天津塘沽台直流视电阻率下降异常的成因分析

张明东, 刘建波, 张玮, 吴博洋, 廖晓峰

张明东,刘建波,张玮,吴博洋,廖晓峰. 2023. 天津塘沽台直流视电阻率下降异常的成因分析. 地震学报,45(4):671−684. DOI: 10.11939/jass.20220044
引用本文: 张明东,刘建波,张玮,吴博洋,廖晓峰. 2023. 天津塘沽台直流视电阻率下降异常的成因分析. 地震学报,45(4):671−684. DOI: 10.11939/jass.20220044
Zhang M D,Liu J B,Zhang W,Wu B Y,Liao X F. 2023. Cause for abnormal decline of DC apparent resistivity at Tanggu station in Tianjin. Acta Seismologica Sinica45(4):671−684. DOI: 10.11939/jass.20220044
Citation: Zhang M D,Liu J B,Zhang W,Wu B Y,Liao X F. 2023. Cause for abnormal decline of DC apparent resistivity at Tanggu station in Tianjin. Acta Seismologica Sinica45(4):671−684. DOI: 10.11939/jass.20220044

天津塘沽台直流视电阻率下降异常的成因分析

基金项目: 地震科技星火计划攻关项目(XH23003C)和天津市地震局局内科研项目(Zd202304)联合资助
详细信息
    通讯作者:

    张明东,硕士,高级工程师,主要从事电磁学地震预报方面的研究,e-mail:aliyinfionsoojin@sina.com.cn

  • 中图分类号: P319.12

Cause for abnormal decline of DC apparent resistivity at Tanggu station in Tianjin

  • 摘要: 依据塘沽台所在区域的水文环境、地质构造和动力学等特征,讨论了地表储水能力、地下静水位及构造变形等因素对视电阻率的影响和塘沽台直流视电阻率下降异常的成因机制。结果表明,长期构造位移变化与地下静水位下降是视电阻率呈下降趋势的主要原因;短期降水量大且雨季长,加之有利的地表储水能力是造成塘沽台视电阻率破年变的主要原因。虽然对于塘沽视电阻率异常中是否掺有前兆信息尚缺少确凿证据,但本文采取的分析方法仍可为典型的异常形态提供有益的参考。
    Abstract: The decline of DC apparent resistivity is a common abnormal variation in electromagnetic forecast, the reason is the change of underground electrical structure caused by rock stress change. Therefore, it is very important for timely identification and scientific judgment of earthquake precursory anomalies to effectively analyze their genetic properties. The EW direction of the resistivity of Tanggu station showed a downward trend since 2013, and the low value in 2021 was significantly lower than previous years, which was a breaking anomaly in the downward trend. The low range was 0.104 Ω·m, accounting for about 1% of the background value, and the low value time was delayed compared with previous years. Based on the hydrologic environment, geological structure and dynamic characteristics of the area where Tanggu station is located, we discussed the influence and genetic mechanism of surface water storage capacity, underground static water level and tectonic deformation. The results show that the long-term tectonic displacement change and the decline of groundwater static water level are the main reasons for the decline of the resistivity trend, and the large short-term precipitation and long rainy season, together with the favorable surface water storage capacity, are the main reasons for the formation of the break year change pattern. Although there is no conclusive evidence that is precursory information in the apparent resistivity anomaly of Tanggu station, the analytical method adopted in this paper can still provide useful reference for the typical anomaly pattern.
  • 图  9   GNSS基线值在日本MW9.0地震前后的变化

    Figure  9.   Changes of GNSS baseline values before and after the MW9.0 earthquake in Japan

    图  1   区域构造背景与电性结构

    (a) 区域主要断裂、台站位置及2000—2022年M>1.0地震分布图;(b) 观测区视电阻率布极图;(c) NS向与EW向电测深曲线图

    Figure  1.   Regional tectonic background and electrical structure

    (a) Distribution of major faults,station locations and M>1.0 earthquakes during 2000−2022; (b) The electrode layout of apparent resistivity at the observation area ;(c) Electrical sounding curves in NS and EW directions

