Microwave anomaly of Maduo MS7.4 earthquake derived by improved two-step difference method
-
摘要: 针对2011年提出的两步差法在地震微波异常提取中的不足,提出了改进两步差法,该方法通过使用层次聚类和小波分析两种算法,克服了原方法中未考虑不同地物类型引起的亮温差异、亮温背景场不够稳健等问题,从而使异常结果在空间形态和异常幅度上更加合理,并将该方法应用于2021年5月22日青海省玛多县MS7.4地震的微波异常提取。结果显示,玛多地震前三个月出现了一条长约900 km、增温幅值达12 K的NE向亮温增温条带,与2010年4月14日MS7.1玉树地震前异常特征在空间分布和演化特征上均有很高的相似性。此外,异常出现的时间和幅度与震级有一定相关性,震级较大的玛多地震出现异常时间较早,幅度较大;而震级较小的玉树地震出现异常时间较晚,幅度较小,且两次地震的微波亮温增温幅值均达8 K以上。初步的机理分析认为,地震前的微波异常条带与该区域的NE向张性断裂和张性断陷带在空间上分布一致,异常的出现可能与地震前该断陷带的地热活动以及地表岩石的发射率变化有关。Abstract: In response to the shortcomings of the two-step difference method for extracting seismic microwave anomalies proposed in 2011, an improved two-step difference method which incorporates hierarchical clustering and wavelet analysis is proposed to overcome the problems resulted from ignoring the brightness temperature differences caused by ground cover types and the lack of robustness of the brightness temperature background field in the original method, thus making the anomaly results more reasonable in terms of spatial pattern and anomaly amplitude. The method is applied to the microwave anomaly extraction of the MS7.4 earthquake in Maduo County, Qinghai Province on May 22, 2021. The results show that a NE-trending brightness temperature increase strip with a length of about 900 km and an amplitude of 12 K appeared three months before the Maduo earthquake, which has high similarity in spatial distribution and evolution characteristics with the anomaly characteristics of the MS7.1 Yushu earthquake on April 14, 2010. Furthermore, the appearing time and magnitude of the anomalies are related to the magnitude of the earthquakes. The anomalies of MS7.4 Maduo earthquake appeared earlier than MS7.1 Yushu earthquake with larger scale, and the temperatureincrease of microwave brightness due to both earthquakes reached more than 8 K. Preliminary mechanism analysis suggests that the pre-earthquake microwave anomaly stripes are consistent with the spatial distribution of NEward tensional fractures and extensional fracture zones in the region, and the appearance of the anomalies may be related to the geothermal activity of the fracture zones and the emissivity changes of surface rocks before the earthquakes.
-
-
-
陈顺云,马瑾,刘培洵,刘力强,陈国强. 2004. 中国地表亮度温度年变基准场[J]. 地震地质,26(3):528–538. doi: 10.3969/j.issn.0253-4967.2004.03.017 Chen S Y,Ma J,Liu P X,Liu L Q,Chen G Q. 2004. Normal annual variation field of land surface brightness temperature in China[J]. Seismology and Geology,26(3):528–538 (in Chinese).
陈顺云,刘培洵,刘力强,马瑾,陈国强. 2006. 地表热红外辐射的小波分析及其在现今构造活动研究中的意义[J]. 地球物理学报,49(3):824–830. doi: 10.3321/j.issn:0001-5733.2006.03.026 Chen S Y,Liu P X,Liu L Q,Ma J,Chen G Q. 2006. Wavelet analysis of thermal infrared radiation of land surface and its implication in the study of current tectonic activities[J]. Chinese Journal of Geophysics,49(3):824–830 (in Chinese).
胡同喜,赵天杰,施建成,谷金枝. 2016. AMSR-E与AMSR2被动微波亮温数据交叉定标[J]. 遥感技术与应用,31(5):919–924. Hu T X,Zhao T J,Shi J C,Gu J Z. 2016. Inter-calibration of AMSR-E and AMSR2 brightness temperature[J]. Remote Sensing Technology and Application,31(5):919–924 (in Chinese).
