The deep tectonic background of the MS6.9 Menyuan earthquake on January 8,2022 in Qinghai Province
-
摘要: 2022年1月8日青海境内的托莱山—冷龙岭断裂附近发生了门源MS6.9地震。结合地壳厚度、速度结构及各向异性等资料探讨了门源地震的深部构造特征,揭示了门源地震的发震位置与地壳结构变化的密切关联。结果显示:门源MS6.9地震发生在地壳厚度和vP/vS值都出现快速空间变化的区域;大约在10—20 km深度范围内,震源位于P波速度从浅到深由高速变低速的垂向过渡区,同时也是S波速度和泊松比分布呈现明显横向变化的过渡区域,震源下方存在明显的低速区;冷龙岭断裂两侧相速度的方位各向异性变化比较明显。1月12日的MS5.2余震震中紧邻2016年MS6.4地震震中,揭示出2022年门源MS6.9地震及其余震活动导致了冷龙岭断裂比较充分的破裂,两次门源地震主震之间及邻区短时间内难以积累更大能量,因而短时间内发生更大地震的可能性不大。青藏高原东北缘的持续向北扩展所导致的地表隆升和地壳增厚是该地区强震频发的主要构造成因。Abstract: On January 8, 2022, the Menyuan MS6.9 earthquake occurred on the Lenglongling fault in Qinghai Province. Combining the data of crustal thickness, velocity structure and anisotropy, we discussed the deep structural characteristics of the Menyuan earthquake, and revealed that the location of the Menyuan earthquake is closely related to the structural variations in the crust. The results show that, Menyuan MS6.9 earthquake occurred in the area where both the crustal thickness and vP/vS ratio showed rapid spatial changes. Roughly in the depth range of 10−20 km, the hypocenter is located in the vertical transition zone from shallow to deep where the P-wave velocity changed from high to low, and also the S-wave velocity and Poisson’s ratio distribution show obvious lateral changes and there is a clear low-velocity zone beneath the hypocenter; the variation of azimuthal anisotropy of phase velocity on both sides of the Lenglongling fault is relatively obvious. The epicenter of the MS5.2 aftershock on January 12 was close to that of the 2016 MS6.4 earthquake, revealing that the Menyuan MS6.9 earthquake and its aftershocks caused a relatively sufficient rupture of the Lenglongling fault. Between the two Menyuan earthquakes and its adjacent areas, it is difficult to accumulate more energy in a short time, so it is unlikely that a larger earthquake will occur in a short time. The continuous northward expansion of the northeastern margin of the Qinghai-Tibet Plateau leads to surface uplifting and crustal thickening, which is the main tectonic cause of frequent strong earthquakes in this region.
-
Keywords:
- Menyuan MS6.9 earthquake /
- focal depth /
- velocity structure /
- Poisson’s ratio /
- crustal thickness /
- anisotropy
-
-
图 2 门源MS6.9地震及余震分布
2022年地震序列定位结果引自Fan等(2022),2016年门源地震位置引自梁姗姗等(2017),1986年门源地震位置引自兰州地震研究所青海省地震局联合考察队(1987)。F1:龙首山南缘断裂东段;F2:河西堡—四道山断裂;F3:榆木山东缘断裂;F4:民乐—永昌断裂;F5:肃南—祁连断裂;F6:民乐—大马营断裂;F7:皇城—双塔断裂;F8:托莱山断裂;F9:冷龙岭断裂;F10:金强河断裂;F11:毛毛山断裂;F12:天桥沟—黄羊川断裂;F13:玛雅雪山北缘断裂;F14:大通山北缘断裂;F15:木里—江仓断裂;F16:日月山断裂;F17:门源断裂;F18:达坂山断裂;F19:黑林河断裂
Figure 2. The distribution of Menyuan MS6.9 earthquake and its aftershocks
The location of 2022 seismic sequence is from Fan et al (2022),the location of 2016 Menyuan earthquake is from Liang et al (2017),and the location of 1986 Menyuan earthquake is from Lanzhou Institute of Seismology and Seismological Bureau of Qinghai Province (1987). F1:Eastern segment of southern Longshoushan fault;F2:Hexipu-Sidaoshan fault;F3:Yumushan eastern marginal fault;F4:Minyue-Yongchang fault; F5:Su’nan-Qilian fault;F6:Minyue-Damaying fault;F7:Huangcheng-Shuangta fault;F8:Tuolaishan fault;F9:Lenglongling fault;F10:Jinqianghe fault;F11:Maomaoshan fault;F12:Tianqiaogou-Huangyangchuan fault;F13:Mayaxueshan northern marginal fault;F14:Datongshan northern marginal fault;F15:Muli-Jiangcang fault;F16:Riyueshan fault; F 17:Menyuan fault;F18:Dabanshan fault;F19:Heilinhe fault
