Strong ground motion simulation and intensity distribution estimation for the MS6.9 Menyuan,Qinghai,earthquake on 8 January 2022
-
摘要: 2022年1月8日青海省海北藏族自治州门源回族自治县发生MS6.9地震。门源地震序列的重定位结果认为门源地区还存在一定的应力积累,未来该地区具有发生强震的可能。本文结合震源区地形数据、三维速度结构,根据门源地震震源破裂过程的初步结果,采用曲线网格有限差分方法模拟了门源地震的波场传播过程,得到烈度分布。结果表明:沿平行断层走向方向的地震动衰减明显小于垂直断层走向方向;门源地震的最大烈度为Ⅷ度,位于震源破裂起始点附近区域,理论烈度与野外调查的地震烈度分布基本一致;受强地面运动方向性效应和起伏地表的影响,地震灾害主要沿发震断层的WNW方向和ESE方向集中分布。
-
关键词:
- 门源地震 /
- 曲线网格有限差分方法 /
- 强地面运动模拟 /
- 地震烈度
Abstract: A MS6.9 earthquake occurred at Menyuan County, Haibei Prefecture, Qinghai Province on 8 January 2022. Relocation results of the Menyuan MS6.9 earthquake sequence suggest that there is still a possibility for another strong earthquake in Menyuan area. Based on topography data and three-dimensional velocity structure in the source zone, together with the preliminary result about the source rupture process of Menyuan earthquake, we simulated seismic wave propagation of Menyuan MS6.9 earthquake by curvilinear-grid finite difference method, and obtained seismic intensity distribution accordingly. The simulated results show that the ground motion attenuation along the direction of fault strike is significantly smaller than that along the direction of fault dip. The maximum seismic intensity caused by Menyuan MS6.9 earthquake is about Ⅷ degree, and located in the vicinity of the rupture initial point. Theoretical intensity distribution is roughly consistent with the seismic intensity distribution from field surveys. Affected by the directional effects of strong ground motion and undulated topography, earthquake disasters mainly concentrated in the WNW and ESE directions of the seismic fault. -
张勇2022年1月10日与作者的个人交流张勇2022年1月10日与作者的个人交流
-
图 6 门源MS6.9地震仪器观测的烈度分布(引自中国地震局工程力学研究所强震动观测组,2022)
Figure 6. Instrumental seismic intensity distribution of Menyuan MS6.9 earthquake (after Strong Motion Observation Group,Institute of Engineering Mechanics,China Earthquake Administration,2022)
-
国家市场监督管理总局, 国家标准化管理委员会. 2021. GB/T 17742—2020中国地震烈度表[S]. 北京: 中国标准出版社: 1–11. State Administration for Market Regulatory, Standardization Administration. 2021. GB/T 17742−2020 China Seismic Intensity Scale[S]. Beijing: China Standard Press: 1–11 (in Chinese).
胡朝忠,杨攀新,李智敏,黄帅堂,赵妍,陈丹,熊仁伟,陈庆宇. 2016. 2016年1月21日青海门源6.4级地震的发震机制探讨[J]. 地球物理学报,59(5):1637–1646. doi: 10.6038/cjg20160509 Hu C Z,Yang P X,Li Z M,Huang S T,Zhao Y,Chen D,Xiong R W,Chen Q Y. 2016. Seismogenic mechanism of the 21 January 2016 Menyuan,Qinghai MS6.4 earthquake[J]. Chinese Journal of Geophysics,59(5):1637–1646 (in Chinese).
姜文亮. 2018. 冷龙岭断裂带全新世破裂模式、大震复发特征研究及其区域构造意义[D]. 北京: 中国地震局地质研究所: 1–168. Jiang W L. 2018. Holocene Rupture Pattern, Seismic Recurrence Feature of the Lenglongling Fault Zone and Its Tectonic Implication for the Northeast Tibetan Plateau[D]. Beijing: Institute of Geology, China Earthquake Administration: 1–168 (in Chinese).
颉满斌. 2022. 青海门源6.9级地震现场考察结果发布[EB/OL]. [2022-01-18]. http://www.stdaily.com/index/kejixinwen/202201/8b2a970831014fb4b6e9573276661278.shtml. Jie M B. 2022. Qinghai Menyuan MS6.9 earthquake site inspection results released[EB/OL]. [2022-01-18] .http://www.stdaily.com/index/kejixinwen/202201/8b2a970831014fb4b6e9573276661278.shtml (in Chinese).
