The effect analysis of ground motion station types on ground motion
-
摘要: 以强震动台站结构类型作为控制因素,基于集中质量显式时域动力有限元方法,系统地分析了不同场地条件下观测室结构(砌体观测房、半地下观测室、玻璃钢罩观测室)对地震动的影响。通过对北京地球观象台院内并址观测实验台站捕获的地脉动和两次地震事件数据的处理并结合数值模拟结果,分析得到不同类型观测室对地震动的影响规律。结果表明:观测室结构对地震动的影响是客观存在的,由于观测室结构自振周期和体量不同,不同观测室对地震动的影响频带和影响程度亦存在差异,相较于其它结构对地震动的影响,玻璃钢罩观测室的影响频带较窄、影响程度最小。Abstract: Based on the concentrated mass explicit dynamic finite element method, we analyzes the effects of different observation house structures on free-field ground motion by taking the observation room structures as the control factor. The analysis models were established by testing the structure types of masonry observation house, semi-underground observation room and glass fiber reinforced plastics cover observation room. Moreover, the fixed observational test was carried out at the strong motion station of the Beijing National Earth Observatory. Based on the test record processing and the numerical simulation, the influence of the observation house structure on ground motion was analyzed. The results show that the influence of the observation room structure on ground motion is objective. Due to the difference of natural vibration period and volume of the observation room structures, the influence frequency band and the influence degree of different observation room on ground motion are also different. Compared with other structures, the influence frequency band of the glass fiber reinforced plastic cover on ground motion is narrow and the influence degree is the least.
-
Keywords:
- free-field /
- ground motion /
- observation room structure /
- response spectrum /
- numerical simulation
-
-
图 4 六类场地不同结构型式观测室与自由场的地震动反应谱比
(a) Ⅱ -1类场地;(b) Ⅱ -2类场地;(c) Ⅱ -3类场地;(d) Ⅲ -1类场地;(e) Ⅲ -2类场地;(f) Ⅳ类场地
Figure 4. Response spectra ratio curves of observation rooms with different structures to free field in different sites
(a) Class Ⅱ -1 site;(b) Class Ⅱ -2 site;(c) Class Ⅱ -3 site;(d) Class Ⅲ -1 site;(e) Class Ⅲ -2 site;(f) Class Ⅳ site;
图 9 2019年4月7日上庄MS2.9地震并址观测强震动记录
(a) 自由场观测点;(b) 玻璃钢罩观测室;(c) 半地下观测室;(d) 小砌体观测房;(e) 大砌体观测房
Figure 9. Strong ground motion records of the MS2.9 earthquake on April 7,2019 at co-located observation sites
(a) Free field observation site; (b) Observation room with glass fiber reinforced plastic cover; (c) Semi-underground observation room; (d) Small masonry observation house; (e) Large masonry observation house
图 10 2019年4月14日MS3.0地震并址观测强震动记录
(a) 自由场观测点;(b) 玻璃钢罩观测室;(c) 半地下观测室;(d) 小砌体观测房;(e) 大砌体观测房
Figure 10. Strong ground motion records of the MS3.0 earthquake on April 14,2019 at co-located observation sites
(a) Free field observation site;(b) Observation room with glass fiber reinforced plastic cover;(c) Semi-underground observation room;(d) Small masonry observation house;(e) Large masonry observation house
表 1 Ⅱ类场地模型力学参数
Table 1 Model mechanical parameters of class Ⅱ site
