关于1920年海原大地震震级高估的讨论

刘静, 徐晶, 偶奇, 韩龙飞, 王子君, 邵志刚, 张培震, 姚文倩, 王鹏

刘静,徐晶,偶奇,韩龙飞,王子君,邵志刚,张培震,姚文倩,王鹏. 2023. 关于1920年海原大地震震级高估的讨论. 地震学报,45(4):579−596. DOI: 10.11939/jass.20220051
引用本文: 刘静,徐晶,偶奇,韩龙飞,王子君,邵志刚,张培震,姚文倩,王鹏. 2023. 关于1920年海原大地震震级高估的讨论. 地震学报,45(4):579−596. DOI: 10.11939/jass.20220051
Liu J,Xu J,Ou Q,Han L F,Wang Z J,Shao Z G,Zhang P Z,Yao W Q,Wang P. 2023. Discussion on the magnitude overestimation of the 1920 Haiyuan earthquake. Acta Seismologica Sinica45(4):579−596. DOI: 10.11939/jass.20220051
Citation: Liu J,Xu J,Ou Q,Han L F,Wang Z J,Shao Z G,Zhang P Z,Yao W Q,Wang P. 2023. Discussion on the magnitude overestimation of the 1920 Haiyuan earthquake. Acta Seismologica Sinica45(4):579−596. DOI: 10.11939/jass.20220051

关于1920年海原大地震震级高估的讨论

基金项目: 国家重点研发计划项目(2021YFC3000605-04)和国家自然科学基金(42202232,U1839203,42030305,42104061)共同资助
详细信息
    通讯作者:

    刘静,博士,教授,主要从事强震与断层活动性、构造地貌等方面的研究,e-mail:liu_zeng@tju.edu.cn

  • 中图分类号: P315.32

Discussion on the overestimated magnitude of the 1920 Haiyuan earthquake

  • 摘要: 1920年海原大地震作为史料记载以来中国大陆震级最高、伤亡最多的极具破坏性的地震之一,开启了我国用现代地震学方法研究大地震的新篇章,在我国地震研究史上具有里程碑的意义。最新研究结果表明,1920年海原大地震的矩震级为MW(7.9±0.2),与文献和大众广泛接受的M8${\raise0.5ex\hbox{$\scriptstyle 1$}\kern-0.1em/\kern-0.15em\lower0.25ex\hbox{$\scriptstyle 2$}} $的数值相差较大。本文通过对震级标度及其演化历史的总结和梳理,阐述了仪器记录早期阶段基于地震波波形振幅和频率的震级标定存在系统偏差的问题,这与仪器限制、台站稀疏、标定不统一等因素有关,也使得1920年海原大地震和同时期世界上其它一些重要大地震的震级不同程度被高估。在各种震级标度中,矩震级MW与地震破裂面积和位移等物理参数关联,是地震震级的最佳标定方法。震级作为表述地震大小和能量的重要参数,被广泛地用于评估断层未来的地震潜势;震级的偏差对地震活动时空分布样式的研究会产生重要影响,并造成基于历史地震资料的地震危险性评价和灾害评估等产品的可信度降低。因此,本文倡导对历史地震震级进行检验和修订,并建议1920年海原大地震的震级采用矩震级MW(7.9±0.2)表示,修正后的1920年海原大地震的震级与2008年汶川地震(MW7.9,MS8.0)和2001年昆仑山大地震(MW7.8,MS8.1)相当。
    Abstract: The great 1920 Haiyuan earthquake, resulting in tremendous casualties, ranks as one of the largest and most devastating earthquakes in China. This significant event marks the start of investigating earthquakes through modern scientific approaches in China. Recent studies show that the moment magnitude of the 1920 Haiyuan earthquake is MW(7.9±0.2), prominently smaller than the widely known and often cited magnitude M8${\raise0.5ex\hbox{$\scriptstyle 1$}\kern-0.1em/\kern-0.15em\lower0.25ex\hbox{$\scriptstyle 2$}} $. This paper reviews the re-calibration and conversion of different types of magnitude in the early developing phase of seismometers and analogue seismographs. Similar to the 1920 Haiyuan earthquake, the magnitude of many large shallow earthquakes that occurred in this period are systematically overestimated due to factors such as developing technology, sparse instrumentation and data, and diverse calibration functions. The moment magnitude, linked to physical parameters of earthquake rupture, is the best magnitude scale. For magnitude is the most commonly used parameter in describing an earthquake’s size and energy and is an essential factor in seismic hazard assessment, bias and errors in magnitude conversion have significant consequences in understanding the spatio-temporal pattern of historical seismicity and the reliability of various products of seismic potential and hazard evaluation. We thus advocate citing revised moment magnitude MW(7.9±0.2) for the 1920 Haiyuan earthquake in future studies and re-evaluating the magnitude of historical earthquakes in general. With a revised magnitude, the 1920 Haiyuan earthquake is similar in size to the 2008 Wenchuan earthquake (MW7.9, MS8.0) and the 2001 Kunlun earthquake (MW7.8, MS8.1).
  • 北京时间2022年1月8日1时45分,青海省海北藏族自治州门源县发生了一次强烈地震。据中国地震台网中心(2022a)测定,该次地震的震级为MS6.9,震中位于(37.77°E,101.26°N),震源深度约为10 km。据美国地质调查局(USGS,2022)测定,此次地震震级为MW6.6,震中位于(37.828°N,101.290°)E,震源深度约为13 km,发震断层走向为N104°E,震源机制解节面 Ⅰ 倾角75°,滑动角13°,节面 Ⅱ 倾角88°,滑动角15°,显示为WNW向的高角度略带逆冲分量的左旋走滑错动事件。此次地震发生在祁连山中段的冷龙岭断裂西段与托莱山断裂的构造转换部位,是冷龙岭活动断裂带上继1986年门源MS6.4地震(徐纪人等,1986兰州地震研究所、青海省地震局联合考察队,1987)、2016年门源MS6.4地震(胡朝忠等,2016郭鹏等,2017姜文亮等,2017)之后发生的又一次破坏性地震。截至2022年8月底,共记录到MS≥3.0余震28次,其中MS5.0—5.9余震2次,MS4.0—4.9余震6次,MS3.0—3.9余震20次(中国地震台网中心,2022a),最大余震为2022年1月12日18时20分发生的MS5.2地震。

    此次门源地震发生后,我们第一时间前往震区进行应急科学考察,后又于2022年6月进行现场补充调查。综合野外调查发现,此次地震在地表形成了一条北侧的主破裂带及一条南西侧的次级破裂带,其中主破裂带长约22 km,次级破裂带长约9 km,两者以左旋左阶区相隔(袁道阳等,2023)。野外考察表明本次地震形成了类型丰富、形变特征典型的地表破裂现象,如水平位错、挤压鼓包、挤压脊、断层陡坎、张裂隙、拉分阶区等,为深入认识和理解此次地震事件的破裂性质和震害特征提供了重要参考。

    前人针对此次门源地震的地表破裂事件,已经根据应急考察资料归纳总结并发表了部分研究成果,例如:李智敏等(2022)结合地表调查和合成孔径雷达干涉测量(interferometric synthetic aperture radar,缩写为InSAR)的反演结果得出,此次地震的破裂带分布于冷龙岭断裂西段及托莱山断裂东段,总长度超过22 km,最大水平位错约2.41 m;潘家伟等(2022)根据实地调查获得的地震破裂带总长约27 km,南北两条破裂带之间的阶距约为3 km,最大水平位错约为3.7 m,并通过对其震级、破裂带规模和变形强度的综合分析认为,此次地震具有较浅的震源深度;袁道阳等(2023)根据野外调查和无人机航拍得出,此次地震形成的北侧破裂带的长度约为21 km,南侧破裂带的长度约为9 km,总长度为31 km,两条破裂带之间呈左阶斜列,最小阶距约为1.0 km,形成的最大位错约为(2.6±0.3) m;韩帅等(2022)则认为此次地震的最大位移约为(3±0.2) m,且在形成了南北累计长约22 km的主破裂带外,在北侧破裂带中东段的旁侧还发育了一条长约7.5 km、以右旋正断为主的次级破裂带;薛善余等(2022)认为本次破裂带总长约26 km,于地表破裂最明显的道沟—硫磺沟一带形成了最为显著的震害现象,指示了宏观震中的大致位置。这些研究大多侧重于沿破裂带分布及其位错特征等的调查结果论述,因时间紧加之冬季冰雪覆盖有些地段难以到达等原因,目前对破裂带的完整空间展布和两条破裂带间最小阶距的认识尚存一定差异。此外,前人对此次地震中不同类型地震破裂现象的归类总结及其形成机制等的讨论明显不足。鉴于此,本文拟在已有研究基础上,归纳总结此次地震破裂带不同类型的典型断错地貌特征及其成因机制,并对地震震害类型及相应破坏特征等进行分析探讨,为跨活动断裂及其邻区的工程建设和抗震设防提供参考。

