关于1920年海原大地震震级高估的讨论

刘静, 徐晶, 偶奇, 韩龙飞, 王子君, 邵志刚, 张培震, 姚文倩, 王鹏

刘静,徐晶,偶奇,韩龙飞,王子君,邵志刚,张培震,姚文倩,王鹏. 2023. 关于1920年海原大地震震级高估的讨论. 地震学报,45(4):579−596. DOI: 10.11939/jass.20220051
引用本文: 刘静,徐晶,偶奇,韩龙飞,王子君,邵志刚,张培震,姚文倩,王鹏. 2023. 关于1920年海原大地震震级高估的讨论. 地震学报,45(4):579−596. DOI: 10.11939/jass.20220051
Liu J,Xu J,Ou Q,Han L F,Wang Z J,Shao Z G,Zhang P Z,Yao W Q,Wang P. 2023. Discussion on the magnitude overestimation of the 1920 Haiyuan earthquake. Acta Seismologica Sinica45(4):579−596. DOI: 10.11939/jass.20220051
Citation: Liu J,Xu J,Ou Q,Han L F,Wang Z J,Shao Z G,Zhang P Z,Yao W Q,Wang P. 2023. Discussion on the magnitude overestimation of the 1920 Haiyuan earthquake. Acta Seismologica Sinica45(4):579−596. DOI: 10.11939/jass.20220051

关于1920年海原大地震震级高估的讨论

基金项目: 国家重点研发计划项目(2021YFC3000605-04)和国家自然科学基金(42202232,U1839203,42030305,42104061)共同资助
详细信息
    通讯作者:

    刘静,博士,教授,主要从事强震与断层活动性、构造地貌等方面的研究,e-mail:liu_zeng@tju.edu.cn

  • 中图分类号: P315.32

Discussion on the overestimated magnitude of the 1920 Haiyuan earthquake

  • 摘要: 1920年海原大地震作为史料记载以来中国大陆震级最高、伤亡最多的极具破坏性的地震之一,开启了我国用现代地震学方法研究大地震的新篇章,在我国地震研究史上具有里程碑的意义。最新研究结果表明,1920年海原大地震的矩震级为MW(7.9±0.2),与文献和大众广泛接受的M8${\raise0.5ex\hbox{$\scriptstyle 1$}\kern-0.1em/\kern-0.15em\lower0.25ex\hbox{$\scriptstyle 2$}} $的数值相差较大。本文通过对震级标度及其演化历史的总结和梳理,阐述了仪器记录早期阶段基于地震波波形振幅和频率的震级标定存在系统偏差的问题,这与仪器限制、台站稀疏、标定不统一等因素有关,也使得1920年海原大地震和同时期世界上其它一些重要大地震的震级不同程度被高估。在各种震级标度中,矩震级MW与地震破裂面积和位移等物理参数关联,是地震震级的最佳标定方法。震级作为表述地震大小和能量的重要参数,被广泛地用于评估断层未来的地震潜势;震级的偏差对地震活动时空分布样式的研究会产生重要影响,并造成基于历史地震资料的地震危险性评价和灾害评估等产品的可信度降低。因此,本文倡导对历史地震震级进行检验和修订,并建议1920年海原大地震的震级采用矩震级MW(7.9±0.2)表示,修正后的1920年海原大地震的震级与2008年汶川地震(MW7.9,MS8.0)和2001年昆仑山大地震(MW7.8,MS8.1)相当。
    Abstract: The great 1920 Haiyuan earthquake, resulting in tremendous casualties, ranks as one of the largest and most devastating earthquakes in China. This significant event marks the start of investigating earthquakes through modern scientific approaches in China. Recent studies show that the moment magnitude of the 1920 Haiyuan earthquake is MW(7.9±0.2), prominently smaller than the widely known and often cited magnitude M8${\raise0.5ex\hbox{$\scriptstyle 1$}\kern-0.1em/\kern-0.15em\lower0.25ex\hbox{$\scriptstyle 2$}} $. This paper reviews the re-calibration and conversion of different types of magnitude in the early developing phase of seismometers and analogue seismographs. Similar to the 1920 Haiyuan earthquake, the magnitude of many large shallow earthquakes that occurred in this period are systematically overestimated due to factors such as developing technology, sparse instrumentation and data, and diverse calibration functions. The moment magnitude, linked to physical parameters of earthquake rupture, is the best magnitude scale. For magnitude is the most commonly used parameter in describing an earthquake’s size and energy and is an essential factor in seismic hazard assessment, bias and errors in magnitude conversion have significant consequences in understanding the spatio-temporal pattern of historical seismicity and the reliability of various products of seismic potential and hazard evaluation. We thus advocate citing revised moment magnitude MW(7.9±0.2) for the 1920 Haiyuan earthquake in future studies and re-evaluating the magnitude of historical earthquakes in general. With a revised magnitude, the 1920 Haiyuan earthquake is similar in size to the 2008 Wenchuan earthquake (MW7.9, MS8.0) and the 2001 Kunlun earthquake (MW7.8, MS8.1).
  • 图  1   青藏高原东北缘活动断裂和1920年海原大地震等震线(绿色)分布图