李强,江在森,武艳强,赵静,魏文薪,刘晓霞. 2013. 海原—六盘山断裂带现今构造变形特征[J]. 大地测量与地球动力学,33(2):18–22. Li Q,Jiang Z S,Wu Y Q,Zhao J,Wei W X,Liu X X. 2013. Present-day tectonic deformation characteristics of Haiyuan-Liupanshan fault zone[J]. Journal of Geodesy and Geodynamics,33(2):18–22 (in Chinese).
青海日报. 2022. 门源县抗震救灾工作基本结束[N/OL]. [2022-01-13]. https://epaper.tibet3.com/qhrb/html/202201/13/content_80039.html. Qinghai Daily. 2022. Earthquake relief work in Menyuan country is basically completed[N/OL]. [2022-01-13]. https://epaper.tibet3.com/qhrb/html/202201/13/content_80039.html (in Chinese).
青海省地震局. 2022. 青海门源“1·8”6.9级地震发现22公里地表破裂[EB/OL]. [2022-01-08]. https://www.qhdzj.gov.cn/Item/2/20969.aspx. Qinghai Earthquake Agency. 2022. A 22 km surface rupture zone was discovered after “1·8” Qinghai Menyuan MS6.9 earthquake[EB/OL]. [2022-01-08]. https://www.qhdzj.gov.cn/Item/2/20969.aspx (in Chinese).
徐剑侠,张振国,戴文杰,张伟,Akram N,文健,陈晓非. 2015. 2015年4月25日尼泊尔地震波场传播及烈度初步模拟分析[J]. 地球物理学报,58(5):1812–1817. doi: 10.6038/cjg20150531 Xu J X,Zhang Z G,Dai W J,Zhang W,Akram N,Wen J,Chen X F. 2015. Preliminary simulation of seismic wave propagation and the intensity map for the 25 April 2015 Nepal earthquake[J]. Chinese Journal of Geophysics,58(5):1812–1817 (in Chinese).
许英才,郭祥云,冯丽丽. 2022. 2022年1月8日青海门源MS6.9地震序列重定位和震源机制研究[J]. 地震学报,44(2):195–210. doi: 10.11939/jass.20210139 Xu Y C,Guo X Y,Feng L L. 2022. Relocation and focal mechanism solutions of the MS6.9 Menyuan earthquake sequence on January 8,2022 in Qinghai Province[J]. Acta Seismologica Sinica,44(2):195–210 (in Chinese).
央视网. 2022. 受青海门源地震影响兰新高铁列车停运[EB/OL]. [2022-01-08]. http://news.cctv.com/2022/01/08/ARTI3ZvEZmlKHWl62G7sSGqm220108.shtml. CCTV. 2022. Affected by Qinghai Menyuan earthquake, Lanxin high-speed trains are suspended[EB/OL]. [2022-01-08]. http://news.cctv.com/2022/01/08/ARTI3ZvEZmlKHWl62G7sSGqm220108.shtml (in Chinese).
赵宏阳,陈晓非. 2017. 1975年海城MS7.3地震强地面运动模拟[J]. 地球物理学报,60(7):2707–2715. doi: 10.6038/cjg20170717 Zhao H Y,Chen X F. 2017. Simulation of strong ground motion by the 1975 Haicheng MS7.3 earthquake[J]. Chinese Journal of Geophysics,60(7):2707–2715 (in Chinese).
张振国,张伟,孙耀充,朱耿尚,文健,陈晓非. 2014a. 2014年2月12日新疆于田地震强地面运动初步模拟及烈度预测[J]. 地球物理学报,57(2):685–689. Zhang Z G,Zhang W,Sun Y C,Zhu G S,Wen J,Chen X F. 2014a. Preliminary simulation of strong ground motion for Yutian,Xinjiang earthquake of 12 February 2014,and hazard implication[J]. Chinese Journal of Geophysics,57(2):685–689 (in Chinese).
张振国,孙耀充,徐建宽,张伟,陈晓非. 2014b. 2014年8月3日云南鲁甸地震强地面运动初步模拟及烈度预测[J]. 地球物理学报,57(9):3038–3041. Zhang Z G,Sun Y C,Xu J K,Zhang W,Chen X. 2014b. Preliminary simulation of strong ground motion for Ludian,Yunnan earthquake of 3 August 2014,and hazard implication[J]. Chinese Journal of Geophysics,57(9):3038–3041 (in Chinese).
中国地震局. 2022. 中国地震局发布青海门源6.9级地震烈度图[EB/OL]. [2022-01-11].https://www.cea.gov.cn/cea/xwzx/fzjzyw/5646200/index.html. China Earthquake Administration. 2022. China Earthquake Administration released the intensity map of Qinghai Menyuan MS6.9 earthquake[EB/OL]. [2022-01-11]. https://www.cea.gov.cn/cea/xwzx/fzjzyw/5646200/index.html (in Chinese).