    受青藏地块向北东方向的挤压扩展作用影响,青藏高原东北部的祁连山地区发育了一系列逆走滑活动断裂带和逆断裂褶皱带,如祁连山北缘断裂带、疏勒河断裂带、疏勒南山断裂带等,为地震活动的高发地区(张培震,1999邓起东等,2002)。本次门源MS6.9地震震中所处的祁连山中段更是发育有多条大型活动断裂带,如祁连—海原断裂带、肃南—祁连断裂和古浪断裂等,其中祁连—海原断裂带为横跨祁连山内部、以左旋走滑为主的大型地块边界断裂,自西向东由哈拉湖断裂、托莱山断裂、冷龙岭断裂、金强河断裂、毛毛山断裂、老虎山断裂、狭义海原断裂和六盘山断裂等组成(图1)(Gaudemer et al,1995Lasserre et al,2002袁道阳等,2004郑文俊等,2009Zheng et al,2013Liu et al,2022)。二十世纪以来,沿该大型边界断裂带发生了多次大地震,如1920年海原M8½地震、1927年古浪M8地震、1990年景泰MS6.2地震、1986年门源MS6.4地震和2016年门源MS6.4地震等(郭增建等,1976兰州地震研究所、青海省地震局联合考察队,1987侯珍清,才树骅,1990侯康明,1998胡朝忠等,2016郭鹏等,2017)。此次门源MS6.9地震则发生在祁连—海原断裂带中段的冷龙岭断裂上(李智敏等,2022潘家伟等,2022袁道阳等,2023)。

    图  1  祁连山中段活动构造分布及2022年门源MS6.9地震位置图
    断层数据修改自邓起东(2007)和徐锡伟等(2016),历史地震数据源自国家地震科学数据中心(2022),现代地震数据源自中国地震局震害防御司(1999)和中国地震台网中心(2022b),DEM数据源自美国地质调查局(USGS,2000
    Figure  1.  Active structures in central Qilian mountains and location of 2022 MS6.9 Menyuan earthquake
    Fault data are modified from Deng (2007) and Xu et al (2016),the historical earthquake data is from National Earthquake Data Center (2022),the modern earthquake data is from Earthquake Disaster Prevention Department of China Earthquake Administration (1999) and China Earthquake Networks Center (2022b). DEM data is from US Geological Survey (USGS,2000

    冷龙岭断裂东起天祝县双龙煤矿,过红腰岘、闸渠河、他里花沟、老虎沟、岗石尕等地,向西延伸至硫磺沟,总长约120 km,晚第四纪以来以左旋走滑为主兼具倾滑分量,全新世以来走滑速率为4—7 mm/a (何文贵等,2010郭鹏等,2017),其东段与古浪断裂(也称为天桥沟—黄羊川断裂)、金强河断裂相连,西段过冷龙岭后则分为活动性质不同的三条断裂:托莱山断裂、托莱山北缘断裂和肃南—祁连断裂。已有研究表明,东侧的古浪断裂和金强河断裂为全新世以来以左旋走滑为主的活动断裂带(Gaudemer et al,1995袁道阳等,1998郑文俊等,2004Zhang et al,2019Shao et al,2021),而西侧的三条断裂研究程度较低,除托莱山断裂晚第四纪活动性有部分研究(Yuan et al,2008李强等,2013)外,对肃南—祁连断裂活动性质的研究多集中在活动性较强的中段(郭敬信等,1990刘建生等,1994),而对于托莱山北缘断裂只有近年来关于祁连段阶地构造变形特征的研究(Hu et al,2021)。此次地震发生在冷龙岭断裂与托莱山断裂的构造转换处,是该区域深部构造活动及应力调整释放的结果,也是近年来发生在冷龙岭断裂附近震级最高、地表破裂最长的地震事件。

    实地调查发现,此次地震在地表形成了位于冷龙岭断裂带西段的北侧主破裂带(F1)和位于托莱山断裂东端的南西侧次级破裂带(F2),其间以左旋左阶区分隔开(图2)。其中,北侧主破裂带整体呈北西西向,东起于冷龙岭主峰附近,向西过硫磺沟南侧边坡,穿道沟后延伸至下大圈沟止,长度约为22 km。以硫磺沟公路为界,主破裂带大致可分为东段硫磺沟段F1-1 (其北侧还发育了一条与之斜交的次级分支破裂F1-3)和中段硫磺沟—下大圈沟段F1-2,整体呈较连续的线性分布,主破裂上的次级破裂则以小型左旋左阶拉张区和左旋右阶挤压区相连,地表表现为张性裂缝、拉分阶区、挤压鼓包、标志物左旋位错、断层陡坎等典型断错地貌特征,向主破裂带两端延伸位错现象逐渐减少,变为发散状的地裂缝。南西侧次级破裂带则为主破裂触发而形成的一条次级牵引破裂带(F2,南西段),呈近东西向展布,东起于道沟东侧的山体半坡处,向西延伸至大西沟西侧垭口,总长度约为9 km,其中:大西沟至狮子口以西一段见张性裂缝、挤压脊、挤压鼓包、纹沟及砂石路左旋位错、阶区右旋位错等地表破裂现象,长度约为5.3 km (F2-1,大西沟段);自狮子口向东至道沟处,则主要呈现为沿托莱山断裂发育的密集地裂缝带,长度约3.7 km (F2-2,狮子口段),宽度可达300400 m。假如严格按照以存在地表位错作为破裂带判定标志的规范,其与北侧主破裂带(F1)之间的最小阶距达3 km;但是若认为密集地震裂缝带也属于地表破裂带的另一种表现形式,则与主破裂带最小阶距仅约1 km,本文倾向于后者。此外,针对上述多种典型地表破裂现象进行了分类总结和成因机制分析,并归纳于下.

    图  2  2022年门源MS6.9地震破裂带展布图
    绿点代表后文介绍的几种破裂带典型几何结构,黄点代表水平位错地貌,白点代表垂直位错地貌,橙点代表挤压脊、鼓包,蓝点代表张性裂缝,青点代表典型震害,黑点代表远端地表效应。F1-1:主破裂带硫磺沟段;F1-2:主破裂带硫磺沟—下大圈沟段;F1-3:硫磺沟次级破裂带;F2-1:南西侧次级破裂带大西沟段; F2-2:南西侧次级破裂带狮子口段,下同
    Figure  2.  Distribution characteristics of the 2022 MS6.9 Menyuan earthquake rupture zone
    The green dots represent several typical geometric structures described later,the yellow dots represent the horizontal dislocations,the white dots represent the vertical dislocations,the orange dots represent the compressed ridges and bulges,the blue dots represent the tensional cracks,the cyan dots represent the typical earthquake damage,the black dots represent the remote surface effect。F1-1:Liuhuanggou section of the main rupture zone;F1-2:Liuhuanggou-Xiadaquangou section of the main rupture zone;F1-3:Liuhuanggou secondary rupture zone;F2-1:Daxigou section of the southwest secondary rupture zone;F2-3:Shizikou section of the southwest secondary rupture zone,the same below

    此次门源MS6.9地震形成了连续性好、规模壮观的地表破裂现象,构成了不同类型的几何细结构,主要包括雁列状破裂、左旋左阶区、左旋右阶区和树枝状、网状破裂等,这些结构具有极为丰富的破裂组合特征。已有研究表明,走滑型地震形成的次级破裂的成因机制大多符合里德尔(Riedel)剪切(R剪切)理论,近年来已在不同地震破裂事件研究中得到验证,如2010年玉树MS7.1地震(周春景等,2014)、2014年新疆于田MS7.3地震(Li et al,2016)、2021年玛多MS7.4地震(Ren et al,2021)等,而此次地震观测到的多种结构同样符合里德尔剪切破裂的特征。

    1) 雁列状破裂。本次门源地震在硫磺沟至道沟段F1-2可见与主破裂走向斜交的多条次级破裂呈雁列状分布(图3a),主破裂为宽10—30 cm的张裂隙,而其间的连接部位则形成小的挤压鼓包等。雁列状次级破裂总体走向约65°—80°,与主破裂整体走向290°之间呈30°—45°的夹角,总体表现为R剪切特征,为断层两盘之间发生羽状破裂的结果。

