利用密集台阵资料研究宾川盆地浅层介质尾波Q

都燊, 俞言祥, 肖亮

都燊,俞言祥,肖亮. 2023. 利用密集台阵资料研究宾川盆地浅层介质尾波Q值. 地震学报,45(6):1011−1024. DOI: 10.11939/jass.20220069
引用本文: 都燊,俞言祥,肖亮. 2023. 利用密集台阵资料研究宾川盆地浅层介质尾波Q值. 地震学报,45(6):1011−1024. DOI: 10.11939/jass.20220069
Du S,Yu Y X,Xiao L. 2023. Coda wave Q values of shallow media in Binchuan basin using dense array data. Acta Seismologica Sinica45(6):1011−1024. DOI: 10.11939/jass.20220069
Citation: Du S,Yu Y X,Xiao L. 2023. Coda wave Q values of shallow media in Binchuan basin using dense array data. Acta Seismologica Sinica45(6):1011−1024. DOI: 10.11939/jass.20220069

利用密集台阵资料研究宾川盆地浅层介质尾波Q

基金项目: 国家重点研发计划(2020YFA0710603)和中国地震局地球物理研究所基本科研业务专项(DQJB22Z03)联合资助
详细信息
    作者简介:

    都燊,博士,助理研究员,主要从事浅部介质衰减特征、土层地震反应等方面的研究,e-mail:shenDu93@hotmail.com

    通讯作者:

    俞言祥,博士,研究员,主要从事强地震动特性、地震动衰减关系、地震动数值模拟、地震区划理论与应用等方面的研究,e-mail:yuyx@cea-igp.ac.cn

  • 中图分类号: P315.31

Coda wave Q values of shallow media in Binchuan basin using dense array data

  • 摘要:

    为得到更准确的浅部介质衰减参数,便于工程地震领域开展更精细的地震动模拟等研究,以气枪密集台阵资料为基础,联合天然地震资料,利用Sato单散射模型研究了云南宾川盆地浅层介质尾波衰减特征。结果显示,随着频率的增加,尾波QQc整体呈增加趋势,符合Q值的频率依赖关系。在空间上,该地区Qc值分布具有明显的横向不均匀性,位于研究区中部宾川盆地的台站Qc值较低,而位于研究区南西和北东方向的山地丘陵地区的台站Qc值较高,与速度层析成像研究结果一致。研究区平均Qc频率依赖关系为$ { {Q}_{\mathrm{c}} ( f ) =28.04{f}^{1.07}}$,气枪震源密集台阵资料得到的Q0值较天然地震得到的值更低,证明使用密集台阵资料得到的结果反映了更浅部介质的衰减特征,而更高的频率依赖指数$\, \eta \,$值意味着浅层介质的非均匀性高于深部介质,符合实际情况。宾川盆地Q0值大于松辽盆地、华北盆地和中国大陆平均沉积层,而指数$\, \eta \,$小于松辽盆地和中国大陆,表明本研究所用资料反映的Q值信息介于近地表与深部介质之间。随着尾波流逝时间窗口的增大,Q0逐渐增大,而频率依赖性降低。因此,在研究区尺度较小且选择的天然地震事件震级不高的情况下,需要选取较小的流逝时间窗口以确保满足研究需要。此外,局部地形和地震地质构造变化可能导致衰减参数和相应的标准差相差较大。使用气枪震源和近震资料配合小尺度密集台阵,可以得到较准确的浅层介质衰减参数,为工程应用和浅部结构探测提供了新的思路。

    Abstract:

    In order to obtain more accurate attenuation parameters of shallow medium and carry out more detailed ground motion simulation research in the field of engineering earthquakes, this paper uses the Sato single scattering model to study the coda attenuation characteristics of shallow medium in the Binchuan basin based on the dense array data and combined with natural seismic data. The results showed that with the increase of frequency, the coda Q value Qc showed an increasing trend, which was in line with the frequency dependence of the Q value. The spatial distribution of Qc values in this area has obvious lateral inhomogeneity. The stations located in the Binchuan basin in the central part of the study area have lower Qc values, while the stations located in the hilly areas of the study area in the southwest and northeast directions have higher Qc values, which is consistent with the velocity tomography results. The frequency dependence of the average Qc in the study area is $ {Q}_{{\rm{c}}} ( f ) =28.04{f}^{1.07} $. The Q0 value obtained by the dense array data is lower than that obtained by the natural earthquake, which proves that the results obtained by the dense array data reflects the attenuation characteristics of the shallower medium. And a higher $ \eta $ value means that the inhomogeneity of the shallow medium is higher than that of the deep medium, which is in line with the actual situation. The Q0 value of the Binchuan basin is larger than the Q0 value of the Songliang basin, the North China basin and the average sedimentary layer of the Chinese mainland, while the index $ \eta $ is smaller than the $ \eta $ value of the Songliao basin and the Chinese mainland, indicating that the information reflected by the dense array is between the near-surface and deep media. As the depth increases, the inhomogeneity of the medium gradually decreases, and the dependence of the Q value with frequency gradually weakens. Q0 increases with the lapse time window of coda, and the index $ \eta $ is the opposite. It is necessary to select a small lapse time window to ensure the accuracy of the results when the scale of study area is small and the magnitude of the selected natural earthquake events not large. In addition, local topographic and seismic-tectonic changes may lead to large differences in attenuation parameters and standard deviations. The useage of airgun source and near-field earthquake with small-scale dense seismic arrays can obtain more accurate attenuation parameters in shallow media, which provides a new idea for engineering application and shallow structure detection.

  • 图  1   密集台阵及震源位置分布图

    Figure  1.   Location of dense seismic array and distribution of hypocenters

    图  2   研究区射线覆盖及信号叠加对比示意图

    (a) 研究区内的射线分布;(b) 710号台站原始信号(上)和叠加后信号(下)

    Figure  2.   Distribution of rays in the study area and the comparison of signal before and after stacking

    (a) Distribution of rays in the study area;(b) Original signal (upper) and stacked signal (lower) of the station No. 710

    图  3   尾波Q值拟合示意图(以气枪信号为例)

    (a) 11号台站叠加后信号,tc表示尾波起算时间,红色方框表示截取的尾波窗口;(b) 函数$\mathrm{l}\mathrm{n} [ A ( f|r \text{,} t ) /K ( r \text{,} \alpha ) ] $随时间的变化曲线,红色直线为最小二乘拟合线

    Figure  3.   Diagram of coda Q value fitting (take the airgun signal as an example)

    (a) The stacked signal of the station No. 11,tc represents the the starting point of coda,the red box indicates the selected coda window;(b) The function $\mathrm{l}\mathrm{n} [ A ( f|r \text{,} t ) /K ( r\text{,} \alpha ) ] $ versus lapse time along with least squares fits of selected coda window,the red line represents the fitted line

    图  4   不同中心频率下Qc值的空间分布及与速度层析成像结果对比

    (a−e) 2—6 Hz频率尾波Qc值的空间分布,黑线表示宾川盆地范围;(f) 宾川地区0 km处速度层析成像结果(引自张云鹏等,2020

    Figure  4.   Spatial distribution of Qc values at different frequencies and comparison with velocity tomography

    (a−e) Spatial distribution of coda Qc values at 2−6 Hz frequency,the black line indicates the extent of Binchuan basin;(f) Velocity tomography results at 0 km depth in Binchuan area (from Zhang et al,2020

    图  5   六个台站位置(a)及其Qc值与频率的关系(b)

    Figure  5.   Location of the six stations (a) and the relationship between Qc and frequency for the stations (b)

    图  6   30号台站Q0和频率依赖指数 $ \eta $ 随流逝时间的变化曲线

    Figure  6.   Values of Q0 and frequency-dependent coefficient $ \eta $ as function of lapse time for the station No. 30

    图  7   全区域各台站尾波衰减参数及标准差

    (a) 各台站Q0统计特征;(b) 各台站频率依赖指数 $ \eta $ 统计特征

    Figure  7.   Coda attenuation parameters and their standard deviations of each station in the study area

    (a) The statistical characteristics of Q0 of each station;(b) The statistical characteristics of the frequency dependence coefficient $ \eta $ of each station