图 4 门源地区P波速度(a)、S波速度(b)和泊松比(c)
红色星形表示2022年MS6.9门源主震,红色圆点表示其余震,地壳深度标于子图的左下角,下同
Figure 4. P-wave velocity (a),S-wave velocity (b) and Poisson’s ratio (c) in the Menyuan region
The red star represents the 2022 Menyuan MS6.9 earthquake,the red solid circle represents its aftershock,and the crustal depth is labled at the lower-left corner of the subfigure,the same below
图 5 穿过门源地震震源区的P波速度(a)、S波速度(b)和泊松比(c)的垂向剖面图
剖面方向根据图4白色实线绘制,剖面数据来自肖卓和高原(2017)
Figure 5. Vertical profiles of P-wave velocity (a),S-wave velocity (b) and Poisson’s ratio (c) through the source region of Menyuan earthquake
The section direction is drawn according to the white line in Fig. 4,and the profile data is from Xiao and Gao (2017)
图 6 穿过门源地震震源区P波速度垂向剖面图
剖面方向根据图1中白色实线绘制,剖面数据来自夏思茹等(2021)
Figure 6. Vertical P-wave velocity profile through the source region of Menyuan earthquake
The section direction is drawn according to the white line in Fig. 1,and the prolife data is from Xia et al (2021)
-
房立华,吴建平,吕作勇. 2009. 华北地区基于噪声的瑞利面波群速度层析成像[J]. 地球物理学报,52(3):663–671. Fang L H,Wu J P,Lü Z Y. 2009. Rayleigh wave group velocity tomography from ambient seismic noise in North China[J]. Chinese Journal of Geophysics,52(3):663–671 (in Chinese). doi: 10.1002/cjg2.1388
高原,滕吉文. 2005. 中国大陆地壳与上地幔地震各向异性研究[J]. 地球物理学进展,20(1):180–185. doi: 10.3969/j.issn.1004-2903.2005.01.032 Gao Y,Teng J W. 2005. Studies on seismic anisotropy in the crust and mantle on Chinese mainland[J]. Progress in Geophysics,20(1):180–185 (in Chinese).
高锐,李廷栋,吴功建. 1998. 青藏高原岩石圈演化与地球动力学过程:亚东—格尔木—额济纳旗地学断面的启示[J]. 地质论评,44(4):389–395. doi: 10.3321/j.issn:0371-5736.1998.04.008 Gao R,Li T D,Wu G J. 1998. Lithospheric evolution and geodynamic process of the Qinghai-Tibet Plateau:An inspiration from the Yadong-Golmud-Ejin geoscience transect[J]. Geological Review,44(4):389–395 (in Chinese).
郭瑛霞. 2017. 祁连山主动源台阵背景噪声面波三维成像[D]. 兰州: 中国地震局兰州地震研究所: 42–47. Guo Y X. 2017. Background Noise Surface Wave for Three-Dimensional Velocity Structure Based on the Qilian Mountain Active Source Array[D]. Lanzhou: Lanzhou Institute of Seismology, China Earthquake Administration: 42–47 (in Chinese).
胡朝忠,杨攀新,李智敏,黄帅堂,赵妍,陈丹,熊仁伟,陈庆宇. 2016. 2016年1月21日青海门源6.4级地震的发震机制探讨[J]. 地球物理学报,59(5):1637–1646. doi: 10.6038/cjg20160509 Hu C Z,Yang P X,Li Z M,Huang S T,Zhao Y,Chen D,Xiong R W,Chen Q Y. 2016. Seismogenic mechanism of the 21 January 2016 Menyuan,Qinghai MS6.4 earthquake[J]. Chinese Journal of Geophysics,59(5):1637–1646 (in Chinese).
兰州地震研究所青海省地震局联合考察队. 1987. 1986年8月26日门源6.4级地震考察初步总结[J]. 西北地震学报,9(2):75–80. Lanzhou Institute of Seismology,Seismological Bureau of Qinghai Province. 1987. A preliminary summarization of Menyuan earthquake (M=6.4) on Aug. 26,1986[J]. Northwestern Seismological Journal,9(2):75–80.