    图  3  破裂带典型区域无人机影像(左)与几何结构及成因机制素描图(右)
    R:里德尔剪切破裂;R′:共轭里德尔剪切破裂;T:张性破裂;Y:平行主位移方向的剪切破裂;P:次生压剪性破裂。(a) 雁列状破裂区;(b) 左旋左阶区,以左阶拉张为主,相邻左阶区间连接部位为挤压区;(c) 左旋右阶区,以右阶挤压为主;(d) 树枝状、网状分叉区,端部以分叉及网格状交错裂隙为主
    Figure  3.  UAV images (left panels),geometric structures and genetic mechanism sketches (right panels) of typical areas of the earthquake rupture zone
    R:Riedel shear fault;R′:Conjugate Riedel shear fault;T:Tensional fault;Y:Shear fault parallel to the principal displacement direction;P:Secondary compressed shear fault. (a) Echelon rupture;(b) Sinistral extensional step-overs dominated by stretching,where the connecting parts are compressed regions;(c) Sinistral compressed step-overs dominated by extruding;(d) The dendritic and netlike forked areas. The end member is dominated by bifurcation and meshed crisscrossed cracks

    2) 左旋左阶和左旋右阶区。在主破裂带内部的不同次级破裂之间,随局部力学性质的变化而发育连续的左旋左阶、左旋右阶等不连续阶区构造,一般阶距约20—100 m。随阶区性质的差异,左旋左阶区内发育斜交于主破裂带的张性裂隙(图3b),单条裂隙宽约10—40 cm (最大可达1 m),走向约50°—70°,与主破裂带呈T剪切特征排列,而阶区之间则以走向约310°—320°的挤压脊向前延伸,构成挤压脊与拉张裂隙相间排列的复杂几何图像。与此相反,在左旋右阶区内部发育近南北向的次级挤压脊(图3c),两侧伴有与之走向近垂直的次级牵引破裂,表现为与主破裂带近平行的Y剪切特征,而阶区之间则以北北西走向的挤压脊相连。

    3) 树枝状和网状破裂。与上述较规则的地表破裂不同,在一些构造复杂部位或断塞塘等地势低洼的场地,还形成了较为密集的树枝状或网状等破裂现象,如在靠近硫磺沟公路的山体半坡(图3d),可见细小的裂缝沿地震破裂带两侧发育,形成单条宽约2—10 cm的密集网状张性裂隙,向外无序分叉继而形成树枝状或格网状裂隙,向远端逐渐尖灭,破裂带宽度可达100 m。上述不同类型几何结构交替发育,形成多种组合的次级裂隙。

    本次地震地表破裂的左旋位错标志点非常丰富,野外考察可见动物脚印、冲沟河床、山间小路、冰面、围栏、公路路基和车辙等多种典型标志物被左旋错断的现象。在野外皮尺测量的基础上,结合精度优于1.5 cm的无人机低空正射影像对不同位错地貌进行多次测量及最终校对,排除视位移影响后,获取了沿这条破裂带较为精确的位错值(图4)。地震破裂带总体趋势为:中段F1-2的位错量最大,达(2.6±0.3) m (袁道阳等,2023),向两端延伸逐渐减小;南西侧次级破裂带F2的水平位错值最大约(1.0±0.1) m,向西很快终止,而向东过羊肠子沟形成密集的裂缝带。

    图  4  沿2022年门源MS6.9地震地表破裂带的水平位错空间分布特征(据袁道阳等,2023修改)
    Figure  4.  Distribution characteristics of horizontal dislocations along the surface rupture zone of the 2022 MS6.9 Menyuan earthquake (modified from Yuan et al,2023

    典型水平位错包括:① 围栏位错。在F1-2硫磺沟大拐弯至道沟间的高台地处,地震破裂造成近南北走向的五道围栏左旋位错,位错值分别为(2.41±0.05) m,(2.45±0.06) m (图5a),(2.60±0.3) m,(2.32±0.05) m,(2.25±0.03) m,其中最大位错值(2.60±0.3) m是在该地震破裂带上测得的最大位移量(袁道阳等,2023);② 路基及车辙位错。在这次地震中,形成了比较典型的砂土路和车辙左旋断错现象,因其边界线清晰而且延伸较长,结合无人机影像测量可以获得较准确的位错值,如在道沟内可见车辙印被清晰左旋错断(1.14±0.05) m (图5b);③ 动物印痕位错。由于震区位于祁连山内部高山牧区,冬季休牧期狼、熊等野生动物在雪后行走留下的印痕(经当地牧民鉴别确认)断错非常明显,如在中段F1-2道沟以西山坡上可见被明显错断的动物脚印,错位值为(1.20±0.10) m (图5c);④ 冰沟位错。本次地震还造成冬季高寒地区冰沟和河床左旋断错等特殊地貌标志,如道沟靠近下大圈沟段F1-2与主破裂带走向斜交的次级破裂上,可见冲沟冰面被斜向左旋断错(0.80±0.03) m (图5d)。

    图  5  多种类型地貌标志物的左旋位错
    黄色箭头为破裂带两盘水平相对运动方向;红色箭头为破裂带宏观展布方向(a) 围栏;(b) 车辙印;(c) 狼脚印;(d) 冲沟冰面
    Figure  5.  Left-lateral offsets of various types of geomorphic markers
    The yellow arrows represent the horizontal relative motion direction of both sides,and the red arrows represent the macroscopic direction spreading of the rupture zone。 (a) Fences;(b) Truck trace;(c) Wolf footprints;(d) Gully ice

    1) 逆冲型地震陡坎。本次地震地表破裂除了以左旋走滑运动为主之外,还兼具逆冲分量,因此沿地震地表破裂带广泛发育有单条或多条组合的具逆冲性质的地震断层陡坎,且由断层南盘逆冲于北盘之上。例如,在东段F1-1棵树沟对岸的一大冲沟河床在地震作用下形成近垂直的逆冲地震陡坎(图6a),高度约为(0.70±0.10) m;而在中段F1-2,此次地震新形成的逆冲陡坎高度多为0.2—0.5 m,另有部分地震陡坎叠加在早期断层陡坎(图6b)之上,新形成的陡坎高约(2.0±0.2) m,指示了该区断裂多期次的构造活动现象。

    图  6  2022年门源MS6.9地震破裂形成的各类垂直陡坎及其断错类型(左下角小图)
    (a) 近垂直逆冲陡坎;(b) 复合型逆冲陡坎;(c) 拉张型正断陡坎;(d) 近垂直正断陡坎
    Figure  6.  Various types of vertical scarps resulted from the 2022 MS6.9 Menyuan earthquake and their disloaction types (bottom-left insets)
    (a) Near-vertical thrust scarp;(b) Compound thrust scarp;(c) Tensional normal scarp;(d) Near-vertical normal scarp

    2) 正断型地震陡坎。本次地震中,局部地段于破裂带内部的次级构造转换部位形成具有拉张性质的正断陡坎。例如在F1-2上大圈沟—下大圈沟段,新形成的正断陡坎走向与主破裂带斜交,形成高差不一、边缘清晰陡直的线性边界(图6c),与逆冲地震陡坎不同,正断陡坎两侧地层在拉张作用下,形成了有垂直位错分量的张裂缝,宽约0.2—0.4 m。此外,于南西侧次级破裂带F2-1拉分阶区内则见部分正断陡坎两盘近垂直错断(图6d),高0.15—0.2 m,斜向汇入宏观破裂带。

    沿地震地表破裂带考察,各段多见广泛发育的挤压脊及地震鼓包等典型破裂现象,主要发育在左旋右阶区或沿地震断裂局部挤压环境下的走滑挤压作用一侧,其地表表现形式主要有挤压脊、帐篷式挤压鼓包等,一般高约0.5—2.5 m。例如在主破裂带中段F1-2,地震断裂的挤压逆冲分量使得地震破裂带多处拱起,形成长条状的挤压脊或帐篷式的挤压鼓包,其形成原因除与地震作用下的强烈垂直震动有关之外,也与高寒山区冬季地表冻结作用易于发生脆性破裂有关。在中段F1-2靠近道沟处,主破裂带逆冲分量使得高原冻土顺着主破裂带走向形成宽约4—5 m、长约数十m的地表隆起变形带(图7a);而在中段F1-2靠近上大圈沟处,则见地面冻土在强烈扰动下破裂翘起,形成帐篷式的对顶鼓包(图7b),高约1.8 m。与主破裂带相比,南西侧次级破裂带F2-1大西沟一带形成的挤压脊一般高约0.3—0.8 m,鼓包高约0.2—0.5 m,而狮子口以东破裂现象较为微弱,主要以密集发育的地裂缝为主,挤压脊及鼓包不明显。

    图  7  2022年门源MS6.9地震形成的挤压脊(a)和鼓包(b)
    黄色箭头为破裂带两盘水平相对运动方向,黑色箭头为受力方向
    Figure  7.  Compressed ridges (a) and bulges (b) caused by the 2022 MS6.9 Menyuan earthquake
    The yellow arrows represent the horizontal relative motion direction on both sides of the rupture zone,and the black arrows represent the directions of force