中国地震局工程力学研究所强震动观测组.2022.2022年01月08日青海门源6.9级地震仪器烈度分布图[EB/OL]. [2022-01-20]. https://mp.weixin.qq.com/s/IGp1dw7KfFY3PiwWT2WY6A. Strong Motion Observation Group, Institute of Engineering Mechanics, China Earthquake Administration. 2022. Instrument intensity distribution map of the Menyuan, Qinghai MS6.9 earthquake on January 8th, 2022[EB/OL]. [2022-01-20]. https://mp.weixin.qq.com/s/IGp1dw7KfFY3PiwWT2WY6A (in Chinese).
Bassin C,Laske G,Masters G. 2000. The current limits of resolution for surface wave tomography in North America[J]. EOS Trans AGU,81:F897.
Brocher T M. 2005. Empirical relations between elastic wavespeeds and density in the Earth’s crust[J]. Bull Seismol Soc Am,95(6):2081–2092. doi: 10.1785/0120050077
Field E H,Arrowsmith R J,Biasi G P,Bird P,Dawson T E,Felzer K P,Jackson D D,Johnson K M,Jordan T H,Madden C,Michael A J,Milner K R,Page M T,Parsons T,Powers P M,Shaw B E,Thatcher W R,Weldon R J,Zeng Y H. 2014. Uniform California earthquake rupture forecast,version 3 (UCERF3):The time-independent model[J]. Bull Seismol Soc Am,104(3):1122–1180. doi: 10.1785/0120130164
Han S C,Zhang H J,Xin H L,Shen W S,Yao H J. 2022. USTClitho2.0:Updated unified seismic tomography models for continental China lithosphere from joint inversion of body-wave arrival times and surface-wave dispersion data[J]. Seismol Res Lett,93(1):201–215. doi: 10.1785/0220210122
Laske G, Masters G, Ma Z, Pasyanos M E, 2012. CRUST1.0: An Updated Global Model of Earth’s Crust[C]//EGU General Assembly Conference Abstracts. Vienna: EGUGA: 3743.
Zhang W,Chen X F. 2006. Traction image method for irregular free surface boundaries in finite difference seismic wave simulation[J]. Geophys J Int,167(1):337–353. doi: 10.1111/j.1365-246X.2006.03113.x
Zhang W,Shen Y,Chen X F. 2008. Numerical simulation of strong ground motion for the MS8.0 Wenchuan earthquake of 12 May 2008[J]. Science in China:Series D,51(12):1673–1682. doi: 10.1007/s11430-008-0130-4
Zhang W,Zhang Z G,Chen X F. 2012. Three-dimensional elastic wave numerical modelling in the presence of surface topography by a collocated‐grid finite‐difference method on curvilinear grids[J]. Geophys J Int,190(1):358–378. doi: 10.1111/j.1365-246X.2012.05472.x
-
期刊类型引用(8)
1. 张丽琼,高曙德,李娜. 积石山M_S6.2地震前地电场异常特征. 大地测量与地球动力学. 2025(04): 367-372 . 百度学术
2. 周瀚琳,赵玉红,徐恺晖,李国英. 格尔木地磁观测数据与中强地震关系研究. 高原地震. 2024(01): 39-45 . 百度学术
3. 刘海洋,饶文,徐衍刚,艾萨·伊斯马伊力. 2024年1月23日乌什M_S7.1地震前新疆地电优势方位角变化特征分析. 内陆地震. 2024(02): 182-193 . 百度学术
4. 孙召华,李军辉,李君,孙亮亮,张洋,张钧琪. 2015年安徽阜阳4.3级地震前地电场方位角异常分析. 中国地震. 2024(03): 690-699 . 百度学术
5. 郭雨帆,杜晓辉,董磊,汤兰荣,赵爱平,王甘娇. 基于张衡一号卫星监测的2021年青海玛多7.4级地震前电离层效应. 地震. 2023(02): 85-102 . 百度学术
6. 席继楼,赵家骝,高尚华,王晓蕾,李国佑,孟凡博. 长周期地电场变化特征及机理——以都兰地震台为例. 地震地质. 2023(05): 1092-1111 . 百度学术
7. 赵玉红,李霞,冯丽丽,刘磊,张朋涛,卢嘉沁,孙玺皓. 2次门源地震前地电场优势方位角异常特征研究. 地震地磁观测与研究. 2023(S1): 199-202 . 百度学术
8. 格根,张帆,陈立峰,梁沙沙,王磊. 内蒙古乌加河地电场异常特征研究. 地震地磁观测与研究. 2023(S1): 226-228 . 百度学术
其他类型引用(0)