    Figure  1.   Map showing active faults in northeast Tibetan Plateau and the isoseismal contour lines of the 1920 Haiyuan earthquake shown in green

    图  2   1920年海原大地震地表破裂几何形态平面展布(修改自国家地震局地质研究所,宁夏回族自治区地震局,1990)(a)和同震左旋位移沿断裂分布的不同研究结果对比(b),图(b)右侧为位移量直方图

    Figure  2.   Surface rupture geometry of the 1920 Haiyuan earthquake (revsied from Institute of Geology of State Seismological Bureau,Seimological Bureau of Ningxia Hui Autonomous Region,1990)(a) and comparison of coseismic left-lateral offsets along fault strike in different studies (b). The right panel of Fig. (b) is the histogram of all measured offsets

    图  3   (a) 高精度LiDAR三维地形再现干盐池唐家坡村1920年地表破裂形成的陡坎和石垒田埂(7.5±1) m的左旋错断;(b) 在该点位附近沿断裂约400 m范围内Zhang等(1987)量测多个左旋同震位移,从4.8 m到7.5 m不等

    Figure  3.   (a) High-resolution 3D LiDAR topography shows the stone wall being left-lateral offset (7.5±1) m near the village of Tangjiapo,Ganyanchi;(b) Near the site,Zhang et al1987) measured multiple sinistral coseismic offsets from 4.8 m to 7.5 m over about 400 m distance along the fault

    图  4   1920年海原大地震的烟熏纸质记录扫描并数字化示例

    Figure  4.   Example of original seismogram on smoked paper of the 1920 Haiyuan earthquake that was scanned and digitized

    表  1   1920年海原地震震级的不同估算值及文献来源 (修改自Ou et al,2020

    Table  1   Estimates of the magnitude of the 1920 Haiyuan earthquake (modified from Ou et al,2020

    震级计算或估算方法文献来源
    M8.5 频率约为20 s的面波振幅 Gutenberg和Richter (1941
    m7.9 体波震级公式${{m}_{{\rm{B}}}=\mathrm{lg}{\left({ {A}_{{\rm{H}}} }/{T}\right)}_{{\rm{max}}}+Q ( \varDelta ) }$ Gutenberg和Richter (1956
    MW8.3 基于瑞雷面波频谱密度与45°断层倾角假设 Chen和Molnar (1977
    MW7.8 由Chen和Molnar (1977)给出的地震矩计算而得 Kanamori (1977
    MS8.6 根据Gutenberg的笔记重新修订 Abe (1981
    mB7.9 根据Gutenberg的笔记重新修订 Abe (1981
    M8.5 基于地震烈度M=0.58I0+1.5 顾功叙等(1983
    MW8 基于90°断层倾角假设对Chen和Molnar (1977)结果进行修正 Deng等(1984
    M8.6 根据Gutenberg (1945b)的方法编译 谢毓寿和蔡美彪 (1986
    MS8.4 MS8.6修正 Pacheco和Sykes (1992
    MW8.3 引用Chen和Molnar (1977 International Seismological Centre (2013
    MS8.7 基于三个地震记录计算得到 International Seismological Centre (2014
    MW7.8 基于地表破裂长度约240 km和同震位移最大值和平均值 Liu-Zeng等(2015
    MW8.2 基于震源物理动态模拟的理论计算 Xu等(2019
    MW(7.9±0.2) 将早期地震波形记录扫描并数字化,计算体波震级和面波
    震级并换算,辅以体波波形进行正演拟合
    Ou等(2020
    下载: 导出CSV
  • 邓起东. 2011. 在科学研究的实践中学习和进步:纪念海原大地震90周年,为地震预测和防震减灾事业而努力[J]. 地震地质,33(1):1–14. doi: 10.3969/j.issn.0253-4967.2011.01.001

    Deng Q D. 2011. Learning and progress through scientific practices:Commemorating the 90th anniversary of the tragic Haiyuan earthquake,striving to advance our abilities of earthquake prediction and seismic hazard reduction[J]. Seismology and Geology,33(1):1–14 (in Chinese).

    段虎荣,周仕勇,李闰. 2018. 基于地震活动性资料估计海原断裂倾角[J]. 地球物理学报,61(9):3713–3721.

    Duan H R,Zhou S Y,Li R. 2018. Estimation of dip angle of Haiyuan faults based on seismic data[J]. Chinese Journal of Geophysics,61(9):3713–3721.

    顾功叙, 林庭煌, 时振梁, 武宦英, 李群, 卢寿德, 杨玉林, 陈海通, 汪素云. 1983. 中国地震目录[M]. 北京: 科学出版社: 1–872.

    Gu G X, Lin T H, Shi Z L, Wu H Y, Li Q, Lu S D, Yang Y L, Chen H T, Wang S Y. 1983. Catalogue of Chinese Earthquakes, 1831 BC−1969 AD [M]. Beijing: Science Press: 1–872 (in Chinese).