金旭峰,吴莹,钱博. 2020. 基于AMSR2数据的青藏高原地表温度反演[J]. 地球物理学进展,35(4):1269–1275. doi: 10.6038/pg2020DD0102 Jin X F,Wu Y,Qian B. 2020. Retrieval of land surface temperature from AMSR2 data over the Qinghai−Tibetan Plateau[J]. Progress in Geophysics,35(4):1269–1275 (in Chinese).
荆凤,申旭辉,康春丽,熊攀,孙珂. 2012. 2010年新西兰M7.1地震前的长波辐射变化特征[J]. 地球科学进展,27(9):979–986. Jing F,Shen X H,Kang C L,Xiong P,Sun K. 2012. Variation of outgoing longwave radiation around the time of New Zealand earthquake M7.1,2010[J]. Advances in Earth Science,27(9):979–986 (in Chinese).
刘云华,单新建,屈春燕,张桂芳. 2010. 青海玉树MS7.1级地震地表形变场特征研究[J]. 中国科学:地球科学,40(10):1310–1320. Liu Y H,Shan X J,Qu C Y,Zhang G F. 2011. Earthquake deformation field characteristics associated with the 2010 Yushu MS7.1 earthquake[J]. Science China Earth Science,54(4):571–580. doi: 10.1007/s11430-010-4116-7
孟亚飞,孟庆岩,张颖,周世健,刘文宝. 2021. 基于夜间多时相遥感数据的热异常与地震的相关性[J]. 地震学报,43(1):124–135. doi: 10.11939/jass.20200009 Meng Y F,Meng Q Y,Zhang Y,Zhou S J,Liu W B. 2021. Correlation between thermal anomalies and earthquakes based on nighttime multi-temporal remote sensing data[J]. Acta Seismologica Sinica,43(1):124–135 (in Chinese).
屈春燕,单新建,马瑾. 2006. 卫星热红外遥感在火山活动性监测中的应用[J]. 地震地质,28(1):99–110. doi: 10.3969/j.issn.0253-4967.2006.01.010 Qu C Y,Shan X J,Ma J. 2006. Application of satellite thermal infrared remote sensing in detection of volcano activity[J]. Seismology and Geology,28(1):99–110 (in Chinese).
宋冬梅,臧琳,单新建,袁媛,崔建勇,邵红梅,沈晨,时洪涛. 2016. 基于LST年趋势背景场的地震热异常提取算法[J]. 地震地质,38(3):680–695. doi: 10.3969/j.issn.0253-4967.2016.03.014 Song D M,Zang L,Shan X J,Yuan Y,Cui J Y,Shao H M,Shen C,Shi H T. 2016. A study on the algorithm for extracting earthquake thermal infrared anomalies based on the yearly trend of LST[J]. Seismology and Geology,38(3):680–695 (in Chinese).
王鹏,陈晓宏,沈立成,肖琼,吴孝情. 2016. 西藏地热异常区热储温度及其地质环境效应[J]. 中国地质,43(4):1429–1438. Wang P,Chen X H,Shen L C,Xiao Q,Wu X Q. 2016. Reservoir temperature of geothermal anomaly area and its environmental effect in Tibet[J]. Geology in China,43(4):1429–1438 (in Chinese).
王未来,房立华,吴建平,屠泓为,陈立艺,来贵娟,张龙. 2021. 2021年青海玛多MS7.4地震序列精定位研究[J]. 中国科学:地球科学,51(7):1193–1202. Wang W L,Fang L H,Wu J P,Tu H W,Chen L Y,Lai G J,Zhang L. 2021. Aftershock sequence relocation of the 2021 MS7.4 Maduo earthquake,Qinghai,China[J]. Science China Earth Sciences,64(8):1371–1380. doi: 10.1007/s11430-021-9803-3
王亚丽,陈桂华,康春丽,张倩. 2008. 利用小波包分析进行地震相关热红外辐射异常信息检测[J]. 地球物理学进展,23(2):368–374. Wang Y L,Chen G H,Kang C L,Zhang Q. 2008. Earthquake-related thermal-infrared abnormity detection with wavelet packet decomposition[J]. Progress in Geophysics,23(2):368–374 (in Chinese).