    图  2   塘沽台视电阻率多年日均值曲线图

    AB为往年数据低值对比辅助线,CDEFG为历年低值时间对比辅助线

    Figure  2.   Curves of multi-year daily mean value for apparent resistivity at Tanggu station

    A and B are contrast auxiliary lines of low-values of previous years,and CDEF, and G are contrast auxiliary lines of low-value time of previous years,respectively

    图  3   塘沽视电阻率夜静时段(1:00—4:00)平均值数据

    虚线为理想的虚拟年变趋势线

    Figure  3.   Apparent resistivity data of Tanggu station at night (1:00—4:00 am). Dashed line is an ideal virtual annual trend line

    图  4   塘沽台NS向和EW向测线附近的水体位置分布图

    长方形与不规则形状表示池塘或水渠,点划线为河流,直线为布极方向线,虚线为金属管线

    Figure  4.   Water locations near the NS and EW survey lines at Tanggu station

    Rectangles and irregular shapes represent ponds or canals,dot dash lines are rivers,straight lines are survey lines,dotted lines are metal pipelines

    图  5   2017—2021年塘沽台降雨量统计图

    黑色矩形为最大降雨月份后降雨量持续影响视电阻率变化的部分;红色竖虚线代表每年最大降雨量月份对应的视电阻率位置;红色横虚线为往年视电阻率低值辅助线

    Figure  5.   Statistical map of rainfall at Tanggu station from 2017 to 2021

    The black box is the part where the rainfall continues to affect the change of apparent resistivity after the maximum rainfall month; the vertical red dotted line represents the position of apparent resistivity corresponding to the month of maximum rainfall of each year;the horizontal red dotted line is the low value auxiliary line of apparent resistivity in previous years

    图  6   2017—2021年7—10月塘沽台降雨量统计图

    线A表示2021年降雨量,线B表示2017—2020年降雨量均值

    Figure  6.   Statistical diagram of rainfall at Tanggu station from July to October during 2017 to 2021

    Line A refers to the rainfall in 2021,line B refers to the mean rainfall during 2017—2020

    图  7   塘沽台EW向视电阻率与静水位对比图

    Figure  7.   Comparison of EW direction apparent resistivity and static water level at Tanggu station

    图  8   2002—2022年塘沽台视电阻率长趋势曲线形态

    Figure  8.   Morphology of long trend curves of apparent resistivity at Tanggu station during 2002−2022

    图  10   塘沽台2018年以来视电阻率EW向数据图像

    黑色曲线为视电阻率EW向数据的多项式拟合曲线;虚线A为多年低点趋势性下降的低值辅助线;虚线B为2021年非拟合低值的实际位置,该点略低于A;虚线C为2019年非拟合低值的实际位置,该点略高于A

    Figure  10.   EW trend data images of apparent resistivity at Tanggu station since 2018

    The black line is the polynomial fitting curve of the EW direction data of the apparent resistivity;the dotted line A is the moving average of multi-year low values trending downward;the dotted line B is the actual location of the unfitted low value in 2021,which is slightly below A;the dotted line C is the actual location of the unfitted low value in 2019,which is slightly above A

    图  11   无人机航拍照片与土方堆积的实地拍摄照片

    航拍图像叠加在百度地图上

    Figure  11.   Aerial photos of UAV and field photos of earthwork accumulation

    Aerial images are overlaid on Baidu Maps

    图  12   1976年唐山MS7.8地震前后塘沽台视电阻率变化

    Figure  12.   Apparent resistivity variation of Tanggu station before and after the Tangshan MS7.8 earthquake in 1976

    图  13   塘沽台视电阻率EW向与地震时间对应关系

    地震bc相距34天可视为一组,地震de相距21天可视为一组,图中字母对应表2中的地震事件

    Figure  13.   Correspondence between EW direction of apparent resistivity at Tanggu station and historical earthquake time