    国家地震局地质研究所, 宁夏回族自治区地震局. 1989. 海原活动断裂带地质图(1∶50000)[M]. 北京: 地震出版社: 1–6.

    Institute of Geology of State Seismological Bureau, Seimological Bureau of Ningxia Hui Autonomous Region. 1989. Geological Map of Haiyuan Fault Zone (1∶50000)[M]. Beijing: Seismological Press: 1–6 (in Chinese).

    国家地震局地质研究所, 宁夏回族自治区地震局. 1990. 海原活动断裂带[M]. 北京: 地震出版社: 1–286.

    Institute of Geology of State Seismological Bureau, Seimological Bureau of Ningxia Hui Autonomous Region. 1990. Haiyuan Active Fault Zone[M]. Beijing: Seismological Press: 1–286 (in Chinese).

    国家地震局兰州地震研究所, 宁夏回族自治区地震队. 1980. 一九二〇年海原大地震[M]. 北京: 地震出版社: 1–134.

    Lanzhou Institute of Seismology, China Earthquake Administration, Earthquake Team of Ningxia Hui Autonomous Region. 1980. The Haiyuan Earthquake on 1920[M]. Beijing: Seismological Press: 1–134 (in Chinese).

    国家地震局震害防御司. 1995. 中国历史强震目录: 公元前23世纪—公元1911年[M]. 北京: 地震出版社: 1–850.

    Department of Earthquake Disaster Prevention, State Seismological Bureau. 1995. Catalogue of Chinese Historical Strong Earthquakes[M]. Beijing: Seismological Press: 1–850 (in Chinese).

    何文贵,刘百篪,袁道阳,杨明. 2000. 冷龙岭活动断裂的滑动速率研究[J]. 西北地震学报,22(1):90–97.

    He W G,Liu B C,Yuan D Y,Yang M. 2000. Research on slip rates of the Lenglongling active fault zone[J]. Northwestern Seismological Journal,22(1):90–97 (in Chinese).

    刘百篪,张俊玲,吴建华,郭华. 2003. 1920年12月16日海原8.5级大地震的伤亡人口再评估[J]. 中国地震,19(4):386–399.

    Liu B C,Zhang J L,Wu J H,Guo H. 2003. Re-evaluating on casualty in the Haiyuan MS8.5 earthquake on December 16,1920[J]. Earthquake Research in China,19(4):386–399 (in Chinese).

    刘金瑞,任治坤,张会平,李传友,张竹琪,郑文俊,李雪梅,刘彩彩. 2018. 海原断裂带老虎山段晚第四纪滑动速率精确厘定与讨论[J]. 地球物理学报,61(4):1281–1297. doi: 10.6038/cjg2018L0364

    Liu J R,Ren Z K,Zhang H P,Li C Y,Zhang Z Q,Zheng W J,Li X M,Liu C C. 2018. Late Quaternary slip rate of the Laohushan fault within the Haiyuan fault zone and its tectonic implications[J]. Chinese Journal of Geophysics,61(4):1281–1297 (in Chinese).

    刘静,徐锡伟,李岩峰,冉勇康. 2007. 以海原断裂甘肃老虎山段为例浅析走滑断裂古地震记录的完整性:兼论古地震研究中的若干问题[J]. 地质通报,26(6):650–660. doi: 10.3969/j.issn.1671-2552.2007.06.004

    Liu J,Xu X W,Li Y F,Ran Y K. 2007. On the completeness of paleoseismic records of strike-slip faults:An example from the Laohushan segment of the Haiyuan fault in Gansu,China,with a discussion of several problems in the paleoearthquake study[J]. Geological Bulletin of China,26(6):650–660 (in Chinese).

    刘静,陈涛,张培震,张会平,郑文俊,任治坤,梁诗明,盛传贞,甘卫军. 2013. 机载激光雷达扫描揭示海原断裂带微地貌的精细结构[J]. 科学通报,58(1):41–45.

    Liu J,Chen T,Zhang P Z,Zhang H P,Zheng W J,Ren Z K,Liang S M,Sheng C Z,Gan W J. 2013. Illuminating the active Haiyuan fault,China by Airborne Light Detection and Ranging[J]. Chinese Science Bulletin,58(1):41–45 (in Chinese). doi: 10.1360/972012-1526

    刘静,袁兆德,徐岳仁,邵延秀,王鹏,徐晶,林舟,韩龙飞. 2021. 古地震学:活动断裂强震复发规律的研究[J]. 地学前缘,28(2):211–231.

    Liu J,Yuan Z D,Xu Y R,Shao Y X,Wang P,Xu J,Lin Z,Han L F. 2021. Paleoseismic investigation of the recurrence behavior of large earthquakes on active faults[J]. Earth Science Frontiers,28(2):211–231 (in Chinese).

    刘瑞丰,陈运泰,Bormann P,任枭,侯建民,邹立晔,杨辉. 2006. 中国地震台网与美国地震台网测定震级的对比( Ⅱ ):面波震级[J]. 地震学报,19(1):1–7.