    本次地震破裂过程中还形成了不同成因、类型多样的张性裂缝。顺北侧主破裂带可见纯张性及张剪性裂缝,而于破裂带各次级段之间的左旋左阶区内可见与主破裂带走向斜交的张剪性及束状拉张裂隙,不同类型的张性裂缝在走向和宽度上往往有较大差异。例如:在主破裂带中段F1-2靠近道沟处,主破裂带两侧冻土在张应力作用下形成不规则拉张裂缝(图8a),最宽处约1 m,错动的冻土及上覆积雪层边界平整,与地面近乎垂直;在主破裂带中段F1-2上大圈沟—硫磺沟大拐弯中间错断的多组围栏处,则可见主破裂带在牵引作用下形成的数条张剪裂隙呈次级雁列状,与主破裂带总体走向斜交(图8b),走向约60°—70°,宽多为0.3—0.8 m,与南侧发育的贯通数条雁列状裂隙尾端的追踪式裂缝共同构成主破裂带的一部分;在主破裂带中段F1-2多组断错围栏以西处,可见主破裂带不同段间的拉分区内斜向发育多条近平行的张性或张剪性裂缝(图8c),走向约60°—65°,宽约0.1—0.6 m,部分伴有走滑分量。此外,与地震断层走向近平行的张裂隙不同,在拉分区内伸展受力区域与主破裂带的交会处,往往也会形成数条相互会聚的张性破裂,如在道沟—硫磺沟段的西侧(图8d),斜穿阶区中央的数条裂隙整体呈束状,由主破裂带向阶区内发散,走向由45°向75°逐渐过渡。

    图  8  2022年门源MS6.9地震破裂形成的各类裂缝和拉张阶区
    黄色箭头为破裂带两盘水平相对运动方向;红色箭头为破裂带的宏观展布方向。(a) 主破裂张裂缝;(b) 雁列状张剪裂缝及追踪式裂缝;(c) 拉分区张剪裂缝;(d) 南北两侧为挤压破裂,其间为左旋左阶阶区内束状拉张裂缝
    Figure  8.  Various types of cracks and extensional step-overs formed by the rupture of 2022 MS6.9 Menyuan earthquake
    The yellow arrows represent the horizontal relative motion direction of both sides of the rupture zone,and the red arrows mark the macroscopic distribution direction of the rupture zone。(a) Tensional cracks on the main rupture zone;(b) Echelon tensional shear cracks and tracing cracks;(c) Tensional shear cracks in the extensional step-overs;(d) Compressed ruptures on the north and south sides,between of which are bundles of tensional cracks in sinistral extensional step-overs

    根据中国地震局(2022)发布的门源MS6.9地震烈度图,此次地震极震区的最大烈度高达Ⅸ度。由于该地震发生在无人区,无人员伤亡,仅造成部分公路路基、大桥、铁路隧道破坏,兰新高铁因此而停运。而冷龙岭地区由于海拔较高、气候寒冷,地表主要被冻土、冰雪等覆盖,因此除沿冷龙岭断裂和托莱山断裂形成地表破裂带之外,未造成明显滑坡等灾害,仅见部分边坡有滚石或局部失稳垮塌现象。

    在地震地表破裂带穿过的硫磺沟公路处,可见公路西侧的山体边坡因地震作用发生垮塌(图9a),而路东侧顺地震断裂带延伸方向的硫磺沟河岸边坡发育数条宽约0.3—1 m不等的张性裂缝,并使公路形成明显的路基下陷。由于此处位于硫磺沟河岸二级阶地之上,公路路基由阶地砾石层及上方的细粉砂及冻结的土层组成,因此在地震的强震动作用下,硫磺沟河岸边坡失稳并顺河床发生滑塌作用(图9b)。

    图  9  2022年门源MS6.9地震造成的各类地质灾害及工程破坏现象
    红色箭头为破裂带展布,黑色箭头为桥面同震水平运动幅度
    Figure  9.  Various geological disasters and engineering damages caused by the 2022 MS6.9 Menyuan earthquake
    The red arrows represent the distribution of the rupture zone,and the black arrows represent the coseismic horizontal motion amplitude of the bridge deck

    本次地震地表破裂带穿过的多条公路均遭到了不同程度破坏。其中,北侧主破裂带造成的公路破损较为严重,如在硫磺沟处,破裂带穿过的硫磺沟公路路基受地震影响而发生左旋位错及挤压鼓起,而在道沟内的公路处,则见到路基受多方向应力作用发生脆性破裂而断为数段(图9c)。但在南西侧的次级破裂段F2,地震破裂带穿过的公路处往往仅见较窄的地裂缝而无明显位错现象,这反映了次级破裂带上较弱的地表变形效应。

    本次地震还造成了兰新高铁桥梁及隧道内部严重变形。经现场考察发现,桥墩上方的桥梁不同段落之间发生不同步错动及掀斜变形(图9d),致使桥面上的铁轨呈现扭曲变形。我们经实地调查分析,此处铁轨表现出的变形特征主要是在强烈地震动的作用下,位于破裂带北盘的桥梁路基及桥面各段不同步震动作用的结果,而铁轨的位错则是在多组桥墩不同振幅运动及掀斜过程中表现出的假象。鉴于地震作用对穿过断层的桥梁、隧道等重大工程造成的直接断错和基础设施的损毁,工程抗断及近断层强地面运动的抗震设防问题仍需进一步深入研究。

    在地震地表破裂带外围4 km范围内,零星可见此次地震强震动作用形成的次生冰面鼓包及地表裂缝。例如在G227国道旁边尚未投入使用的桥梁处,见到主破裂带顺先存断裂向西延伸的远端桥墩顶部发育多条次级裂隙(图10a,b),对桥梁安全造成隐患,而地表可见砂石路上新形成的较细的地表裂隙。这说明虽然主破裂带已在下大圈沟处逐渐尖灭,但是远端仍受地震强震动作用的影响。

    图  10  2022年门源MS6.9地震破裂带远端的地表效应
    (a) 地表裂隙;(b) 桥梁裂隙;(c) 冰面鼓包
    Figure  10.  Remote surface effects of the rupture zone of the 2022 MS6.9 Menyuan earthquake (a) Surface cracks;(b) Bridge cracks;(c) Ice bulges

    在次级破裂带F2向东延伸的道沟冰面上,见零散发育的冰面鼓包(图10c),垂直高度约为0.5—1 m,旁侧的砂石路上同样可见贯穿路面的地裂缝。考虑到此处已经远离主破裂带,鼓包主要受南侧牵引破裂带的影响,冰面鼓包则是在强烈地震动作用下形成的。

    2022年1月8日门源MS6.9地震发生于祁连山中段山区,位于冷龙岭断裂与托莱山断裂的构造转换部位,形成了类型丰富、形变特征典型的地表破裂现象。归纳起来,具有以下几类典型的地表破裂特征:

    1) 典型走滑破裂。此次地震形成了两条地表破裂带,变形样式以左旋走滑为主,总长约31 km,最大水平位移量为(2.6±0.3) m。其中,北侧主破裂带F1沿冷龙岭断裂西段分布,长约22 km,南西侧次级破裂带F2沿托莱山断裂东段展布,长约9 km. 若以具有地表位错的大西沟段F2-1为破裂带标志,南西侧次级破裂带与主破裂带的最小阶距约为3 km;若以发育弥散型裂缝带的狮子口段F2-2作为次级破裂带向东的终止端,则次级破裂带至主破裂带的最小阶距约为1 km。

    2) 地表破裂几何图像复杂。本次地震沿先存的冷龙岭断裂和托莱山断裂形成了典型的雁列状几何图像,但在不连续阶区部位形成了左旋左阶拉分区和左旋右阶挤压区,同时在构造转换部位形成了树枝状或网状的几何图像。

    3) 走滑和垂直位错类型多样。破裂带沿线错断了动物脚印、山间小路、公路路基、冲沟冰面、围栏、车辙印、冻融鼓包等多种地貌标志。受主破裂带内局部力学性质变化的影响,发育不同成因的张性裂缝、挤压脊、挤压鼓包以及挤压型、拉张型地震陡坎。

    4) 地质灾害和工程震害严重。此次地震除造成公路脆性变形、桥梁掀斜以及高铁铁轨扭曲变形等工程破坏外,还形成了山体滚石、河岸边坡失稳、地表崩塌等一系列震害现象。但在两条地表破裂带的远端仅见地表裂缝、冰面鼓包及桥梁裂缝零散发育,震害明显减轻。

    鉴于地震作用对穿过的公路路基、桥梁、铁路隧道等重要工程的严重破坏,未来的工程设计和建设中如何采取切实可行的措施加强跨地震断裂的工程抗断及近断层强地面运动设防技术研究,将是下一阶段的工作。

    感谢审稿专家对本文提出的诸多有益的意见和建议。

  • 图  1   青藏高原东北缘活动断裂和1920年海原大地震等震线(绿色)分布图

    Figure  1.   Map showing active faults in northeast Tibetan Plateau and the isoseismal contour lines of the 1920 Haiyuan earthquake shown in green