    表  1   所用地震详细参数

    Table  1   Parameters of the earthquakes using in the study

    发震时刻东经/°北纬/°ML震源
    深度/km
    发震时刻东经/°北纬/°ML震源
    深度/km
    年-月-日时:分:秒年-月-日时:分:秒
    2017-03-26 16:24:03 100.563 25.852 0.4 17 2017-04-28 00:16:55 100.445 25.831 1.3 15
    2017-03-27 03:28:14 100.394 25.928 0.8 8 2017-05-07 10:20:12 100.698 25.891 1.6 5
    2017-03-31 04:54:56 100.594 25.829 0.4 18 2017-05-12 11:27:14 100.681 25.863 1.3 6
    2017-04-03 17:48:41 100.409 25.815 1.0 14 2017-05-12 11:36:35 100.648 25.884 1.4 10
    2017-04-12 21:05:22 100.673 25.659 0.5 9 2017-05-21 21:42:29 100.451 25.771 1.0 5
    2017-04-13 10:41:05 100.613 25.908 1.7 5 2017-05-23 09:19:53 100.359 25.680 1.5 12
    下载: 导出CSV

    表  2   30号台站不同流逝时间下Q0和频率依赖指数 $ \eta $ 的统计结果

    Table  2   Q0 and frequency-dependent coefficient $ \mathrm{\eta } $ at different lapse times of the station No.30

    流逝时间/s Q0 ${ \delta }{ Q_0}$ $ \eta $ ${\delta }\eta$
    5 26.00 15.55 1.057 0.342
    10 38.11 18.59 0.988 0.242
    15 50.60 24.27 0.937 0.227
    下载: 导出CSV

    表  3   Q0标准差较大的台站详细信息

    Table  3   Information of the stations with larger standard deviation of Q0

    台站编号东经/°北纬/°Q0$\delta{ Q_0}$$ \eta $${\delta }\eta$
    195100.399 125.719 938371.1230.431
    633100.523 525.657 248360.7130.674
    613100.538 825.680 061330.7020.401
    83100.670 625.835 440310.9580.298
    18100.630 425.912 743290.8310.282
    下载: 导出CSV

    表  4   表3中相邻台站的Q0结果

    Table  4   Results of Q0 for neighboring stations in Table 3

    台站编号东经/°北纬/°Q0$\delta{ Q_0}$$ \eta $${\delta }\eta$
    196100.417 525.722 42551.1480.198
    632100.501 025.660 63450.9120.218
    752100.530 125.680 81861.1950.202
    81100.639 725.840 231160.8570.347
    17100.620 125.901 323111.1070.335
    下载: 导出CSV
  • 陈婷,董建辉,王晓山. 2017. 唐山地区尾波 Q值时空分布特征[J]. 地震地磁观测与研究,38(2):51–56.

    Chen T,Dong J H,Wang X S. 2017. Temporal and spatial distribution characteristics of the coda wave Q value in Tangshan region[J]. Seismological and Geomagnetic Observation and Research,38(2):51–56 (in Chinese).

    洪玉清,杨选. 2015. 利用Aki模型对新丰江水库地区尾波 Q值的研究[J]. 华南地震,35(3):66–71. doi: 10.13512/j.hndz.2015.03.010

    Hong Y Q,Yang X. 2015. Q value research of coda wave in Xinfengjiang reservoir area based on Aki model[J]. South China Journal of Seismology,35(3):66–71 (in Chinese).

    刘斌,Kern H,Popp T. 1998. 不同围压下孔隙度不同的干燥及水饱和岩样中的纵横波速度及衰减[J]. 地球物理学报,41(4):537–546. doi: 10.3321/j.issn:0001-5733.1998.04.012

    Liu B,Kern H,Popp T. 1998. Velocities and attenuation of P- and S-waves in dry and wet rocks with different porosities under different confining pressures[J]. Acta Geophysica Sinica,41(4):537–546 (in Chinese).

    罗睿洁,吴中海,黄小龙,黄小巾,周春景,田婷婷. 2015. 滇西北宾川地区主要活动断裂及其活动构造体系[J]. 地质通报,34(1):155–170. doi: 10.3969/j.issn.1671-2552.2015.01.013

    Luo R J,Wu Z H,Huang X L,Huang X J,Zhou C J,Tian T T. 2015. The main active faults and the active tectonic system of Binchuan area,northwestern Yunnan[J]. Geological Bulletin of China,34(1):155–170 (in Chinese).