    Liu R,Chen Y,Bormann P,Ren X,Hou J M,Zou L Y,Yang H. 2006. Comparison between earthquake magnitudes determined by China seismograph network and US seismograph network ( Ⅱ ):Surface wave magnitude[J]. Acta Seismologica Sinica,19(1):1–7.

    刘瑞丰, 陈运泰, 任枭, 徐志国, 王晓欣, 邹立晔, 张立文. 2015. 震级的测定[M]. 北京: 地震出版社: 1–154.

    Liu R F, Chen Y T, Ren X, Xu Z G, Wang X X, Zou L Y, Zhang L W. 2015. Determination of Magnitude[M]. Beijing: Seismological Press: 1–154 (in Chinese).

    冉勇康,段瑞涛,邓起东,焦德成,闵伟. 1997. 海原断裂高湾子地点三维探槽的开挖与古地震研究[J]. 地震地质,19(2):97–107.

    Ran Y K,Duan R T,Deng Q D,Jiao D C,Min W. 1997. 3D trench excavation and paleoseismology at Gaowanzi of the Haiyuan fault[J]. Seismology and Geology,19(2):97–107 (in Chinese).

    邵延秀,刘静,Klinger Y,谢克家,袁道阳,雷中生. 2016. 海原断裂干盐池探槽揭示非特征性古地震序列[J]. 地质通报,35(5):711–726.

    Shao Y X,Liu J,Klinger Y,Xie K J,Yuan D Y,Lei Z S. 2016. Research on various magnitudes of paleoearthquakes:A case study of non-characteristic earthquakes from the Salt Lake site of Haiyuan fault[J]. Geological Bulletin of China,35(5):711–726 (in Chinese).

    王烈. 1921. 调查甘肃地震之报告[N]. 晨报. 6月23日.

    Wang L. 1921. Report on investigation of the Gansu earthquake[N]. Morning Post. June 23 (in Chinese).

    王子君, 姚文倩, 刘静, 邵延秀, 王文鑫, 沈续文, 高云鹏, 徐晶. 2023. 利用构造地貌方法限定走滑断裂第四纪滑动速率的不确定性及意义: 以海原断裂带为例[J]. 地球科学(待刊).

    Wang Z J, Yao W Q, Liu J, Shao Y X, Wang W X, Shen X W, Gao Y P, Xu J. 2023. Application of tectonic geomorphology method for constraining the slip rate uncertainty and implication of strike-slip faults: An example from the Haiyuan fault zone[J]. Journal of Earth Science (in press) (in Chinese).

    翁文灏. 1922. 民国九年十二月十六日甘肃的地震[J]. 科学,7:105–114.

    Weng W H. 1922. The 1920-12-16 earthquake in Gansu Province[J]. Science,7:105–144 (in Chinese).

    谢家荣. 1922. 民国九年十二月十六日甘肃及其它各省地震之情形[J]. 地学杂志,8-9:1–22.

    Xie J R. 1922. Circumstances of the earthquake in Gansu and other provinces on December 16,1922[J]. Journal of Geosciences,8-9:1–22 (in Chinese).

    谢毓寿, 蔡美彪. 1986. 中国地震历史资料汇编, 第四卷(下)[M]. 北京: 科学出版社: 1–258.

    Xie Y S, Cai M B. 1986. Compilation of Historical Seismic Data in China, Volume 4 ( Ⅱ )[M]. Beijing: Science Press: 1–258 (in Chinese).

    袁道阳,刘百篪,吕太乙,何文贵,刘小凤. 1997. 利用黄土剖面的古土壤年龄研究毛毛山断裂的滑动速率[J]. 地震地质,19(1):1–8.

    Yuan D Y,Liu B C,Lü T Y,He W G,Liu X F. 1997. Slip rates of the Maomaoshan fault zone in Gansu Province obtainted by using ages of loess paleosoil sequence[J]. Seismology and Geology,19(1):1–8 (in Chinese).

    袁道阳,刘百篪,吕太乙,何文贵,刘小凤,甘卫军. 1998. 北祁连山东段活动断裂带的分段性研究[J]. 西北地震学报,20(4):27–34.

    Yuan D Y,Liu B C,Lü T Y,He W G,Liu X F,Gan W J. 1998. Study on the segmentation in east segment of the northern Qilianshan fault zone[J]. Northwestern Seismological Journal,20(4):27–34 (in Chinese).

    张四昌,刘百篪. 1978. 1970年通海地震的地震地质特征[J]. 地质科学,(4):323–335.

    Zhang S C,Liu B C. 1978. Seismic geological characteristics of Tonghai earthquake in 1970[J]. Scientia Geologica Sinica,(4):323–335 (in Chinese).