    图  2   1920年海原大地震地表破裂几何形态平面展布(修改自国家地震局地质研究所,宁夏回族自治区地震局,1990)(a)和同震左旋位移沿断裂分布的不同研究结果对比(b),图(b)右侧为位移量直方图

    Figure  2.   Surface rupture geometry of the 1920 Haiyuan earthquake (revsied from Institute of Geology of State Seismological Bureau,Seimological Bureau of Ningxia Hui Autonomous Region,1990)(a) and comparison of coseismic left-lateral offsets along fault strike in different studies (b). The right panel of Fig. (b) is the histogram of all measured offsets

    图  3   (a) 高精度LiDAR三维地形再现干盐池唐家坡村1920年地表破裂形成的陡坎和石垒田埂(7.5±1) m的左旋错断;(b) 在该点位附近沿断裂约400 m范围内Zhang等(1987)量测多个左旋同震位移,从4.8 m到7.5 m不等

    Figure  3.   (a) High-resolution 3D LiDAR topography shows the stone wall being left-lateral offset (7.5±1) m near the village of Tangjiapo,Ganyanchi;(b) Near the site,Zhang et al1987) measured multiple sinistral coseismic offsets from 4.8 m to 7.5 m over about 400 m distance along the fault

    图  4   1920年海原大地震的烟熏纸质记录扫描并数字化示例

    Figure  4.   Example of original seismogram on smoked paper of the 1920 Haiyuan earthquake that was scanned and digitized

    表  1   1920年海原地震震级的不同估算值及文献来源 (修改自Ou et al,2020

    Table  1   Estimates of the magnitude of the 1920 Haiyuan earthquake (modified from Ou et al,2020

    震级计算或估算方法文献来源
    M8.5 频率约为20 s的面波振幅 Gutenberg和Richter (1941
    m7.9 体波震级公式${{m}_{{\rm{B}}}=\mathrm{lg}{\left({ {A}_{{\rm{H}}} }/{T}\right)}_{{\rm{max}}}+Q ( \varDelta ) }$ Gutenberg和Richter (1956
    MW8.3 基于瑞雷面波频谱密度与45°断层倾角假设 Chen和Molnar (1977
    MW7.8 由Chen和Molnar (1977)给出的地震矩计算而得 Kanamori (1977
    MS8.6 根据Gutenberg的笔记重新修订 Abe (1981
    mB7.9 根据Gutenberg的笔记重新修订 Abe (1981
    M8.5 基于地震烈度M=0.58I0+1.5 顾功叙等(1983
    MW8 基于90°断层倾角假设对Chen和Molnar (1977)结果进行修正 Deng等(1984
    M8.6 根据Gutenberg (1945b)的方法编译 谢毓寿和蔡美彪 (1986
    MS8.4 MS8.6修正 Pacheco和Sykes (1992
    MW8.3 引用Chen和Molnar (1977 International Seismological Centre (2013
    MS8.7 基于三个地震记录计算得到 International Seismological Centre (2014
    MW7.8 基于地表破裂长度约240 km和同震位移最大值和平均值 Liu-Zeng等(2015
    MW8.2 基于震源物理动态模拟的理论计算 Xu等(2019
    MW(7.9±0.2) 将早期地震波形记录扫描并数字化,计算体波震级和面波
    震级并换算,辅以体波波形进行正演拟合
    Ou等(2020
    下载: 导出CSV
  • 邓起东. 2011. 在科学研究的实践中学习和进步:纪念海原大地震90周年,为地震预测和防震减灾事业而努力[J]. 地震地质,33(1):1–14. doi: 10.3969/j.issn.0253-4967.2011.01.001

    Deng Q D. 2011. Learning and progress through scientific practices:Commemorating the 90th anniversary of the tragic Haiyuan earthquake,striving to advance our abilities of earthquake prediction and seismic hazard reduction[J]. Seismology and Geology,33(1):1–14 (in Chinese).

    段虎荣,周仕勇,李闰. 2018. 基于地震活动性资料估计海原断裂倾角[J]. 地球物理学报,61(9):3713–3721.

    Duan H R,Zhou S Y,Li R. 2018. Estimation of dip angle of Haiyuan faults based on seismic data[J]. Chinese Journal of Geophysics,61(9):3713–3721.

    顾功叙, 林庭煌, 时振梁, 武宦英, 李群, 卢寿德, 杨玉林, 陈海通, 汪素云. 1983. 中国地震目录[M]. 北京: 科学出版社: 1–872.

    Gu G X, Lin T H, Shi Z L, Wu H Y, Li Q, Lu S D, Yang Y L, Chen H T, Wang S Y. 1983. Catalogue of Chinese Earthquakes, 1831 BC−1969 AD [M]. Beijing: Science Press: 1–872 (in Chinese).

    国家地震局地质研究所, 宁夏回族自治区地震局. 1989. 海原活动断裂带地质图(1∶50000)[M]. 北京: 地震出版社: 1–6.

    Institute of Geology of State Seismological Bureau, Seimological Bureau of Ningxia Hui Autonomous Region. 1989. Geological Map of Haiyuan Fault Zone (1∶50000)[M]. Beijing: Seismological Press: 1–6 (in Chinese).

    国家地震局地质研究所, 宁夏回族自治区地震局. 1990. 海原活动断裂带[M]. 北京: 地震出版社: 1–286.

    Institute of Geology of State Seismological Bureau, Seimological Bureau of Ningxia Hui Autonomous Region. 1990. Haiyuan Active Fault Zone[M]. Beijing: Seismological Press: 1–286 (in Chinese).

    国家地震局兰州地震研究所, 宁夏回族自治区地震队. 1980. 一九二〇年海原大地震[M]. 北京: 地震出版社: 1–134.

    Lanzhou Institute of Seismology, China Earthquake Administration, Earthquake Team of Ningxia Hui Autonomous Region. 1980. The Haiyuan Earthquake on 1920[M]. Beijing: Seismological Press: 1–134 (in Chinese).

    国家地震局震害防御司. 1995. 中国历史强震目录: 公元前23世纪—公元1911年[M]. 北京: 地震出版社: 1–850.

    Department of Earthquake Disaster Prevention, State Seismological Bureau. 1995. Catalogue of Chinese Historical Strong Earthquakes[M]. Beijing: Seismological Press: 1–850 (in Chinese).

    何文贵,刘百篪,袁道阳,杨明. 2000. 冷龙岭活动断裂的滑动速率研究[J]. 西北地震学报,22(1):90–97.

    He W G,Liu B C,Yuan D Y,Yang M. 2000. Research on slip rates of the Lenglongling active fault zone[J]. Northwestern Seismological Journal,22(1):90–97 (in Chinese).

    刘百篪,张俊玲,吴建华,郭华. 2003. 1920年12月16日海原8.5级大地震的伤亡人口再评估[J]. 中国地震,19(4):386–399.

    Liu B C,Zhang J L,Wu J H,Guo H. 2003. Re-evaluating on casualty in the Haiyuan MS8.5 earthquake on December 16,1920[J]. Earthquake Research in China,19(4):386–399 (in Chinese).

    刘金瑞,任治坤,张会平,李传友,张竹琪,郑文俊,李雪梅,刘彩彩. 2018. 海原断裂带老虎山段晚第四纪滑动速率精确厘定与讨论[J]. 地球物理学报,61(4):1281–1297. doi: 10.6038/cjg2018L0364

    Liu J R,Ren Z K,Zhang H P,Li C Y,Zhang Z Q,Zheng W J,Li X M,Liu C C. 2018. Late Quaternary slip rate of the Laohushan fault within the Haiyuan fault zone and its tectonic implications[J]. Chinese Journal of Geophysics,61(4):1281–1297 (in Chinese).

    刘静,徐锡伟,李岩峰,冉勇康. 2007. 以海原断裂甘肃老虎山段为例浅析走滑断裂古地震记录的完整性:兼论古地震研究中的若干问题[J]. 地质通报,26(6):650–660. doi: 10.3969/j.issn.1671-2552.2007.06.004

    Liu J,Xu X W,Li Y F,Ran Y K. 2007. On the completeness of paleoseismic records of strike-slip faults:An example from the Laohushan segment of the Haiyuan fault in Gansu,China,with a discussion of several problems in the paleoearthquake study[J]. Geological Bulletin of China,26(6):650–660 (in Chinese).

    刘静,陈涛,张培震,张会平,郑文俊,任治坤,梁诗明,盛传贞,甘卫军. 2013. 机载激光雷达扫描揭示海原断裂带微地貌的精细结构[J]. 科学通报,58(1):41–45.