    师海阔,曾宪伟,张立恒,贺永忠. 2016. 利用Aki模型对宁夏及邻区尾波 Q值分布特征的研究[J]. 地震工程学报,38(1):51–57. doi: 10.3969/j.issn.1000-0844.2016.01.0051

    Shi H K,Zeng X W,Zhang L H,He Y Z. 2016. Distribution characteristics of Q values of seismic coda in Ningxia and neighboring area based on Aki model[J]. China Earthquake Engineering Journal,38(1):51–57 (in Chinese).

    史水平,周斌,黄树生,阎春恒,郭培兰. 2020. 广西龙滩水库库区地震尾波衰减特征[J]. 地震学报,42(2):151–162.

    Shi S P,Zhou B,Huang S S,Yan C H,Guo P L. 2020. Characteristics of seismic coda attenuation in Longtan reservoir of Guangxi region[J]. Acta Seismologica Sinica,42(2):151–162 (in Chinese).

    苏金波,王宝善,王海涛,王琼,冀战波. 2015. 利用大容量气枪震源资料研究北天山地区介质衰减特征[J]. 地震研究,38(4):598–605.

    Su J B,Wang B S,Wang H T,Wang Q,Ji Z B. 2015. Research on characteristic of seismic attenuation in the northern Tianshan area using seismic signal from airgun source[J]. Journal of Seismological Research,38(4):598–605 (in Chinese).

    苏有锦. 2009. 云南地区地震波衰减(Q值)结构反演成像研究[D]. 合肥:中国科学技术大学:36−38.

    Su Y J. 2009. Inversion Tomography of the Seismic Wave Attenuation (Q Value) Structure in Yunnan Region[D]. Hefei:University of Science and Technology of China:36−38 (in Chinese).

    孙业君,黄耘,王斌,王俊,李锋,江昊琳. 2014. 江苏地区尾波 Q值特征研究[J]. 地震,34(1):24–33.

    Sun Y J,Huang Y,Wang B,Wang J,Li F,Jiang H L. 2014. Characteristics of coda wave Q values in Jiangsu area[J]. Earthquake,34(1):24–33 (in Chinese).

    王宝善,王伟涛,葛洪魁,徐平,王彬. 2011. 人工震源地下介质变化动态监测[J]. 地球科学进展,26(3):249–256.

    Wang B S,Wang W T,Ge H K,Xu P,Wang B. 2011. Monitoring subsurface changes with active sources[J]. Advances in Earth Science,26(3):249–256 (in Chinese).

    王勤彩,陈章立,王中平,郑斯华. 2010. 云南地区散射衰减、吸收衰减及尾波衰减的综合研究[J]. 地球物理学进展,25(2):419–431. doi: 10.3969/j.issn.1004-2903.2010.02.007

    Wang Q C,Chen Z L,Wang Z P,Zheng S H. 2010. Comprehensive study of scattering,intrinsic and coda attenuation in the Yunnan area[J]. Progress in Geophysics,25(2):419–431 (in Chinese).

    王振宇,赵培培,薄景山. 2017. 地震动随机模拟方法主要影响参数分析[J]. 世界地震工程,33(3):34–41.

    Wang Z Y,Zhao P P,Bo J S. 2017. Analysis for the effects of main parameters on ground motions by stochastic simulation method[J]. World Earthquake Engineering,33(3):34–41 (in Chinese).

    杨微,王宝善,葛洪魁,王伟涛,陈颙. 2013. 大容量气枪震源主动探测技术系统及试验研究[J]. 中国地震,29(4):399–410.

    Yang W,Wang B S,Ge H K,Wang W T,Chen Y. 2013. The active monitoring system with large volume airgun source and experiment[J]. Earthquake Research in China,29(4):399–410 (in Chinese).

    张云鹏,王宝善,林国庆,王伟涛,杨微,吴中海. 2020. 利用密集台阵近震层析成像研究云南宾川上地壳速度结构[J]. 地球物理学报,63(9):3292–3306.

    Zhang Y P,Wang B S,Lin G Q,Wang W T,Yang W,Wu Z H. 2020. Upper crustal velocity structure of Binchuan,Yunnan revealed by dense array local seismic tomography[J]. Chinese Journal of Geophysics,63(9):3292–3306 (in Chinese).