    Abe K. 1981. Magnitudes of large shallow earthquakes from 1904 to 1980[J]. Phys Earth Planet Inter,27(1):72–92. doi: 10.1016/0031-9201(81)90088-1

    Abe K. 1984. Complements to “Magnitudes of large shallow earthquakes from 1904 to 1980”[J]. Phys Earth Planet Inter,34(1/2):17–23. doi: 10.1016/0031-9201(84)90081-5

    Abe K,Kanamori H. 1980. Magnitudes of great shallow earthquakes from 1953 to 1977[J]. Tectonophysics,62(3/4):191–203.

    Abe K,Noguchi S. 1983. Revision of magnitudes of large shallow earthquakes,1897−1912[J]. Phys Earth Planet Inter,33(1):1–11. doi: 10.1016/0031-9201(83)90002-X

    Bent A L. 2011. Moment magnitude (MW) conversion relations for use in hazard assessment in eastern Canada[J]. Seismol Res Lett,82(6):984–990. doi: 10.1785/gssrl.82.6.984

    Bormann P,Liu R,Ren X,Gutdeutsch R,Kaiser D,Castellaro S. 2007. Chinese national network magnitudes,their relation to NEIC magnitudes,and recommendations for new IASPEI magnitude standards[J]. Bull Seismol Soc Am,97(1B):114–127. doi: 10.1785/0120060078

    Bormann P,Saul J. 2008. The new IASPEI standard broadband magnitude mB[J]. Seismol Res Lett,79(5):698–705. doi: 10.1785/gssrl.79.5.698

    Bormann P. 2012. Magnitude calibration formulas and tables, comments on their use and complementary data[G]//New Manual of Seismological Observatory Practice 2 (NMSOP-2). Potsdam: Deutsches GeoForschungsZentrum GFZ: 1−19. https://doi.org/10.2312/GFZ.NMSOP-2_DS_3.1.

    Burchfiel B C,Zhang P Z,Wang Y P,Zhang W Q,Song F M,Deng Q D,Molnar P,Royden L. 1991. Geology of the Haiyuan fault zone,Ningxia-Hui Autonomous Region,China,and its relation to the evolution of the northeastern margin of the Tibetan Plateau[J]. Tectonics,10(6):1091–1110. doi: 10.1029/90TC02685

    Cavalié O,Lasserre C,Doin M P,Peltzer G,Sun J,Xu X,Shen Z K. 2008. Measurement of interseismic strain across the Haiyuan fault (Gansu,China),by InSAR[J]. Earth Planet Sci Lett,275(3/4):246–257.

    Chen R,Petersen M D. 2011. Probabilistic fault displacement hazards for the southern San Andreas fault using scenarios and empirical slips[J]. Earthq Spectra,27(2):293–313. doi: 10.1193/1.3574226

    Chen W P,Molnar P. 1977. Seismic moments of major earthquakes and the average rate of slip in Central Asia[J]. J Geophys Res,82(20):2945–2969. doi: 10.1029/JB082i020p02945

    Cheng J,Rong Y F,Magistrale H,Chen G H,Xu X W. 2017. An MW-based historical earthquake catalog for Mainland China[J]. Bull Seismol Soc Am,107(5):2490–2500. doi: 10.1785/0120170102

    Close U,McCormick E. 1922. Where the mountains walked[J]. Natl Geograph Magaz,12(5):445–464.

    Daout S,Jolivet R,Lasserre C,Doin M P,Barbot S,Tapponnier P,Peltzer G,Socquet A,Sun J. 2016. Along-strike variations of the partitioning of convergence across the Haiyuan fault system detected by InSAR[J]. Geophys J Int,205(1):536–547. doi: 10.1093/gji/ggw028

    Deng Q D,Sung F M,Zhu S L,Li M L,Wang T L,Zhang W Q,Burchfiel B C,Molnar P,Zhang P Z. 1984. Active faulting and tectonics of the Ningxia-Hui Autonomous Region,China[J]. J Geophys Res:Solid Earth,89(B6):4427–4445. doi: 10.1029/JB089iB06p04427

    Deng Q D, Chen S F, Song F M, Zhu S L, Wang Y P, Zhang W Q, Jiao D C, Burchfiel B C, Molnar P, Royden L, Zhang P Z. 1986. Variations in the geometry and amount of slip on the Haiyuan (Nanxihaushan) fault zone, China and the surface rupture of the 1920 Haiyuan earthquake[C]//Earthquake Source Mechanics. Washington: American Geophysical Union, 37: 169–182.

    Di Giacomo D. 2020. ISC‐GEM solution for the Haiyuan earthquake of 16 December 1920[DB/OL]. ISC Seismological Dataset Repository. [2022-01-19]. https://doi.org/10.31905/8IZMESGK.

    Feng X, Ma J, Zhou Y, England P, Parsons B, Rizza M A, Walker R T. 2020. Geomorphology and paleoseismology of the Weinan fault, Shaanxi, Central China, and the source of the 1556 Huaxian earthquake[J]. J Geophys Res: Solid Earth, 125(12): e2019JB017848.