    Liu J,Chen T,Zhang P Z,Zhang H P,Zheng W J,Ren Z K,Liang S M,Sheng C Z,Gan W J. 2013. Illuminating the active Haiyuan fault,China by Airborne Light Detection and Ranging[J]. Chinese Science Bulletin,58(1):41–45 (in Chinese). doi: 10.1360/972012-1526

    刘静,袁兆德,徐岳仁,邵延秀,王鹏,徐晶,林舟,韩龙飞. 2021. 古地震学:活动断裂强震复发规律的研究[J]. 地学前缘,28(2):211–231.

    Liu J,Yuan Z D,Xu Y R,Shao Y X,Wang P,Xu J,Lin Z,Han L F. 2021. Paleoseismic investigation of the recurrence behavior of large earthquakes on active faults[J]. Earth Science Frontiers,28(2):211–231 (in Chinese).

    刘瑞丰,陈运泰,Bormann P,任枭,侯建民,邹立晔,杨辉. 2006. 中国地震台网与美国地震台网测定震级的对比( Ⅱ ):面波震级[J]. 地震学报,19(1):1–7.

    Liu R,Chen Y,Bormann P,Ren X,Hou J M,Zou L Y,Yang H. 2006. Comparison between earthquake magnitudes determined by China seismograph network and US seismograph network ( Ⅱ ):Surface wave magnitude[J]. Acta Seismologica Sinica,19(1):1–7.

    刘瑞丰, 陈运泰, 任枭, 徐志国, 王晓欣, 邹立晔, 张立文. 2015. 震级的测定[M]. 北京: 地震出版社: 1–154.

    Liu R F, Chen Y T, Ren X, Xu Z G, Wang X X, Zou L Y, Zhang L W. 2015. Determination of Magnitude[M]. Beijing: Seismological Press: 1–154 (in Chinese).

    冉勇康,段瑞涛,邓起东,焦德成,闵伟. 1997. 海原断裂高湾子地点三维探槽的开挖与古地震研究[J]. 地震地质,19(2):97–107.

    Ran Y K,Duan R T,Deng Q D,Jiao D C,Min W. 1997. 3D trench excavation and paleoseismology at Gaowanzi of the Haiyuan fault[J]. Seismology and Geology,19(2):97–107 (in Chinese).

    邵延秀,刘静,Klinger Y,谢克家,袁道阳,雷中生. 2016. 海原断裂干盐池探槽揭示非特征性古地震序列[J]. 地质通报,35(5):711–726.

    Shao Y X,Liu J,Klinger Y,Xie K J,Yuan D Y,Lei Z S. 2016. Research on various magnitudes of paleoearthquakes:A case study of non-characteristic earthquakes from the Salt Lake site of Haiyuan fault[J]. Geological Bulletin of China,35(5):711–726 (in Chinese).

    王烈. 1921. 调查甘肃地震之报告[N]. 晨报. 6月23日.

    Wang L. 1921. Report on investigation of the Gansu earthquake[N]. Morning Post. June 23 (in Chinese).

    王子君, 姚文倩, 刘静, 邵延秀, 王文鑫, 沈续文, 高云鹏, 徐晶. 2023. 利用构造地貌方法限定走滑断裂第四纪滑动速率的不确定性及意义: 以海原断裂带为例[J]. 地球科学(待刊).

    Wang Z J, Yao W Q, Liu J, Shao Y X, Wang W X, Shen X W, Gao Y P, Xu J. 2023. Application of tectonic geomorphology method for constraining the slip rate uncertainty and implication of strike-slip faults: An example from the Haiyuan fault zone[J]. Journal of Earth Science (in press) (in Chinese).

    翁文灏. 1922. 民国九年十二月十六日甘肃的地震[J]. 科学,7:105–114.

    Weng W H. 1922. The 1920-12-16 earthquake in Gansu Province[J]. Science,7:105–144 (in Chinese).

    谢家荣. 1922. 民国九年十二月十六日甘肃及其它各省地震之情形[J]. 地学杂志,8-9:1–22.

    Xie J R. 1922. Circumstances of the earthquake in Gansu and other provinces on December 16,1922[J]. Journal of Geosciences,8-9:1–22 (in Chinese).

    谢毓寿, 蔡美彪. 1986. 中国地震历史资料汇编, 第四卷(下)[M]. 北京: 科学出版社: 1–258.

    Xie Y S, Cai M B. 1986. Compilation of Historical Seismic Data in China, Volume 4 ( Ⅱ )[M]. Beijing: Science Press: 1–258 (in Chinese).

    袁道阳,刘百篪,吕太乙,何文贵,刘小凤. 1997. 利用黄土剖面的古土壤年龄研究毛毛山断裂的滑动速率[J]. 地震地质,19(1):1–8.

    Yuan D Y,Liu B C,Lü T Y,He W G,Liu X F. 1997. Slip rates of the Maomaoshan fault zone in Gansu Province obtainted by using ages of loess paleosoil sequence[J]. Seismology and Geology,19(1):1–8 (in Chinese).

    袁道阳,刘百篪,吕太乙,何文贵,刘小凤,甘卫军. 1998. 北祁连山东段活动断裂带的分段性研究[J]. 西北地震学报,20(4):27–34.

    Yuan D Y,Liu B C,Lü T Y,He W G,Liu X F,Gan W J. 1998. Study on the segmentation in east segment of the northern Qilianshan fault zone[J]. Northwestern Seismological Journal,20(4):27–34 (in Chinese).

    张四昌,刘百篪. 1978. 1970年通海地震的地震地质特征[J]. 地质科学,(4):323–335.

    Zhang S C,Liu B C. 1978. Seismic geological characteristics of Tonghai earthquake in 1970[J]. Scientia Geologica Sinica,(4):323–335 (in Chinese).

    Abe K. 1981. Magnitudes of large shallow earthquakes from 1904 to 1980[J]. Phys Earth Planet Inter,27(1):72–92. doi: 10.1016/0031-9201(81)90088-1

    Abe K. 1984. Complements to “Magnitudes of large shallow earthquakes from 1904 to 1980”[J]. Phys Earth Planet Inter,34(1/2):17–23. doi: 10.1016/0031-9201(84)90081-5

    Abe K,Kanamori H. 1980. Magnitudes of great shallow earthquakes from 1953 to 1977[J]. Tectonophysics,62(3/4):191–203.

    Abe K,Noguchi S. 1983. Revision of magnitudes of large shallow earthquakes,1897−1912[J]. Phys Earth Planet Inter,33(1):1–11. doi: 10.1016/0031-9201(83)90002-X

    Bent A L. 2011. Moment magnitude (MW) conversion relations for use in hazard assessment in eastern Canada[J]. Seismol Res Lett,82(6):984–990. doi: 10.1785/gssrl.82.6.984

    Bormann P,Liu R,Ren X,Gutdeutsch R,Kaiser D,Castellaro S. 2007. Chinese national network magnitudes,their relation to NEIC magnitudes,and recommendations for new IASPEI magnitude standards[J]. Bull Seismol Soc Am,97(1B):114–127. doi: 10.1785/0120060078

    Bormann P,Saul J. 2008. The new IASPEI standard broadband magnitude mB[J]. Seismol Res Lett,79(5):698–705. doi: 10.1785/gssrl.79.5.698

    Bormann P. 2012. Magnitude calibration formulas and tables, comments on their use and complementary data[G]//New Manual of Seismological Observatory Practice 2 (NMSOP-2). Potsdam: Deutsches GeoForschungsZentrum GFZ: 1−19. https://doi.org/10.2312/GFZ.NMSOP-2_DS_3.1.

    Burchfiel B C,Zhang P Z,Wang Y P,Zhang W Q,Song F M,Deng Q D,Molnar P,Royden L. 1991. Geology of the Haiyuan fault zone,Ningxia-Hui Autonomous Region,China,and its relation to the evolution of the northeastern margin of the Tibetan Plateau[J]. Tectonics,10(6):1091–1110. doi: 10.1029/90TC02685

    Cavalié O,Lasserre C,Doin M P,Peltzer G,Sun J,Xu X,Shen Z K. 2008. Measurement of interseismic strain across the Haiyuan fault (Gansu,China),by InSAR[J]. Earth Planet Sci Lett,275(3/4):246–257.

    Chen R,Petersen M D. 2011. Probabilistic fault displacement hazards for the southern San Andreas fault using scenarios and empirical slips[J]. Earthq Spectra,27(2):293–313. doi: 10.1193/1.3574226

    Chen W P,Molnar P. 1977. Seismic moments of major earthquakes and the average rate of slip in Central Asia[J]. J Geophys Res,82(20):2945–2969. doi: 10.1029/JB082i020p02945

    Cheng J,Rong Y F,Magistrale H,Chen G H,Xu X W. 2017. An MW-based historical earthquake catalog for Mainland China[J]. Bull Seismol Soc Am,107(5):2490–2500. doi: 10.1785/0120170102

    Close U,McCormick E. 1922. Where the mountains walked[J]. Natl Geograph Magaz,12(5):445–464.