场地模型 等效剪切波速/(m·s−1) 深度/m 土层厚度/m 波速/(m·s−1) 泊松比 阻尼比 自然容重/(kg·m−3) Ⅱ -1 300 0—5 5 200 0.30 0.05 1 750 5—10 5 300 0.30 0.05 1 870 10—15 5 400 0.25 0.05 2 100 15—18 3 500 0.25 0.05 2 300 Ⅱ -2 200 0—5 5 150 0.35 0.05 1 700 5—10 5 200 0.30 0.05 1 750 10—15 5 250 0.30 0.05 1 800 15—18 3 500 0.25 0.05 2 300 Ⅱ -3 150 0—5 5 100 0.35 0.05 1 650 5—10 5 150 0.35 0.05 1 700 10—15 5 200 0.30 0.05 1 750 15—18 3 500 0.25 0.05 2 300 表 2 Ⅲ类场地模型力学参数
Table 2 Model mechanical parameters of class Ⅲ site
场地模型 等效剪切波速/(m·s−1) 深度/m 土层厚度/m 波速/(m·s−1) 泊松比 阻尼比 自然容重/(kg·m−3) Ⅲ -1 175 0—10 10 150 0.35 0.05 1700 10—20 10 200 0.30 0.05 1750 20—40 20 300 0.30 0.05 1870 40—60 20 400 0.25 0.05 2100 60—66 6 500 0.25 0.05 2300 Ⅲ -2 150 0—10 10 100 0.35 0.05 1650 10—20 10 200 0.30 0.05 1750 20—40 20 300 0.30 0.05 1870 40—60 20 400 0.25 0.05 2100 60—66 6 500 0.25 0.05 2300 表 3 Ⅳ类场地模型力学参数
Table 3 Model mechanical parameters of class Ⅳ site
场地模型 等效剪切波速/(m·s−1) 深度/m 土层厚度/m 波速/(m·s−1) 泊松比 阻尼比 自然容重/(kg·m−3) Ⅳ 150 0—10 10 100 0.35 0.05 1650 10—20 10 200 0.30 0.05 1750 20—30 10 250 0.30 0.05 1800 30—40 10 300 0.30 0.05 1870 40—50 10 350 0.30 0.05 1950 50—60 10 400 0.25 0.05 2100 60—81 21 450 0.25 0.05 2100 81—86 5 500 0.25 0.05 2300 表 4 两次地震记录的峰值加速度
Table 4 Peak ground accelerations of the two earthquakes
并址观测点 MS2.9地震PGA/(cm·s−2) MS3.0地震PGA/(cm·s−2) 东西向 南北向 竖向 东西向 南北向 竖向 自由场观测点 9.51 7.85 5.46 7.89 5.88 5.34 玻璃钢罩观测室 −10.47 11.28 4.99 9.32 6.10 −5.06 半地下观测室 10.28 10.39 −5.15 −8.82 6.82 5.20 小砌体观测房 −18.79 −8.89 −6.40 11.53 8.96 −5.17 大砌体观测房 −12.81 −11.10 −6.39 9.80 −8.36 4.12 -
关慧敏,廖振鹏. 1997. 一种改善多次透射边界稳定性的措施[J]. 地震工程与工程振动,17(4):1–8. doi: 10.13197/j.eeev.1997.04.001 Guan H M,Liao Z P. 1997. A method for eliminating instability of multi-transmitting boundary[J]. Earthquake Engineering and Engineering Vibration,17(4):1–8 (in Chinese).
李小军. 2014. 地震预警系统建设技术指南[M]. 北京: 地震出版社: 1–57. Li X J. 2014. Technical Guideline for Construction of Earthquake Early Warning System[M]. Beijing: Seismological Press: 1–57 (in Chinese).
廖振鹏. 1984. 近场波动问题的有限元解法[J]. 地震工程与工程振动,4(2):1–14. doi: 10.13197/j.eeev.1984.02.005 Liao Z P. 1984. A finite element method for near-field wave motion in heterogeneous materials[J]. Earthquake Engineering and Engineering Vibration,4(2):1–14 (in Chinese).
廖振鹏,黄孔亮,杨柏坡,袁一凡. 1984. 暂态波透射边界[J]. 中国科学:A辑,(6):556–564. Liao Z P,Huang K L,Yang B P,Yuan Y F. 1984. Transient wave transmission boundary[J]. Science in China:Series A,(6):556–564 (in Chinese).
廖振鹏,刘晶波. 1992. 波动有限元模拟的基本问题[J]. 中国科学:B辑,(8):874–882. Liao Z P,Liu J B. 1992. The basic problem of finite element simulation of wave[J]. Science in China:Series B,(8):874–882 (in Chinese).
廖振鹏. 1996. 工程波动理论导引[M]. 北京: 科学出版社: 1–322. Liao Z P. 1996. Introduction to Wave Motion Theories in Engineering[M]. Beijing: Science Press: 1–322 (in Chinese).
廖振鹏. 1997. 近场波动的数值模拟[J]. 力学进展,27(2):193–212. doi: 10.6052/1000-0992-1997-2-J1998-197 Liao Z P. 1997. Numerical simulation of near-field wave motion[J]. Advances in Mechanics,27(2):193–212 (in Chinese).
刘宇实,师黎静. 2018. 基于地脉动谱比法的场地特征参数快速测定[J]. 振动与冲击,37(13):235–242. doi: 10.13465/j.cnki.jvs.2018.13.037 Liu Y S,Shi L J. 2018. Site characteristic parameters’ quick measurement based on micro-tremor’s H/V spectra[J]. Journal of Vibration and Shock,37(13):235–242 (in Chinese).
