):423–429.
    Mohamad R,Darkal A N,Seber D,Sandvol E,Gocuez F,Barazangi M. 2000. Remote earthquake triggering along the Dead Sea fault in Syria following the 1995 Gulf of Aqaba earthquake (MS=7.3)[J]. Seismological Research Letters,71(1):47–52. doi: 10.1785/gssrl.71.1.47
    Muller G. 1985. The reflectivity method:A tutorial[J]. J Geophys Int,58(1/2/3):153–174.
    Okada Y. 1992. Internal deformation due to shear and tensile faults in a half-space[J]. Bull Seism Soc Am,82(2):1018–1040. doi: 10.1785/BSSA0820021018
    Pollitz F F,Sacks I S. 1997. The 1995 Kobe,Japan,earthquake:A long-delayed aftershock of the offshore 1944 Tonankai and 1946 Nankaido earthquakes[J]. Bull Seisml Soc Am,87(1):1–10.
    Reasenberg P A,Simpson R W. 1992. Response of regional seismicity to the static stress change produced by the Loma-Prieta earthquake[J]. Science,255(5052):1687–1690. doi: 10.1126/science.255.5052.1687
    Steacy S,Nalbant S S,Mccloskey J,Nostro C,Scotti O,Baumont D. 2005. Onto what planes should Coulomb stress perturbations be resolved?[J]. J Geophys Res,110(B5):B05S15.
    Stein R S,King G C,Lin J. 1994. Stress triggering of the 1994 M6.7 Northridge,California,earthquake by its predecessors[J]. Science,265(5177):1432–1435. doi: 10.1126/science.265.5177.1432
    Toda S,Stein R S,Reasenberg P A,Dieterich J H,Yoshida A. 1998. Stress transferred by the 1995 MW6.9 Kobe,Japan,shock:Effect on aftershocks and future earthquake probabilities[J]. J Geophys Res:Solid Earth,103(B10):24543–24565. doi: 10.1029/98JB00765
    USGS. 2021. M6.1: 25 km NW of Dali, China[DB/OL]. [2021-05-28]. https://earthquake.usgs.gov/earthquakes/eventpage/us7000e532/moment-tensor.
    Wu C Q,Peng Z G,Wang W J,Chen Q F. 2011. Dynamic triggering of shallow earthquakes near Beijing,China[J]. Geophys J Int,185(3):1321–1334.
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  246
  • HTML全文浏览量:  119
  • PDF下载量:  107
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-08
  • 修回日期:  2022-01-11
  • 网络出版日期:  2023-01-11
  • 刊出日期:  2023-01-17

目录

    /

    返回文章
    返回