李永华,徐小明,张恩会,高家乙. 2014. 青藏高原东南缘地壳结构及云南鲁甸、景谷地震深部孕震环境[J]. 地震地质,36(4):1204–1216. doi: 10.3969/j.issn.0253-4967.2014.04.021 Li Y H,Xu X M,Zhang E H,Gao J Y. 2014. Three-dimensional crust structure beneath SE Tibetan Plateau and its seismotectonic implications for the Ludian and Jinggu earthquakes[J]. Seismology and Geology,36(4):1204–1216 (in Chinese).
梁姗姗,雷建设,徐志国,邹立晔,刘敬光. 2017. 2016年1月21日青海门源MS6.4余震序列重定位和主震震源机制解[J]. 地球物理学报,60(6):2091–2103. doi: 10.6038/cjg20170606 Liang S S,Lei J S,Xu Z G,Zou L Y,Liu J G. 2017. Relocation of the aftershock sequence and focal mechanism solutions of the 21 January 2016 Menyuan,Qinghai,MS6.4 earthquake[J]. Chinese Journal of Geophysics,60(6):2091–2103 (in Chinese).
王椿镛,林中洋,陈学波. 1995. 青海门源—福建宁德地学断面综合地球物理研究[J]. 地球物理学报,38(5):590–598. doi: 10.3321/j.issn:0001-5733.1995.05.005 Wang C Y,Lin Z Y,Chen X B. 1995. Comprehensive study of geophysics on geoscience transect from Menyuan,Qinghai Province,to Ningde,Fujian Province,China[J]. Chinese Journal of Geophysics,38(5):590–598 (in Chinese).
王琼,高原. 2014. 青藏东南缘背景噪声的瑞利波相速度层析成像及强震活动[J]. 中国科学:地球科学,44(11):2440–2450. Wang Q,Gao Y. 2014. Rayleigh wave phase velocity tomography and strong earthquake activity on the southeastern front of the Tibetan Plateau[J]. Science China Earth Sciences,57(10):2532–2542. doi: 10.1007/s11430-014-4908-2
王琼,高原. 2018. 基于背景噪声研究青藏高原东北缘瑞利波相速度和方位各向异性[J]. 地球物理学报,61(7):2760–2775. doi: 10.6038/cjg2018L0509 Wang Q,Gao Y. 2018. Rayleigh wave phase velocity and azimuthal anisotropy in the northeastern margin of the Tibetan Plateau derived from seismic ambient noise[J]. Chinese Journal of Geophysics,61(7):2760–2775 (in Chinese).
王新胜,方剑,许厚泽. 2013. 青藏高原东北缘岩石圈三维密度结构[J]. 地球物理学报,56(11):3770–3778. doi: 10.6038/cjg20131118 Wang X S,Fang J,Xu H Z. 2013. 3D density structure of lithosphere beneath northeastern margin of the Tibetan Plateau[J]. Chinese Journal of Geophysics,56(11):3770–3778 (in Chinese).
吴立辛,杨明芝,赵卫明,傅容珊,朱良保,施行觉. 2011. 利用重力多尺度分解资料反演青藏高原东北缘地壳厚度[J]. 大地测量与地球动力学,31(1):19–23. Wu L X,Yang M Z,Zhao W M,Fu R S,Zhu L B,Shi X J. 2011. Crust thickness inversed from multi-scale decomposition of Bouguer gravity anomalies in northeastern of Qinghai-Tibet Plateau[J]. Journal of Geodesy and Geodynamics,31(1):19–23 (in Chinese).
夏思茹,石磊,李永华,郭良辉. 2021. 青藏高原东北缘地壳及上地幔顶部速度结构研究[J]. 地球物理学报,64(9):3194–3206. doi: 10.6038/cjg2021O0514 Xia S R,Shi L,Li Y H,Guo L H. 2021. Velocity structures of the crust and uppermost mantle beneath the northeastern margin of Tibetan Plateau revealed by double-difference tomography[J]. Chinese Journal of Geophysics,64(9):3194–3206 (in Chinese).
肖卓,高原. 2017. 利用双差成像方法反演青藏高原东北缘及其邻区地壳速度结构[J]. 地球物理学报,60(6):2213–2225. doi: 10.6038/cjg20170615 Xiao Z,Gao Y. 2017. Crustal velocity structure beneath the northeastern Tibetan Plateau and adjacent regions derived from double difference tomography[J]. Chinese Journal of Geophysics,60(6):2213–2225 (in Chinese).
许忠淮. 2001. 东亚地区现今构造应力图的编制[J]. 地震学报,23(5):492–501. doi: 10.3321/j.issn:0253-3782.2001.05.005 Xu Z H. 2001. A present-day tectonic stress map for eastern Asia region[J]. Acta Seismologica Sinica,23(5):492–501 (in Chinese).