    Gan W J, Zhang P Z, Shen Z K, Niu Z J, Wang M, Wan Y G, Zhou D M, Cheng J. 2007. Present-day crustal motion within the Tibetan Plateau inferred from GPS measurements[J]. J Geophys Res: Solid Earth, 112(B8): B08416.

    Gaudemer Y,Tapponnier P,Meyer B,Peltzer G,Guo S M,Chen Z T,Dai H G,Cifuentes I. 1995. Partitioning of crustal slip between linked,active faults in the eastern Qilian Shan,and evidence for a major seismic gap,the ‘Tianzhu gap’,on the western Haiyuan fault,Gansu (China)[J]. Geophys J Int,120(3):599–645. doi: 10.1111/j.1365-246X.1995.tb01842.x

    Guo P,Han Z J,Gao F,Zhu C H,Gai H L. 2020. A new tectonic model for the 1927 M8.0 Gulang earthquake on the NE Tibetan Plateau[J]. Tectonics,39(9):e2020TC006064.

    Gutenberg B. 1945a. Amplitudes of surface waves and magnitudes of shallow earthquakes[J]. Bull Seismol Soc Am,35(1):3–12. doi: 10.1785/BSSA0350010003

    Gutenberg B. 1945b. Amplitudes of P,PP,and S and magnitude of shallow earthquakes[J]. Bull Seismol Soc Am,35(2):57–69. doi: 10.1785/BSSA0350020057

    Gutenberg B, Richter C F. 1941. Seismicity of the EarthSpecial Papers, Number 34)[M]. New York: Geological Society of America.

    Gutenberg B, Richter C F. 1954. Seismicity of the Earth and Related Phenomena[M]. Princeton: Princeton University Press.

    Gutenberg B,Richter C F. 1956. Earthquake magnitude[J]. Bull Seismol Soc Am,46(2):105–145. doi: 10.1785/BSSA0460020105

    Han L F,Liu-Zeng J,Yao W Q,Shao Y X,Yuan Z D,Wang Y. 2021. Coseismic slip gradient at the western terminus of the 1920 Haiyuan MW7.9 earthquake[J]. J Struct Geol,152:104442. doi: 10.1016/j.jsg.2021.104442

    Hanks T C,Kanamori H. 1979. A moment magnitude scale[J]. J Geophys Res,84:2348–2350. doi: 10.31905/D808B830

    International Seismological Centre. 2013. ISC-GEM earthquake catalogue[DB/OL]. [2022−01−19]. http://doi.org/10.31905/D808B825.

    International Seismological Centre. 2014. On-line bulletin[DB/OL]. [2022−01−19]. https://doi.org/10.31905/D808B830.

    Jiang W L,Han Z J,Guo P,Zhang J F,Jiao Q S,Kang S,Tian Y F. 2017. Slip rate and recurrence intervals of the east Lenglongling fault constrained by morphotectonics:Tectonic implications for the northeastern Tibetan Plateau[J]. Lithosphere,9(3):417–430. doi: 10.1130/L597.1

    Kanamori H. 1977. The energy release in great earthquakes[J]. J Geophys Res,82(20):2981–2987. doi: 10.1029/JB082i020p02981

    Kárník V,Kondorskaya N V,Riznitchenko Ju V,Savarensky E F,Soloviev S L,Shebalin N V,Vanek J,Zátopek A. 1962. Standardization of- magnitude scales[J]. Stud Geophys Geod,6:41–48. doi: 10.1007/BF02590040

    Klinger Y. 2010. Relation between continental strike-slip earthquake segmentation and thickness of the crust[J]. J Geophys Res: Solid Earth, 115(B7): B07306.

    Lasserre C, Morel P H, Gaudemer Y, Tapponnier P, Ryerson F J, King G C P, Métivier F, Kasser M, Kashgarian M, Liu B C, Lu T Y, Yuan D Y. 1999. Postglacial left slip rate and past occurrence of M≥8 earthquakes on the western Haiyuan fault, Gansu, China[J]. J Geophys Res: Solid Earth, 104(B8): 17633-17651.

    Lasserre C, Gaudemer Y, Tapponnier P, Mériaux A S, van der Woerd J, Yuan D Y, Ryerson F J, Finkel R C, Caffee M W. 2002. Fast late Pleistocene slip rate on the Leng Long Ling segment of the Haiyuan fault, Qinghai, China[J]. J Geophys Res: Solid Earth, 107(B11): 2276.

    Li C Y,Zhang P Z,Yin J H,Min W. 2009. Late Quaternary left-lateral slip rate of the Haiyuan fault,northeastern margin of the Tibetan Plateau[J]. Tectonics,28(5):TC5010.