    Earthquakes b and c can be considered as a group of 34 days apart,so as the earthquakes d and e of 21 days apart,letters mean the events listed in Table 2

    表  1   塘沽台降雨量数据统计表

    Table  1   Statistical table of rainfall data at Tanggu station

    月份降雨量/mm
    2017年2018年2019年2020年2017—2020年均值2021年
    1月0.50000.10
    2月000000
    3月4.400.78.13.310
    4月2.031.112.715.915.418.6
    5月15.721.914.857.327.48.5
    6月56.856.218.15.934.330.7
    7月60.7130.1155.798.9111.4298.9
    8月236.4139.358.3176.0152.588.7
    9月013.918.9147.645.1128.3
    10月62.514.14.17.021.986.5
    11月03.31.3308.77.2
    12月001.900.50
    总和439.0409.9286.5546.7420.5677.4
    下载: 导出CSV

    表  2   2002年以来塘沽台120 km范围地震目录

    Table  2   List of earthquakes around Tanggu station with 120 km range since 2002

    地震编号发震日期
    年-月-日
    发震地点M震中距/km走向/°倾角/°滑动角/°震前阶段震源机制解
    A2006-07-04河北文安5.1112.821587−115年变下降段
    B 2020-07-12河北古冶5.1105.66173−180年变下降段
    a 2002-05-19河北丰南4.245.731879−32年变下降段
    b 2010-03-06河北唐山4.299.935445−33高值转折段
    c 2010-04-09河北丰南4.159.732490−27高值转折段
    d 2012-05-28河北唐山4.8100.131476−20年变下降段
    e 2012-06-18天津宝坻4.155.613177−25年变下降段
    f 2016-09-10河北唐山4.292.7152808低值转折段
    g 2018-02-12河北永清4.383.95262−140年变上升段
    h2019-12-05河北丰南4.546.032554−170低值转折段
    注:2008年以后地震目录来源于地震编目系统,2002—2007年地震目录来自天津地震局历史地震目录总结
    下载: 导出CSV
  • 陈峰,马麦宁,安金珍. 2013. 承压介质电阻率变化的方向性与主应力的关系[J]. 地震学报,35(1):84–93.

    Chen F,Ma M N,An J Z. 2013. Relation between directional characteristics of resistivity changes and principal stress[J]. Acta Seismologica Sinica,35(1):84–93 (in Chinese).

    杜学彬. 2010. 在地震预报中的两类视电阻率变化[J]. 中国科学:地球科学,40(10):1321–1330.

    Du X B. 2011. Two types of changes in apparent resistivity in earthquake prediction[J]. Science China Earth Sciences,54(1):145–156. doi: 10.1007/s11430-010-4031-y

    杜学彬,阮爱国,范世宏,郝臻. 2001. 强震近震中区地电阻率变化速率的各向异性[J]. 地震学报,23(3):289–297.

    Du X B,Ruan A G,Fan S H,Hao Z. 2001. Anisotropy of the variation rate of apparent resistivity near the epicentral region of strong earthquakes[J]. Acta Seismologica Sinica,23(3):289–297 (in Chinese).

    杜学彬,李宁,叶青,马占虎,闫睿. 2007. 强地震附近视电阻率各向异性变化的原因[J]. 地球物理学报,50(6):1802–1810.

    Du X B,Li N,Ye Q,Ma Z H,Yan R. 2007. A possible reason for the anisotropic changes in apparent resistivity near the focal region of strong earthquake[J]. Chinese Journal of Geophysics,50(6):1802–1810 (in Chinese).

    杜学彬,孙君嵩,陈军营. 2017. 地震预测中的地电阻率数据处理方法[J]. 地震学报,39(4):531–548.

    Du X B,Sun J S,Chen J Y. 2017. Processing methods for the observation data of georesistivity in earthquake prediction[J]. Acta Seismologica Sinica,39(4):531–548 (in Chinese).