魏从信,张元生,王莹. 2018. 日本MW9.1地震对区域热辐射背景场影响的时频分析[J]. 地震学报,40(2):205–214. Wei C X,Zhang Y S,Wang Y. 2018. Time-frequency analysis of the influence of Japan MW9.1 earthquake on regional thermal radiation background field[J]. Acta Seismologica Sinica,40(2):205–214 (in Chinese).
吴立新,齐源,毛文飞,刘善军,丁逸凡,荆凤,申旭辉. 2022. 多波段多极化被动微波遥感地震应用研究进展与前沿方向探索[J]. 测绘学报,51(7):1356–1371. Wu L X,Qi Y,Mao W F,Liu S J,Ding Y F,Jing F,Shen X H. 2022. Progresses and possible frontiers in the study on seismic applications of multi-frequency and multi-polarization passive microwave remote sensing[J]. Acta Geodaetica et Cartographica Sinica,51(7):1356–1371 (in Chinese).
解滔,郑晓东,康春丽,马未宇,卢军. 2015. 2013年4月20日芦山MS7.0地震前热红外亮温异常分析[J]. 地震地质,37(1):149–161. doi: 10.3969/j.issn.0253-4967.2015.01.012 Xie T,Zheng X D,Kang C L,Ma W Y,Lu J. 2015. Possible thermal brightness temperature anomalies associated with the Lushan (China) MS7.0 earthquake on 20 April 2013[J]. Seismology and Geology,37(1):149–161 (in Chinese).
徐纪人,赵志新,石川有三. 2005. 青藏高原中南部岩石圈扩张应力场与羊八井地热异常形成机制[J]. 地球物理学报,48(4):861–869. doi: 10.3321/j.issn:0001-5733.2005.04.018 Xu J R,Zhao Z X,Ishikawa Y. 2005. Extensional stress field in the central and southern Qinghai-Tibetan Plateau and dynamic mechanism of geothermic anomaly in the Yangbajain area[J]. Chinese Journal of Geophysics,48(4):861–869 (in Chinese).
袁伏全,张超美,孙世瑞,罗宾生. 2017. 青海地区地震与地热的分布特征[J]. 高原地震,29(2):1–6. doi: 10.3969/j.issn.1005-586X.2017.02.001 Yuan F Q,Zhang C M,Sun S R,Luo B S. 2017. Study on spatial relationship between earthquakes and geothermal in Qinghai Province[J]. Plateau Earthquake Research,29(2):1–6 (in Chinese).
臧琳,宋冬梅,单新建,崔建勇,邵红梅,沈晨,时洪涛,宋先月. 2016. 基于被动微波与时空联合算法的云下像元LST重建[J]. 遥感技术与应用,31(4):764–772. Zang L,Song D M,Shan X J,Cui J Y,Shao H M,Shen C,Shi H T,Song X Y. 2016. Reconstruction of LST under the cloud based on passive microwave remote sensing and spatio-temporal domain algorithm[J]. Remote Sensing Technology and Application,31(4):764–772 (in Chinese).
张宾,秦凯,吴涛,石铁伟,樊文智. 2018. 地震前卫星遥感微波辐射异常统计分析:以堪察加半岛为例[J]. 地震学报,40(1):98–107. doi: 10.11939/jass.20170089 Zhang B,Qin K,Wu T,Shi T W,Fan W Z. 2018. Statistical analysis of microwave radiation anomaly before earthquake:A case study of Kamchatka Peninsula[J]. Acta Seismologica Sinica,40(1):98–107.