席兆凯,陈清军,姜文磊. 2017. 超高层建筑群对场地地脉动的影响[J]. 力学季刊,38(1):102–107. doi: 10.15959/j.cnki.0254-0053.2017.01.011 Xi Z K,Chen Q J,Jiang W L. 2017. Effect of super-tall building group on site ground pulsation[J]. Chinese Quarterly of Mechanics,38(1):102–107 (in Chinese).
谢志南,廖振鹏. 2008. 人工边界高频振荡失稳机理的一点注记[J]. 地震学报,30(3):302–306. doi: 10.3321/j.issn:0253-3782.2008.03.009 Xie Z N,Liao Z P. 2008. A note for the mechanism of high-frequency instability induced by absorbing boundary conditions[J]. Acta Seismologica Sinica,30(3):302–306 (in Chinese).
杨柏坡,陈庆彬. 1992. 显式有限元法在地震工程中的应用[J]. 世界地震工程,8(4):31–40. Yang B P,Chen Q B. 1992. Application of explicit finite element method in earthquake engineering[J]. World Earthquake Engineering,8(4):31–40 (in Chinese).
中国地震局. 2005. 中国数字强震动台网技术规程[M]. 北京: 地震出版社: 6–7. China Earthquake Administration. 2005. Stipulation on China Digital Strong Motion Network[M]. Beijing: Seismological Press: 6–7 (in Chinese).
中国地震局. 2018. DB/T 17—2018地震台站建设规范:强震动台站[S]. 北京: 中国地震局: 2–3. China Earthquake Administration. 2018. DB/T 17-2018 Specification for the Construction of Seismic Station: Strong Motion Station[S]. Beijing: China Earthquake Administration: 2–3 (in Chinese).
中华人民共和国住房和城乡建设部, 中华人民共和国国家质量监督检验检疫总局. 2016. GB 50011—2010 建筑抗震设计规范[S]. 北京: 中国建筑工业出版社: 19–21. Ministry of Housing and Urban-Rural Development of the People’s Republic of China, General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. 2010. GB 50011—2010 Code for Seismic Design of Buildings[S]. Beijing: China Architecture & Building Press: 19–21 (in Chinese).
周正华,廖振鹏. 2001. 消除多次透射公式飘移失稳的措施[J]. 力学学报,33(4):550–554. doi: 10.3321/j.issn:0459-1879.2001.04.015 Zhou Z H,Liao Z P. 2001. A measure for eliminating drift instability of the multi-transmitting formula[J]. Acta Mechanica Sinica,33(4):550–554 (in Chinese).
周正华,温瑞智,卢大伟,王玉石,李小军,于桦,龙承厚. 2010. 汶川地震中强震动台基墩引起的记录异常分析[J]. 应用基础与工程科学学报,18(2):304–312. doi: 10.3969/j.issn.1005-0930.2010.02.0014 Zhou Z H,Wen R Z,Lu D W,Wang Y S,Li X J,Yu H,Long C H. 2010. Analysis on anomaly of accelerograms in the Wenchuan earthquake caused by the instrument pier[J]. Journal of Basic Science and Engineering,18(2):304–312 (in Chinese).
Boore D M. 2004. Estimating
$\overline v_{\rm{S}} $ (30) (or NEHRP site classes) from shallow velocity models (depths<30 m)[J]. Bull Seismol Soc Am,94(2):591–597. doi: 10.1785/0120030105Consortium of Organizations for Strong-Motion Observation Systems. 2001. Guidelines for Installation of Advanced National Seismic System Strong-Motion Reference Stations[R]. Berkeley: Pacific Earthquake Engineering Research Center, University of California.
Crouse C B,Liang G C,Martin G R. 1984. Experimental study of soil-structure interaction at an accelerograph station[J]. Bull Seismol Soc Am,74(5):1995–2013. doi: 10.1785/BSSA0740051995
Crouse C B,Hushmand B. 1989. Soil-structure interaction at CDMG and USGS accelerograph stations[J]. Bull Seismol Soc Am,79(1):1–14. doi: 10.1785/BSSA0790010001
Liao Z P. 1998. A decoupling numerical simulation of wave motion[J]. Dev Geotech Eng,83:125–140.
Parolai S,Bormann P,Milkereit C. 2002. New relationships between vS,thickness of sediments,and resonance frequency calculated by the H/V ratio of seismic noise for the cologne area (Germany)[J]. Bull Seismol Soc Am,92(6):2521–2527. doi: 10.1785/0120010248
Wen K L,Peng H Y,Tsai Y B,et al. 2001. Why 1g was recorded at TCU129 site during the 1999 Chi-Chi,Taiwan,earthquake[J]. Bull Seismol Soc Am,91(5):1255–1266.