    Daout S,Jolivet R,Lasserre C,Doin M P,Barbot S,Tapponnier P,Peltzer G,Socquet A,Sun J. 2016. Along-strike variations of the partitioning of convergence across the Haiyuan fault system detected by InSAR[J]. Geophys J Int,205(1):536–547. doi: 10.1093/gji/ggw028

    Deng Q D,Sung F M,Zhu S L,Li M L,Wang T L,Zhang W Q,Burchfiel B C,Molnar P,Zhang P Z. 1984. Active faulting and tectonics of the Ningxia-Hui Autonomous Region,China[J]. J Geophys Res:Solid Earth,89(B6):4427–4445. doi: 10.1029/JB089iB06p04427

    Deng Q D, Chen S F, Song F M, Zhu S L, Wang Y P, Zhang W Q, Jiao D C, Burchfiel B C, Molnar P, Royden L, Zhang P Z. 1986. Variations in the geometry and amount of slip on the Haiyuan (Nanxihaushan) fault zone, China and the surface rupture of the 1920 Haiyuan earthquake[C]//Earthquake Source Mechanics. Washington: American Geophysical Union, 37: 169–182.

    Di Giacomo D. 2020. ISC‐GEM solution for the Haiyuan earthquake of 16 December 1920[DB/OL]. ISC Seismological Dataset Repository. [2022-01-19]. https://doi.org/10.31905/8IZMESGK.

    Feng X, Ma J, Zhou Y, England P, Parsons B, Rizza M A, Walker R T. 2020. Geomorphology and paleoseismology of the Weinan fault, Shaanxi, Central China, and the source of the 1556 Huaxian earthquake[J]. J Geophys Res: Solid Earth, 125(12): e2019JB017848.

    Gan W J, Zhang P Z, Shen Z K, Niu Z J, Wang M, Wan Y G, Zhou D M, Cheng J. 2007. Present-day crustal motion within the Tibetan Plateau inferred from GPS measurements[J]. J Geophys Res: Solid Earth, 112(B8): B08416.

    Gaudemer Y,Tapponnier P,Meyer B,Peltzer G,Guo S M,Chen Z T,Dai H G,Cifuentes I. 1995. Partitioning of crustal slip between linked,active faults in the eastern Qilian Shan,and evidence for a major seismic gap,the ‘Tianzhu gap’,on the western Haiyuan fault,Gansu (China)[J]. Geophys J Int,120(3):599–645. doi: 10.1111/j.1365-246X.1995.tb01842.x

    Guo P,Han Z J,Gao F,Zhu C H,Gai H L. 2020. A new tectonic model for the 1927 M8.0 Gulang earthquake on the NE Tibetan Plateau[J]. Tectonics,39(9):e2020TC006064.

    Gutenberg B. 1945a. Amplitudes of surface waves and magnitudes of shallow earthquakes[J]. Bull Seismol Soc Am,35(1):3–12. doi: 10.1785/BSSA0350010003

    Gutenberg B. 1945b. Amplitudes of P,PP,and S and magnitude of shallow earthquakes[J]. Bull Seismol Soc Am,35(2):57–69. doi: 10.1785/BSSA0350020057

    Gutenberg B, Richter C F. 1941. Seismicity of the EarthSpecial Papers, Number 34)[M]. New York: Geological Society of America.

    Gutenberg B, Richter C F. 1954. Seismicity of the Earth and Related Phenomena[M]. Princeton: Princeton University Press.

    Gutenberg B,Richter C F. 1956. Earthquake magnitude[J]. Bull Seismol Soc Am,46(2):105–145. doi: 10.1785/BSSA0460020105

    Han L F,Liu-Zeng J,Yao W Q,Shao Y X,Yuan Z D,Wang Y. 2021. Coseismic slip gradient at the western terminus of the 1920 Haiyuan MW7.9 earthquake[J]. J Struct Geol,152:104442. doi: 10.1016/j.jsg.2021.104442

    Hanks T C,Kanamori H. 1979. A moment magnitude scale[J]. J Geophys Res,84:2348–2350. doi: 10.31905/D808B830

    International Seismological Centre. 2013. ISC-GEM earthquake catalogue[DB/OL]. [2022−01−19]. http://doi.org/10.31905/D808B825.

    International Seismological Centre. 2014. On-line bulletin[DB/OL]. [2022−01−19]. https://doi.org/10.31905/D808B830.

    Jiang W L,Han Z J,Guo P,Zhang J F,Jiao Q S,Kang S,Tian Y F. 2017. Slip rate and recurrence intervals of the east Lenglongling fault constrained by morphotectonics:Tectonic implications for the northeastern Tibetan Plateau[J]. Lithosphere,9(3):417–430. doi: 10.1130/L597.1

    Kanamori H. 1977. The energy release in great earthquakes[J]. J Geophys Res,82(20):2981–2987. doi: 10.1029/JB082i020p02981

    Kárník V,Kondorskaya N V,Riznitchenko Ju V,Savarensky E F,Soloviev S L,Shebalin N V,Vanek J,Zátopek A. 1962. Standardization of- magnitude scales[J]. Stud Geophys Geod,6:41–48. doi: 10.1007/BF02590040

    Klinger Y. 2010. Relation between continental strike-slip earthquake segmentation and thickness of the crust[J]. J Geophys Res: Solid Earth, 115(B7): B07306.

    Lasserre C, Morel P H, Gaudemer Y, Tapponnier P, Ryerson F J, King G C P, Métivier F, Kasser M, Kashgarian M, Liu B C, Lu T Y, Yuan D Y. 1999. Postglacial left slip rate and past occurrence of M≥8 earthquakes on the western Haiyuan fault, Gansu, China[J]. J Geophys Res: Solid Earth, 104(B8): 17633-17651.

    Lasserre C, Gaudemer Y, Tapponnier P, Mériaux A S, van der Woerd J, Yuan D Y, Ryerson F J, Finkel R C, Caffee M W. 2002. Fast late Pleistocene slip rate on the Leng Long Ling segment of the Haiyuan fault, Qinghai, China[J]. J Geophys Res: Solid Earth, 107(B11): 2276.

    Li C Y,Zhang P Z,Yin J H,Min W. 2009. Late Quaternary left-lateral slip rate of the Haiyuan fault,northeastern margin of the Tibetan Plateau[J]. Tectonics,28(5):TC5010.

    Lin Z,Liu-Zeng J,Weldon R J,Tian J,Ding C,Du Y. 2020. Modeling repeated coseismic slip to identify and characterize individual earthquakes from geomorphic offsets on strike-slip faults[J]. Earth Planet Sci Lett,545:116313. doi: 10.1016/j.jpgl.2020.116313

    Liu-Zeng J,Klinger Y,Xu X,Lasserre C,Chen G H,Chen W B,Tapponnier P,Zhang B. 2007. Millennial recurrence of large earthquakes on the Haiyuan fault near Songshan,Gansu Province,China[J]. Bull Seismol Soc Am,97(1B):14–34. doi: 10.1785/0120050118

    Liu-Zeng J, Shao Y X, Klinger Y, Xie K J, Yuan D Y, Lei Z S. 2015. Variability in magnitude of paleoearthquakes revealed by trenching and historical records, along the Haiyuan fault, China[J]. J Geophys Res: Solid Earth, 120(12): 8304-8333.

    Matrau R,Klinger Y,van der Woerd J,Liu-Zeng J,Li Z,Xu X,Zheng R. 2019. Late Pleistocene-Holocene slip rate along the Hasi Shan restraining bend of the Haiyuan fault:Implication for faulting dynamics of a complex fault system[J]. Tectonics,38(12):4127–4154. doi: 10.1029/2019TC005488

    Middleton T A, Walker R T, Parsons B, Lei Q Y, Zhou Y, Ren Z K. 2016. A major, intraplate, normal-faulting earthquake: The 1739 Yinchuan event in northern China[J]. J Geophys Res: Solid Earth, 121(1): 293-320.

    Molnar P,Tapponnier P. 1975. Cenozoic tectonics of Asia:Effects of a continental collision:Features of recent continental tectonics in Asia can be interpreted as results of the India-Eurasia collision[J]. Science,189(4201):419–426. doi: 10.1126/science.189.4201.419

    Nishenko S P,Buland R. 1987. A generic recurrence interval distribution for earthquake forecasting[J]. Bull Seismol Soc Am,77(4):1382–1399.

    Okal E A. 2015. Historical seismograms:Preserving an endangered species[J]. Geo Res J,6:53–64. doi: 10.1016/j.grj.2015.01.007

    Ou Q, Kulikova G, Yu J, Elliott A, Parsons B, Walker R. 2020. Magnitude of the 1920 Haiyuan earthquake reestimated using seismological and geomorphological methods[J]. J Geophys Res: Solid Earth, 125(8): e2019JB019244.