    高战武,徐杰,宋长青,孙建宝. 2000. 华北沧东断裂的构造特征[J]. 地震地质,22(4):395–404.

    Gao Z W,Xu J,Song C Q,Sun J B. 2000. Structural characters of the Cangdong fault in North China[J]. Seismology and Geology,22(4):395–404 (in Chinese).

    何康,程鑫,李军辉,洪德全. 2010. 安徽省数字化地电阻率干扰与短临异常研究[J]. 地震地磁观测与研究,31(4):86–91.

    He K,Cheng X,Li J H,Hong D Q. 2010. Research on the short-term and impending anomalies and interference of digital earth resistivity in Anhui Province[J]. Seismological and Geomagnetic Observation and Research,31(4):86–91 (in Chinese).

    李金铭. 2005. 地电场与电法勘探[M]. 北京: 地质出版社: 137–140.

    Li J M. 2005. Geoelectric Field and Electrical Exploration[M]. Beijing: Geology Press: 137–140 (in Chinese).

    邵永新,任峰,陈宇坤,王志胜. 2020. 沧东断裂第四纪活动性探测结果[J]. 地震工程学报,42(4):927–933.

    Shao Y X,Ren F,Chen Y K,Wang Z S. 2020. Exploration results of Quaternary activities along the Cangdong fault[J]. China Earthquake Engineering Journal,42(4):927–933 (in Chinese).

    沈红会,叶碧文,孙春仙,祝涛. 2020. 地电阻率与水位关系的机理分析[J]. 地震,40(4):183–190.

    Shen H H,Ye B W,Sun C X,Zhu T. 2020. Analysis on the relationship between changes of ground resistivity and water level[J]. Earthquake,40(4):183–190 (in Chinese).

    王同利,崔博闻,叶青,李菊珍,王丽红,童琼. 2020. 九寨沟MS7.0地震地电阻率变化时空演化分析[J]. 地球物理学报,63(6):2345–2356.

    Wang T L,Cui B W,Ye Q,Li J Z,Wang L H,Tong Q. 2020. Temporal-spatial distribution of apparent resistivity before and after the Jiuzhaigou MS7.0 earthquake[J]. Chinese Journal of Geophysics,63(6):2345–2356 (in Chinese).

    解滔,卢军. 2016. 地表固定干扰源影响下地电阻率观测随时间变化特征分析[J]. 地震地质,38(4):922–936.

    Xie T,Lu J. 2016. Apparent resistivity temporal variation characteristics affected by the fixed disturbance source on surface of measuring area[J]. Seismology and Geology,38(4):922–936 (in Chinese).

    解滔,卢军. 2020. 含裂隙介质中的视电阻率各向异性变化[J]. 地球物理学报,63(4):1675–1694. doi: 10.6038/cjg2020M0620

    Xie T,Lu J. 2020. Apparent resistivity anisotropic variations in cracked medium[J]. Chinese Journal of Geophysics,63(4):1675–1694 (in Chinese).

    解滔,于晨,王亚丽,李美,卢军. 2020a. 基于断层虚位错模式讨论2008年汶川MS8.0地震前视电阻率变化[J]. 中国地震,36(3):492–501.

    Xie T,Yu C,Wang Y L,Li M,Lu J. 2020a. Apparent resistivity variations before 2008 Wenchuan MS8.0 earthquake based on fault virtual dislocation model[J]. Earthquake Research in China,36(3):492–501 (in Chinese).

    解滔,王同利,肖武军,胡毅涛,李然,卢军. 2020b. 2020年7月12日唐山MS5.1地震前通州台井下地电阻率变化[J]. 中国地震,36(3):375–382.

    Xie T,Wang T L,Xiao W J,Hu Y T,Li R,Lu J. 2020b. Apparent resistivity variations before Tangshan MS5.1 earthquake on July 12,2020 recorded at Tongzhou station[J]. Earthquake Research in China,36(3):375–382 (in Chinese).