张培震,邓起东,张国民,马瑾,甘卫军,闵伟,毛凤英,王琪. 2003. 中国大陆的强震活动与活动地块[J]. 中国科学:D辑,33(增刊1):12–20. Zhang P Z,Deng Q D,Zhang G M,Ma J,Gan W J,Min W,Mao F Y,Wang Q. 2003. Active tectonic blocks and strong earthquakes in the continent of China[J]. Science in China:Series D,46(S2):13–24.
张勇攀,蒋玲梅,邱玉宝,武胜利,施建成,张立新. 2010. 不同地物类型微波发射率特征分析[J]. 光谱学与光谱分析,30(6):1446–1451. doi: 10.3964/j.issn1000-0593(2010)06-1446-06 Zhang Y P,Jiang L M,Qiu Y B,Wu S L,Shi J C,Zhang L X. 2010. Study of the microwave emissivity characteristics over different land cover types[J]. Spectroscopy and Spectral Analysis,30(6):1446–1451 (in Chinese).
赵平,谢鄂军,多吉,金建,胡先才,杜少平,姚中华. 2002. 西藏地热气体的地球化学特征及其地质意义[J]. 岩石学报,18(4):539–550. Zhao P,Xie E J,Dor J,Jin J,Hu X C,Du S P,Yao Z H. 2002. Geochemical characteristics of geothermal gases and their geological implications in Tibet[J]. Acta Petrologica Sinica,18(4):539–550 (in Chinese).
郑度,赵东升. 2017. 青藏高原的自然环境特征[J]. 科技导报,35(6):13–22. Zheng D,Zhao D S. 2017. Characteristics of natural environment of the Tibetan Plateau[J]. Science &Technology Review,35(6):13–22 (in Chinese).
Boggess A, Narcowich F J. 2010. A First Course in Wavelets With Fourier Analysis[M]. New Jerseya: Wiley: 173–207.
Chui C K. 1992. An Introduction to Wavelets[M]. San Diego: Academic Press: 1–333.
Han J W, Micheline K, Pei J. 2011. Data Mining: Concepts and Techniques[M]. San Francisco: Morgan Kaufmann Publisher: 288–321.
Jing F,Singh R P,Sun K,Shen X H. 2018. Passive microwave response associated with two main earthquakes in Tibetan Plateau,China[J]. Adv Space Res,62(7):1675–1689. doi: 10.1016/j.asr.2018.06.030
Jing F,Singh R P,Cui Y J,Sun K. 2020. Microwave brightness temperature characteristics of three strong earthquakes in Sichuan Province,China[J]. IEEE J Sel Top Appl Earth Obs Remote Sens,13:513–522. doi: 10.1109/JSTARS.2020.2968568
Liu S J, Ma Y T, Wu L X. 2011. Microwave radiation anomaly of Wenchuan earthquake and its mechanism[C]//2011 IEEE International Geoscience and Remote Sensing Symposium. Vancouver B C: IEEE: 2500–2503.
Liu S J, Liu X, Ma Y T, Wu L X. 2012. Microwave radiation anomaly of Yushu earthquake and its mechanism[C]//2012 IEEE International Geoscience and Remote Sensing Symposium. Munich: IEEE: 1192–1195.
Liu S J,Xu Z Y,Wei J L,Huang J W,Wu L X. 2016. Experimental study on microwave radiation from deforming and fracturing rock under loading outdoor[J]. IEEE Trans Geosci Remote Sens,54(9):5578–5587. doi: 10.1109/TGRS.2016.2569419
Ma Y T,Liu S J,Wu L X,Xu Z Y. 2011. Two-step method to extract seismic microwave radiation anomaly:Case study of MS8.0 Wenchuan earthquake[J]. Earthquake Science,24(6):577–582. doi: 10.1007/s11589-011-0819-x
Maeda T, Takano T. 2009. Detection of microwave signals associated with rock failures in an earthquake from satellite-borne microwave radiometer data[C]//2009 IEEE International Geoscience and Remote Sensing Symposium. Cape Town: IEEE: Ⅲ-61–Ⅲ-64.