袁道阳,张培震,刘百篪,甘卫军,毛凤英,王志才,郑文俊,郭华. 2004. 青藏高原东北缘晚第四纪活动构造的几何图像与构造转换[J]. 地质学报,78(2):270–278. doi: 10.3321/j.issn:0001-5717.2004.02.017 Yuan D Y,Zhang P Z,Liu B C,Gan W J,Mao F Y,Wang Z C,Zheng W J,Guo H. 2004. Geometrical imagery and tectonic transformation of Late Quaternary active tectonics in northeastern margin of Qinghai-Xizang Plateau[J]. Acta Geologica Sinica,78(2):270–278 (in Chinese).
张培震,邓起东,张国民,马瑾,甘卫军,闵伟,毛凤英,王琪. 2003. 中国大陆的强震活动与活动地块[J]. 中国科学:D辑,33(增刊):12–20. Zhang P Z,Deng Q D,Zhang G M,Ma J,Gan W J,Min W,Mao F J,Wang Q. 2003. Strong earthquake activity and active blocks in China[J]. Science in China:Series D,33(Sl):12–20 (in Chinese).
赵凌强,詹艳,孙翔宇,郝明,祝意青,陈小斌,杨皓. 2019. 利用大地电磁技术揭示2016年1月21日青海门源MS6.4地震隐伏地震构造和孕震环境[J]. 地球物理学报,62(6):2008–2100. Zhao L Q,Zhan Y,Sun X Y,Hao M,Zhu Y Q,Chen X B,Yang H. 2019. The hidden seismogenic structure and dynamic environment of the 21 January Menyuan,Qinghai,MS6.4 earthquake derived from magnetotelluric imaging[J]. Chinese Journal of Geophysics,62(6):2008–2100 (in Chinese).
中国地震局地球物理研究所. 2022. 2022年1月8日青海海北州门源县6.9级地震科技支撑简报[EB/OL]. [2022-01-10]. https://www.cea-igp.ac.cn/kydt/278809.html. Institute of Geophysics, China Earthquake Administration. 2022. Science and technology support for the M6.9 earthquake in Menyuan County, Haibei Prefecture, Qinghai Province on January 8, 2022[EB/OL]. [2022-01-10]. https://www.cea-igp.ac.cn/kydt/278809.html (in Chinese).
中国地震局地质研究所. 2022. 2022年1月8日青海门源6.9级地震的一些初步认识[EB/OL]. [2022-01-18]. https://www.eq-igl.ac.cn/zhxw/info/2022/36632.html. Institute of Geology, China Earthquake Administration. 2022. Some preliminary understanding of the Qinghai Menyuan M6.9 earthquake on January 8, 2022[EB/OL]. [2022-01-18]. https://www.eq-igl.ac.cn/zhxw/info/2022/36632.html (in Chinese).
中国地震台网中心. 2022. 1月8日1时45分在青海海北州门源县发生6.9级地震[EB/OL]. [2022-01-08]. https://www.cenc.ac.cn/cenc/dzxx/396391/index.html. China Earthquake Networks Center. 2022. An earthquake with MS6.9 occurred in Menyuan County, Haibei Prefecture, Qinghai Province, at 1:45 on January 8[EB/OL]. [2022-01-08]. https://www.cenc.ac.cn/cenc/dzxx/396391/index.html (in Chinese).
祝意青,李铁明,郝明,梁伟锋,赵云峰,徐云马,郝庆花. 2016. 2016年青海门源MS6.4地震前重力变化[J]. 地球物理学报,59(10):3744–3752. doi: 10.6038/cjg20161019 Zhu Y Q,Li T M,Hao M,Liang W F,Zhao Y F,Xu Y M,Hao Q H. 2016. Gravity changes before the Menyuan,Qinghai MS6.4 earthquake of 2016[J]. Chinese Journal of Geophysics,59(10):3744–3752 (in Chinese).
Fan L P,Li B R,Liao S R,Jiang C,Fang L H. 2022. Precise relocation of the aftershock sequences of the 2022 M6.9 Menyuan earthquake[J]. Earthquake Science,35(3):Q20220008. doi: 10.1016/j.eqs.2022.01.021
Gao R, Cheng X Z, Wu G J. 1996. Lithospheric structure and geodynamic model of the Golmud-Ejin transect in northern Tibet[G]//Himalaya and Tibet: Mountain Roots to Mountain Tops. New York: Geological Society of America: 36–40.