    赵秋芳,云美厚,朱丽波,李晓斌,李伟娜. 2019. 近地表 Q值测试方法研究进展与展望[J]. 石油地球物理勘探,54(6):1397–1418. doi: 10.13810/j.cnki.issn.1000-7210.2019.06.026

    Zhao Q F,Yun M H,Zhu L B,Li X B,Li W N. 2019. Progress and outlook of near-surface quality factor Q measurement and inversion[J]. Oil Geophysical Prospecting,54(6):1397–1418 (in Chinese).

    周连庆,赵翠萍,修济刚,陈章立,郑斯华. 2008. 利用天然地震研究地壳 Q值的方法和进展[J]. 国际地震动态,(2):1–11.

    Zhou L Q,Zhao C P,Xiu J G,Chen Z L,Zheng S H. 2008. Methods and developments of research on crustal Q value by using earthquakes[J]. Recent Developments in World Seismology,(2):1–11 (in Chinese).

    周庆,虢顺民,向宏发. 2004. 滇西北地区潜在震源区的划分原则和方法[J]. 地震地质,26(4):761–771. doi: 10.3969/j.issn.0253-4967.2004.04.022

    Zhou Q,Guo S M,Xiang H F. 2004. Principle and method of delineation of potential seismic sources in northeastern Yunnan Province[J]. Seismology and Geology,26(4):761–771 (in Chinese).

    朱新运. 2011. 衰减、场地响应等地震波传播相关信息综合研究[D]. 北京:中国地震局地球物理研究所:66−79.

    Zhu X Y. 2011. Comprehensive Study on Seismic Wave Propagation Related Information Such as Attenuation and Site Response[D]. Beijing:Institute of Geophysics,China Earthquake Administration:66−79 (in Chinese).

    朱新运,刘杰,张帆. 2006. 基于Aki模型的近震S波尾波 Q值求解及分析软件研制[J]. 地震研究,29(1):76–80. doi: 10.3969/j.issn.1000-0666.2006.01.015

    Zhu X Y,Liu J,Zhang F. 2006. Development of Q-value calculating and processing software using S-wave coda in local earthquakes based on Aki model[J]. Journal of Seismological Research,29(1):76–80 (in Chinese).

    Abdel-Fattah A K,Morsy M,El-Hady S,Kim K Y,Sami M. 2008. Intrinsic and scattering attenuation in the crust of the Abu Dabbab area in the eastern desert of Egypt[J]. Phys Earth Planet Inter,168(1/2):103–112.

    Aki K. 1969. Analysis of the seismic coda of local earthquakes as scattered waves[J]. J Geophys Res,74(2):615–631. doi: 10.1029/JB074i002p00615

    Aki K,Chouet B. 1975. Origin of coda waves:Source,attenuation,and scattering effects[J]. J Geophys Res,80(23):3322–3342. doi: 10.1029/JB080i023p03322

    Aki K. 1980. Scattering and attenuation of shear waves in the lithosphere[J]. J Geophys Res: Solid Earth,86(B11):6496–6504.

    Correig A M,Mitchell B J,Ortiz R. 1990. Seismicity and coda Q values in the eastern Pyrenees:First results from the La Cerdanya seismic network[J]. Pure Appl Geophys,132(1):311–329.

    Das R,Mukhopadhyay S,Singh R K,Baidya P R. 2018. Lapse time and frequency-dependent coda wave attenuation for Delhi and its surrounding regions[J]. Tectonophysics, 738 739 :51−63.

    Dinesh K,Sarkar I,Sriram V,Khattri K N. 2005. Estimation of the source parameters of the Himalaya earthquake of October 19,1991,average effective shear wave attenuation parameter and local site effects from accelerograms[J]. Tectonophysics,407:1–24

    Domínguez T,Rebollar C J,Fabriol H. 1997. Attenuation of coda waves at the Cerro Prieto geothermal field,Baja California,Mexico[J]. Bull Seismol Soc Am,87(5):1368–1374. doi: 10.1785/BSSA0870051368

    Herrmann R B. 1980. Q estimates using the coda of local earthquake[J]. Bull Seismol Soc Am,70(2):447–468. doi: 10.1785/BSSA0700020447