    张国苓,任印国,乔子云,贾立峰,张素欣. 2021. 降雨对阳原地震台地电阻率的影响[J]. 山西地震,(3):22–26.

    Zhang G L,Ren Y G,Qiao Z Y,Jia L F,Zhang S X. 2021. Influence of rainfall on earth resistivity of Yangyuan[J]. Earthquake Research in Shanxi,(3):22–26 (in Chinese).

    张国民, 傅征祥, 桂燮泰. 2001. 地震预报引论[M]. 北京: 科学出版社: 234–238.

    Zhang G M, Fu Z X, Gui X T. 2001. Introduction to Earthquake Prediction[M]. Beijing: Science Press: 234–238 (in Chinese).

    张明东,张文蕾,曹井泉,王建国,谭青,张玮. 2014. 基于Copula理论挖掘地磁Z分量震磁信息[J]. 地震学报,36(5):930–943.

    Zhang M D,Zhang W L,Cao J Q,Wang J G,Tan Q,Zhang W. 2014. Mining for seismomagnetic information of geomagnetic Z component based on Copula theory[J]. Acta Seismologica Sinica,36(5):930–943 (in Chinese).

    张群伟,朱守彪. 2019. 华北地区主要断裂带上的库仑应力变化及地震活动性分析[J]. 地震地质,41(3):649–669. doi: 10.3969/j.issn.0253-4967.2019.03.008

    Zhang Q W,Zhu S B. 2019. The Coulomb stress changes and seismicity on some major faults in North China[J]. Seismology and Geology,41(3):649–669 (in Chinese).

    张文朋,张春丽,高武平,闫成国,王志胜. 2022. 用浅层地震勘探资料研究蓟运河断裂的第四纪活动特征[J]. 地震工程学报,44(1):183–191.

    Zhang W P,Zhang C L,Gao W P,Yan C G,Wang Z S. 2022. Quaternary activity characteristics of the Jiyunhe fault revealed by shallow seismic prospecting data[J]. China Earthquake Engineering Journal,44(1):183–191 (in Chinese).

    赵玉林,钱复业. 1978. 唐山7.8级强震前震中周围形变电阻率的下降异常[J]. 地球物理学报,21(3):181–190.

    Zhao Y L,Qian F Y. 1978. Electrical resistivity anomaly observed in and around the epicentral area prior to the Tangshan earthquake of 1976[J]. Acta Geophysica Sinica,21(3):181–190 (in Chinese).

    赵玉林,卢军,张洪魁,钱卫,钱复业. 2001. 电测量在中国地震预报中的应用[J]. 地震地质,23(2):277–285.

    Zhao Y L,Lu J,Zhang H K,Qian W,Qian F Y. 2001. The application of electrical measurements to earthquake prediction in China[J]. Seismology and Geology,23(2):277–285 (in Chinese).

    Brace W F,Orange A S. 1968. Electrical resistivity changes in saturated rocks during fracture and frictional sliding[J]. J Geophy Res,73(4):1433–1445. doi: 10.1029/JB073i004p01433

    Lu J,Xie T,Li M,Wang Y L,Ren Y X,Gao S D,Wang L W,Zhao J L. 2016. Monitoring shallow resistivity changes prior to the 12 May 2008 M8.0 Wenchuan earthquake on the Longmen Shan tectonic zone,China[J]. Tectonophysics,675:244–257. doi: 10.1016/j.tecto.2016.03.006

    Yamazaki Y. 1965. Electrical conductivity of strained rocks,the first paper,laboratory experiments on sedimentary rock[J]. Bull Earthq Res Inst,43(4):783–802.

图(13)  /  表(2)
计量
  • 文章访问数:  242
  • HTML全文浏览量:  79
  • PDF下载量:  72
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-01
  • 修回日期:  2022-07-15
  • 网络出版日期:  2023-06-29
  • 发布日期:  2023-07-14

目录

    /

    返回文章
    返回