Piroddi L,Ranieri G. 2012. Night thermal gradient:A new potential tool for earthquake precursors studies:An application to the seismic area of L’Aquila (Central Italy)[J]. IEEE J Sel Top Appl Earth Obs Remote Sens,5(1):307–312. doi: 10.1109/JSTARS.2011.2177962
Qi Y, Wu L X, Mao W F, He M. 2019. Mining seismic anomaly from satellite microwave big data: Methodology and case studies[C]//2019 Photonics & Electromagnetics Research Symposium-Fall (PIERS-Fall). Xiamen: IEEE: 1819–1823.
Qi Y,Wu L X,He M,Mao W F. 2020. Spatio-temporally weighted two-step method for retrieving seismic MBT anomaly:May 2008 Wenchuan earthquake sequence being a case[J]. IEEE J Sel Top Appl Earth Obs Remote Sens,13:382–391. doi: 10.1109/JSTARS.2019.2962719
Qi Y,Miao Z L,Wu L X,Ding Y F. 2021a. Seismic microwave brightness temperature anomaly detection using multitemporal passive microwave satellite images:Ideas and limits[J]. IEEE J Sel Top Appl Earth Obs Remote Sens,14:6792–6806. doi: 10.1109/JSTARS.2021.3093819
Qi Y,Wu L X,Ding Y F,Liu Y J,Chen S,Wang X,Mao W F. 2021b. Extraction and discrimination of MBT anomalies possibly associated with the MW7.3 Maduo (Qinghai,China) earthquake on 21 May 2021[J]. Remote Sens,13(22):4726. doi: 10.3390/rs13224726
Qi Y,Wu L X,Mao W F,Ding Y F,He M. 2021c. Discriminating possible causes of microwave brightness temperature positive anomalies related with May 2008 Wenchuan earthquake sequence[J]. IEEE Trans Geosci Remote Sens,59(3):1903–1916. doi: 10.1109/TGRS.2020.3004404
Qiang Z J,Xu X D,Dian C G. 1997. Thermal infrared anomaly precursor of impending earthquakes[J]. Pure Appl Geophys,149(1):159–171. doi: 10.1007/BF00945166
Singh R P,Mehdi W,Gautam R,Kumar J S,Zlotnicki J,Kafatos M. 2010. Precursory signals using satellite and ground data associated with the Wenchuan earthquake of 12 May 2008[J]. Int J Remote Sens,31(13):3341–3354. doi: 10.1080/01431161.2010.487503
Takano T,Maeda T. 2009. Experiment and theoretical study of earthquake detection capability by means of microwave passive sensors on a satellite[J]. IEEE Geosci Remote Sens Lett,6(1):107–111. doi: 10.1109/LGRS.2008.2005735
Tronin A A. 1996. Satellite thermal survey:A new tool for the study of seismoactive regions[J]. Int J Remote Sens,17(8):1439–1455. doi: 10.1080/01431169608948716
Wu L X,Qin K,Liu S J. 2012. GEOSS-based thermal parameters analysis for earthquake anomaly recognition[J]. Proc IEEE,100(10):2891–2907. doi: 10.1109/JPROC.2012.2184789
Xie T,Kang C L,Ma W Y. 2013. Thermal infrared brightness temperature anomalies associated with the Yushu (China) MS=7.1 earthquake on 14 April 2010[J]. Nat Hazards Earth Syst Sci,13(4):1105–1111. doi: 10.5194/nhess-13-1105-2013
Xiong P,Shen X H,Gu X F,Meng Q Y,Zhao L M,Zhao Y H,Li Y,Dong J T. 2015. Seismic infrared anomalies detection in the case of the Wenchuan earthquake using bi-angular advanced along-track scanning radiometer data[J]. Ann Geophys,58(2):S0217.
Yang J,Guo G M. 2013. Preliminary analysis of thermal anomalies before the 2010 Baja California M7.2 earthquake[J]. Atmósfera,26(4):473–477.