    Jin A S,Aki K. 1988. Spatial and temporal correlation between coda Q and seismicity in China[J]. Bull Seismol Soc Am,78(2):741–769. doi: 10.1785/BSSA0780020741

    Kosuga M. 1992. Dependence of coda Q on frequency and lapse time in the western Nagano region,central Japan[J]. J Phys Earth,40(2):421–445. doi: 10.4294/jpe1952.40.421

    Ma’hood M,Hamzehloo H. 2009. Estimation of coda wave attenuation in east central Iran[J]. J Seismol,13(1):125–139. doi: 10.1007/s10950-008-9130-2

    Padhy S,Subhadra N,Kayal J R. 2011. Frequency-dependent attenuation of body and coda waves in the Andaman Sea Basin[J]. Bull Seismol Soc Am,101(1):109–125. doi: 10.1785/0120100032

    Pulli J J. 1984. Attenuation of coda waves in New England[J]. Bull Seismol Soc Am,74(4):1149–1166.

    Rautian T G,Khalturin V I. 1978. The use of the coda for determination of the earthquake source spectrum[J]. Bull Seismol Soc Am,68(4):923–948. doi: 10.1785/BSSA0680040923

    Roecker S W,Tucker B,King J,Hatzfeld D. 1982. Estimates of Q in central Asia as a function of frequency and depth using the coda of locally recorded earthquakes[J]. Bull Seismol Soc Am,72(1):129–149. doi: 10.1785/BSSA0720010129

    Sato H. 1977. Energy propagation including scattering effects single isotropic scattering approximation[J]. J Phys Earth,25(1):27–41. doi: 10.4294/jpe1952.25.27

    Su F,Aki K. 1995. Site amplification factors in central and southern California determined from coda waves[J]. Bull Seismol Soc Am,85(2):452–466.

    Tian W,Li Z W. 2020. S wave anelastic attenuation of shallow sediments in mainland China[J]. Earth Space Sci,7(10):e2020EA001348. doi: 10.1029/2020EA001348

    Toksöz M N,Johnston D H,Timur A. 1979. Attenuation of seismic waves in dry and saturated rocks:I. Laboratory measurements[J]. Geophysics,44(4):681–690. doi: 10.1190/1.1440969

    Wang S,Li Z W. 2018. S-wave attenuation of the shallow sediments in the North China basin based on borehole seismograms of local earthquakes[J]. Geophys J Int, 214 :1391−1400.

    Wang W,Shearer P M. 2019. An improved method to determine coda- Q,earthquake magnitude,and site amplification:Theory and application to southern California[J]. J Geophys Res: Solid Earth,124(1):578–598. doi: 10.1029/2018JB015961

    Wong V,Rebollar C J,Munguía L. 2001. Attenuation of coda waves at the Tres Vírgenes Volcanic area,Baja California Sur,Mexico[J]. Bull Seismol Soc Am,91(4):683–693. doi: 10.1785/0120000025

  • 期刊类型引用(3)

    1. Zongchao Li,Zhiwei Ji,Jize Sun,Hiroe Miyake,Yanna Zhao,Hongjun Si,Mengtan Gao,Yi Ding. High-Probability Ground Motion Simulation in Maduo County for the Maduo M_S7.4 Earthquake in 2021:A Possible Supershear Earthquake. Journal of Earth Science. 2025(02): 781-800 . 必应学术
    2. 赵扬锋,樊艺,荆刚,刘玉春,王学滨. 断层黏滑失稳过程声发射特征试验研究. 岩石力学与工程学报. 2022(S2): 3101-3113 . 百度学术
    3. 孟增,汪栋梁,郝鹏. 面向概率-区间混合可靠性分析的自适应共轭控制方法与应用. 应用力学学报. 2022(06): 1076-1085 . 百度学术

    其他类型引用(2)

图(7)  /  表(4)
计量
  • 文章访问数:  136
  • HTML全文浏览量:  54
  • PDF下载量:  29
  • 被引次数: 5
出版历程
  • 收稿日期:  2022-05-11
  • 修回日期:  2022-07-21
  • 网络出版日期:  2023-12-24
  • 刊出日期:  2023-12-24

目录

    /

    返回文章
    返回