    Pacheco J F,Sykes L R. 1992. Seismic moment catalog of large shallow earthquakes,1900 to 1989[J]. Bull Seismol Soc Am,82(3):1306–1349. doi: 10.1785/BSSA0820031306

    Ren Z K,Zhang Z Q,Chen T,Yan S L,Yin J H,Zhang P Z,Zheng W J,Zhang H P,Li C Y. 2016. Clustering of offsets on the Haiyuan fault and their relationship to paleoearthquakes[J]. Geol Soc Am Bull,128(1/2):3–18.

    Richter C F. 1958. Elementary Seismology[M]. San Francisco: W. H. Freeman and Company: 768.

    Shao Y X,Liu-Zeng J,van der Woerd J,Klinger Y,Oskin M E,Zhang J Y,Wang P,Wang P T,Wang W,Yao W Q. 2021. Late Pleistocene slip rate of the central Haiyuan fault constrained from optically stimulated luminescence,14C,and cosmogenic isotope dating and high-resolution topography[J]. Geol Soc Am Bull,133(7/8):1347–1369.

    Shao Z G,Xu J,Ma H S,Zhang L P. 2016. Coulomb stress evolution over the past 200 years and seismic hazard along the Xianshuihe fault zone of Sichuan,China[J]. Tectonophysics,670:48–65. doi: 10.1016/j.tecto.2015.12.018

    Thatcher W, Lisowski M. 1987. Long‐term seismic potential of the San Andreas fault southeast of San Francisco, California[J]. J Geophys Res: Solid Earth, 92(B6): 4771−4784.

    Thatcher W, Marshall G, Lisowski M. 1997. Resolution of fault slip along the 470-km-long rupture of the great 1906 San Francisco earthquake and its implications[J]. J Geophys Res: Solid Earth, 102(B3): 5353−5367.

    Utsu T. 1979. Seismicity of Japan from 1885 through 1925:A new catalog of earthquakes of M≥6 Felt in Japan and smaller earthquakes which caused damage in Japan[J]. Bull Earthq Res Inst,54(2):253–308.

    Wald D J,Kanamori H,Helmberger D V,Heaton T H. 1993. Source study of the 1906 San Francisco earthquake[J]. Bull Seismol Soc Am,83(4):981–1019. doi: 10.1785/BSSA0830040981

    Wang J. 2020. Conservation and utilization of historical seismograms from early stage (AD 1904−1948),Mainland China[J]. Seismol Res Lett,91(3):1394–1402. doi: 10.1785/0220190268

    Wells D L,Coppersmith K J. 1994. New empirical relationships among magnitude,rupture length,rupture width,rupture area,and surface displacement[J]. Bull Seismol Soc Am,84(4):974–1002.

    Working Group on California Earthquake Probabilities. 1988. Probabilities of Large Earthquakes Occurring in California on the San Andreas Fault[R]. San Francisco: US Geological Survey: 88–398.

    Working Group on California Earthquake Probabilities. 1990. Probabilities of Large Earthquakes in the San Francisco Bay Region, California[R]. San Francisco: US Geological Survey: 811–814.

    Working Group on California Earthquake Probabilities. 1995. Seismic hazards in southern California:Probable earthquakes,1994 to 2024[J]. Bull Seismol Soc Am,85(2):379–439.

    Working Group on California Earthquake Probabilities. 1999. Earthquake Probabilities in the San Francisco Bay Region: 2000 to 2030: A Summary of Findings[R]. Reston: US Geological Survey: 1–60.

    Xiong X,Shan B,Zhou Y M,Wei S J,Li Y D,Wang R J,Zheng Y. 2017. Coulomb stress transfer and accumulation on the Sagaing fault,Myanmar,over the past 110 years and its implications for seismic hazard[J]. Geophys Res Lett,44(10):4781–4789. doi: 10.1002/2017GL072770

    Xu J,Liu‐Zeng J,Yuan Z D,Yao W Q,Zhang J Y,Ji L Y,Shao Z G,Han L F,Wang Z J. 2022. Airborne LiDAR-based mapping of surface ruptures and coseismic slip of the 1955 Zheduotang earthquake on the Xianshuihe fault,east Tibet[J]. Bull Seismol Soc Am,112(6):3102–3120. doi: 10.1785/0120220012

    Xu X R,Zhang Z G,Hu F,Chen X F. 2019. Dynamic rupture simulations of the 1920 MS8.5 Haiyuan earthquake in China[J]. Bull Seismol Soc Am,109(5):2009–2020. doi: 10.1785/0120190061

    Xu Y R, He H L, Deng Q D, Allen M B, Sun H Y, Bi L S. 2018. The CE 1303 Hongdong earthquake and the Huoshan piedmont fault, Shanxi graben: Implications for magnitude limits of normal fault earthquakes[J]. J Geophys Res: Solid Earth, 123(4): 3098−3121.

    Xu Y R,Liu-Zeng J,Allen M B,Zhang W H,Du P. 2021. Landslides of the 1920 Haiyuan earthquake,northern China[J]. Landslides,18(3):935–953. doi: 10.1007/s10346-020-01512-5

    Yao W Q, Liu-Zeng J, Oskin M E, Wang W, Li Z F, Prush V, Zhang J Y, Shao Y X, Yuan Z D, Klinger Y. 2019. Reevaluation of the Late Pleistocene slip rate of the Haiyuan fault near Songshan, Gansu Province, China[J]. J Geophys Res: Solid Earth, 124(5): 5217−5240.

    Zhang P Z,Molnar P,Burchfiel B C,Royden L,Wang Y P,Deng Q D,Song F M,Zhang W Q,Jiao D C. 1988a. Bounds on the Holocene slip rate of the Haiyuan fault,north-central China[J]. Quat Res,30(2):151–164. doi: 10.1016/0033-5894(88)90020-8

    Zhang P Z,Molnar P,Zhang W Q,Deng Q D,Wang Y P,Burchfiel B C,Song F M,Royden L,Jiao D C. 1988b. Bounds on the average recurrence interval of major earthquakes along the Haiyuan fault in north-central China[J]. Seismol Res Lett,59(3):81–89. doi: 10.1785/gssrl.59.3.81

    Zhang P Z,Yang Z X,Gupta H K,Bhatia S C,Shedlock K M. 1999. Global Seismic Hazard Assessment Program (GSHAP) in continental Asia[J]. Annali Geofis,42(6):1167–1190.

    Zhang P Z, Min W, Deng Q D, Mao F Y. 2003. Paleoearthquake rupture behavior and recurrence of great earthquakes along the Haiyuan fault, northwestern China[J]. Science in China: Series, 48(3): 364−375.

    Zhang W Q,Jiao D C,Zhang P Z,Molnar P,Burchfiel B C,Deng Q D,Wang Y P,Song F M. 1987. Displacement along the Haiyuan fault associated with the great 1920 Haiyuan,China,earthquake[J]. Bull Seismol Soc Am,77(1):117–131.

    Zheng G,Wang H,Wright T J,Lou Y D,Zhang R,Zhang W X,Shi C,Huang J F,Wei N. 2017. Crustal deformation in the India-Eurasia collision zone from 25 years of GPS measurements[J]. J Geophys Res:Solid Earth,122(11):9290–9312.

    Zhou H L,Allen C R,Kanamori H. 1983. Rupture complexity of the 1970 Tonghai and 1973 Luhuo earthquakes,China,from P-wave inversion,and relationship to surface faulting[J]. Bull Seismol Soc Am,73(6A):1585–1597. doi: 10.1785/BSSA07306A1585

  • 期刊类型引用(3)

    1. 卜风贤,杨云. 民国九年(1920)海原大地震的山水刻画与灾区修复. 中国农史. 2024(01): 107-116 . 百度学术
    2. 李佳怡,徐岳仁,张军龙,母若愚. 基于多源卫星影像的同震地表破裂带迹象变化识别——以2001年昆仑山口西M_S8.1地震为例. 地震学报. 2024(06): 982-1001 . 本站查看
    3. 高云鹏,刘静,韩龙飞,邵延秀,姚文倩,徐晶,胡贵明,王子君,屈孜屹,徐恩民. 古地震事件震级或强度大小限定的讨论. 地质力学学报. 2023(05): 704-719 . 百度学术

    其他类型引用(1)

图(4)  /  表(1)
计量
  • 文章访问数:  779
  • HTML全文浏览量:  390
  • PDF下载量:  210
  • 被引次数: 4
出版历程
  • 收稿日期:  2022-04-08
  • 修回日期:  2022-11-13
  • 网络出版日期:  2023-03-08
  • 发布日期:  2023-07-14

目录

/

返回文章
返回