    Lin Z,Liu-Zeng J,Weldon R J,Tian J,Ding C,Du Y. 2020. Modeling repeated coseismic slip to identify and characterize individual earthquakes from geomorphic offsets on strike-slip faults[J]. Earth Planet Sci Lett,545:116313. doi: 10.1016/j.jpgl.2020.116313

    Liu-Zeng J,Klinger Y,Xu X,Lasserre C,Chen G H,Chen W B,Tapponnier P,Zhang B. 2007. Millennial recurrence of large earthquakes on the Haiyuan fault near Songshan,Gansu Province,China[J]. Bull Seismol Soc Am,97(1B):14–34. doi: 10.1785/0120050118

    Liu-Zeng J, Shao Y X, Klinger Y, Xie K J, Yuan D Y, Lei Z S. 2015. Variability in magnitude of paleoearthquakes revealed by trenching and historical records, along the Haiyuan fault, China[J]. J Geophys Res: Solid Earth, 120(12): 8304-8333.

    Matrau R,Klinger Y,van der Woerd J,Liu-Zeng J,Li Z,Xu X,Zheng R. 2019. Late Pleistocene-Holocene slip rate along the Hasi Shan restraining bend of the Haiyuan fault:Implication for faulting dynamics of a complex fault system[J]. Tectonics,38(12):4127–4154. doi: 10.1029/2019TC005488

    Middleton T A, Walker R T, Parsons B, Lei Q Y, Zhou Y, Ren Z K. 2016. A major, intraplate, normal-faulting earthquake: The 1739 Yinchuan event in northern China[J]. J Geophys Res: Solid Earth, 121(1): 293-320.

    Molnar P,Tapponnier P. 1975. Cenozoic tectonics of Asia:Effects of a continental collision:Features of recent continental tectonics in Asia can be interpreted as results of the India-Eurasia collision[J]. Science,189(4201):419–426. doi: 10.1126/science.189.4201.419

    Nishenko S P,Buland R. 1987. A generic recurrence interval distribution for earthquake forecasting[J]. Bull Seismol Soc Am,77(4):1382–1399.

    Okal E A. 2015. Historical seismograms:Preserving an endangered species[J]. Geo Res J,6:53–64. doi: 10.1016/j.grj.2015.01.007

    Ou Q, Kulikova G, Yu J, Elliott A, Parsons B, Walker R. 2020. Magnitude of the 1920 Haiyuan earthquake reestimated using seismological and geomorphological methods[J]. J Geophys Res: Solid Earth, 125(8): e2019JB019244.

    Pacheco J F,Sykes L R. 1992. Seismic moment catalog of large shallow earthquakes,1900 to 1989[J]. Bull Seismol Soc Am,82(3):1306–1349. doi: 10.1785/BSSA0820031306

    Ren Z K,Zhang Z Q,Chen T,Yan S L,Yin J H,Zhang P Z,Zheng W J,Zhang H P,Li C Y. 2016. Clustering of offsets on the Haiyuan fault and their relationship to paleoearthquakes[J]. Geol Soc Am Bull,128(1/2):3–18.

    Richter C F. 1958. Elementary Seismology[M]. San Francisco: W. H. Freeman and Company: 768.

    Shao Y X,Liu-Zeng J,van der Woerd J,Klinger Y,Oskin M E,Zhang J Y,Wang P,Wang P T,Wang W,Yao W Q. 2021. Late Pleistocene slip rate of the central Haiyuan fault constrained from optically stimulated luminescence,14C,and cosmogenic isotope dating and high-resolution topography[J]. Geol Soc Am Bull,133(7/8):1347–1369.

    Shao Z G,Xu J,Ma H S,Zhang L P. 2016. Coulomb stress evolution over the past 200 years and seismic hazard along the Xianshuihe fault zone of Sichuan,China[J]. Tectonophysics,670:48–65. doi: 10.1016/j.tecto.2015.12.018

    Thatcher W, Lisowski M. 1987. Long‐term seismic potential of the San Andreas fault southeast of San Francisco, California[J]. J Geophys Res: Solid Earth, 92(B6): 4771−4784.

    Thatcher W, Marshall G, Lisowski M. 1997. Resolution of fault slip along the 470-km-long rupture of the great 1906 San Francisco earthquake and its implications[J]. J Geophys Res: Solid Earth, 102(B3): 5353−5367.

    Utsu T. 1979. Seismicity of Japan from 1885 through 1925:A new catalog of earthquakes of M≥6 Felt in Japan and smaller earthquakes which caused damage in Japan[J]. Bull Earthq Res Inst,54(2):253–308.

    Wald D J,Kanamori H,Helmberger D V,Heaton T H. 1993. Source study of the 1906 San Francisco earthquake[J]. Bull Seismol Soc Am,83(4):981–1019. doi: 10.1785/BSSA0830040981

    Wang J. 2020. Conservation and utilization of historical seismograms from early stage (AD 1904−1948),Mainland China[J]. Seismol Res Lett,91(3):1394–1402. doi: 10.1785/0220190268

    Wells D L,Coppersmith K J. 1994. New empirical relationships among magnitude,rupture length,rupture width,rupture area,and surface displacement[J]. Bull Seismol Soc Am,84(4):974–1002.

    Working Group on California Earthquake Probabilities. 1988. Probabilities of Large Earthquakes Occurring in California on the San Andreas Fault[R]. San Francisco: US Geological Survey: 88–398.