Gaudemer Y,Tapponnier P,Meyer B,Peltzer G,Guo S M,Chen Z T,Dai H,Cifuentes I. 1995. Partitioning of crustal slip between linked,active faults in the eastern Qilian Shan,and evidence for a major seismic gap,the ‘Tianzhu gap’,on the western Haiyuan fault,Gansu (China)[J]. Geophys J Int,120(3):599–645. doi: 10.1111/j.1365-246X.1995.tb01842.x
Jin H L,Gao Y,Su X N,Fu G Y. 2019. Contemporary crustal tectonic movement in the southern Sichuan-Yunnan block based on dense GPS observation data[J]. Earth Planet Phys,3(1):55–63.
Lasserre C,Gaudemer Y,Tapponnier P,Mériaux A S,van der Woerd J,Yuan D Y,Ryerson F J,Finkel R C,Caffee M W. 2002. Fast Late Pleistocene slip rate on the Leng Long Ling segment of the Haiyuan fault,Qinghai,China[J]. J Geophys Res:Solid Earth,107(B11):2276. doi: 10.1029/2000JB000060
Li Y H,Pan J T,Wu Q J,Ding Z F. 2017. Lithospheric structure beneath the northeastern Tibetan Plateau and the western Sino-Korea Craton revealed by Rayleigh wave tomography[J]. Geophys J Int,210(2):570–587. doi: 10.1093/gji/ggx181
Shi Y T,Gao Y,Shen X Z,Liu K H. 2020. Multiscale spatial distribution of crustal seismic anisotropy beneath the northeastern margin of the Tibetan Plateau and tectonic implications of the Haiyuan fault[J]. Tectonophysics,774:228274. doi: 10.1016/j.tecto.2019.228274
Tian X B,Bai Z M,Klemperer S L,Liang X F,Liu Z,Wang X,Yang X S,Wei Y H,Zhu G H. 2021. Crustal-scale wedge tectonics at the narrow boundary between the Tibetan Plateau and Ordos block[J]. Earth Planet Sci Lett,554:116700. doi: 10.1016/j.jpgl.2020.116700
Wang Q,Niu F L,Gao Y,Chen Y T. 2016. Crustal structure and deformation beneath the NE margin of the Tibetan Plateau constrained by teleseismic receiver function data[J]. Geophys J Int,204(1):167–179. doi: 10.1093/gji/ggv420
Wang X C,Li Y H,Ding Z F,Zhu L P,Wang C Y,Bao X W,Wu Y. 2017. Three-dimensional lithospheric S wave velocity model of the NE Tibetan Plateau and western North China Craton[J]. J Geophys Res:Solid Earth,122(8):6703–6720. doi: 10.1002/2017JB014203
Wang Y. 2001. Heat flow pattern and lateral variations of lithosphere strength in China mainland:Constraints on active deformation[J]. Phys Earth Planet Inter,126(3/4):121–146. doi: 10.1016/S0031-9201(01)00251-5
Wu Y,Gao Y. 2019. Gravity pattern in southeast margin of Tibetan Plateau and its implications to tectonics and large earthquakes[J]. Earth Planet Phys,3(5):425–434. doi: 10.26464/epp2019044
Yao H J,van der Hilst R D,de Hoop M V. 2006. Surface-wave array tomography in SE Tibet from ambient seismic noise and two-station analysis:I. Phase velocity maps[J]. Geophys J Int,166(2):732–744. doi: 10.1111/j.1365-246X.2006.03028.x
Yin A,Harrison T M. 2000. Geologic evolution of the Himalayan-Tibetan orogen[J]. Annu Rev Earth Pl Sc,28:211–280. doi: 10.1146/annurev.earth.28.1.211
Zhang P Z,Shen Z,Wang M,Gan W J,Bürgmann R,Molnar P,Wang Q,Niu Z J,Sun J Z,Wu J C,Sun H R,You X Z. 2004. Continuous deformation of the Tibetan Plateau from global positioning system data[J]. Geology,32(9):809–812. doi: 10.1130/G20554.1
Zhao D P,Mishra O P,Sanda R. 2002. Influence of fluids and magma on earthquakes:Seismological evidence[J]. Phys Earth Planet Inter,132(4):249–267. doi: 10.1016/S0031-9201(02)00082-1
Zheng W J,Zhang P Z,He W G,Yuan D Y,Shao Y X,Zheng D W,Ge W P,Min W. 2013. Transformation of displacement between strike-slip and crustal shortening in the northern margin of the Tibetan Plateau:Evidence from decadal GPS measurements and Late Quaternary slip rates on faults[J]. Tectonophysics,584:267–280. doi: 10.1016/j.tecto.2012.01.006