    Working Group on California Earthquake Probabilities. 1990. Probabilities of Large Earthquakes in the San Francisco Bay Region, California[R]. San Francisco: US Geological Survey: 811–814.

    Working Group on California Earthquake Probabilities. 1995. Seismic hazards in southern California:Probable earthquakes,1994 to 2024[J]. Bull Seismol Soc Am,85(2):379–439.

    Working Group on California Earthquake Probabilities. 1999. Earthquake Probabilities in the San Francisco Bay Region: 2000 to 2030: A Summary of Findings[R]. Reston: US Geological Survey: 1–60.

    Xiong X,Shan B,Zhou Y M,Wei S J,Li Y D,Wang R J,Zheng Y. 2017. Coulomb stress transfer and accumulation on the Sagaing fault,Myanmar,over the past 110 years and its implications for seismic hazard[J]. Geophys Res Lett,44(10):4781–4789. doi: 10.1002/2017GL072770

    Xu J,Liu‐Zeng J,Yuan Z D,Yao W Q,Zhang J Y,Ji L Y,Shao Z G,Han L F,Wang Z J. 2022. Airborne LiDAR-based mapping of surface ruptures and coseismic slip of the 1955 Zheduotang earthquake on the Xianshuihe fault,east Tibet[J]. Bull Seismol Soc Am,112(6):3102–3120. doi: 10.1785/0120220012

    Xu X R,Zhang Z G,Hu F,Chen X F. 2019. Dynamic rupture simulations of the 1920 MS8.5 Haiyuan earthquake in China[J]. Bull Seismol Soc Am,109(5):2009–2020. doi: 10.1785/0120190061

    Xu Y R, He H L, Deng Q D, Allen M B, Sun H Y, Bi L S. 2018. The CE 1303 Hongdong earthquake and the Huoshan piedmont fault, Shanxi graben: Implications for magnitude limits of normal fault earthquakes[J]. J Geophys Res: Solid Earth, 123(4): 3098−3121.

    Xu Y R,Liu-Zeng J,Allen M B,Zhang W H,Du P. 2021. Landslides of the 1920 Haiyuan earthquake,northern China[J]. Landslides,18(3):935–953. doi: 10.1007/s10346-020-01512-5

    Yao W Q, Liu-Zeng J, Oskin M E, Wang W, Li Z F, Prush V, Zhang J Y, Shao Y X, Yuan Z D, Klinger Y. 2019. Reevaluation of the Late Pleistocene slip rate of the Haiyuan fault near Songshan, Gansu Province, China[J]. J Geophys Res: Solid Earth, 124(5): 5217−5240.

    Zhang P Z,Molnar P,Burchfiel B C,Royden L,Wang Y P,Deng Q D,Song F M,Zhang W Q,Jiao D C. 1988a. Bounds on the Holocene slip rate of the Haiyuan fault,north-central China[J]. Quat Res,30(2):151–164. doi: 10.1016/0033-5894(88)90020-8

    Zhang P Z,Molnar P,Zhang W Q,Deng Q D,Wang Y P,Burchfiel B C,Song F M,Royden L,Jiao D C. 1988b. Bounds on the average recurrence interval of major earthquakes along the Haiyuan fault in north-central China[J]. Seismol Res Lett,59(3):81–89. doi: 10.1785/gssrl.59.3.81

    Zhang P Z,Yang Z X,Gupta H K,Bhatia S C,Shedlock K M. 1999. Global Seismic Hazard Assessment Program (GSHAP) in continental Asia[J]. Annali Geofis,42(6):1167–1190.

    Zhang P Z, Min W, Deng Q D, Mao F Y. 2003. Paleoearthquake rupture behavior and recurrence of great earthquakes along the Haiyuan fault, northwestern China[J]. Science in China: Series, 48(3): 364−375.

    Zhang W Q,Jiao D C,Zhang P Z,Molnar P,Burchfiel B C,Deng Q D,Wang Y P,Song F M. 1987. Displacement along the Haiyuan fault associated with the great 1920 Haiyuan,China,earthquake[J]. Bull Seismol Soc Am,77(1):117–131.

    Zheng G,Wang H,Wright T J,Lou Y D,Zhang R,Zhang W X,Shi C,Huang J F,Wei N. 2017. Crustal deformation in the India-Eurasia collision zone from 25 years of GPS measurements[J]. J Geophys Res:Solid Earth,122(11):9290–9312.

    Zhou H L,Allen C R,Kanamori H. 1983. Rupture complexity of the 1970 Tonghai and 1973 Luhuo earthquakes,China,from P-wave inversion,and relationship to surface faulting[J]. Bull Seismol Soc Am,73(6A):1585–1597. doi: 10.1785/BSSA07306A1585

图(4)  /  表(1)
计量
  • 文章访问数:  765
  • HTML全文浏览量:  386
  • PDF下载量:  209
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-08
  • 修回日期:  2022-11-13
  • 网络出版日期:  2023-03-08
  • 发布日期:  2023-07-14

目录

    /

    返回文章
    返回