利用密集台阵资料研究宾川盆地浅层介质尾波Q

都燊, 俞言祥, 肖亮

都燊,俞言祥,肖亮. 2023. 利用密集台阵资料研究宾川盆地浅层介质尾波Q值. 地震学报,45(6):1011−1024. DOI: 10.11939/jass.20220069
引用本文: 都燊,俞言祥,肖亮. 2023. 利用密集台阵资料研究宾川盆地浅层介质尾波Q值. 地震学报,45(6):1011−1024. DOI: 10.11939/jass.20220069
Du S,Yu Y X,Xiao L. 2023. Coda wave Q values of shallow media in Binchuan basin using dense array data. Acta Seismologica Sinica45(6):1011−1024. DOI: 10.11939/jass.20220069
Citation: Du S,Yu Y X,Xiao L. 2023. Coda wave Q values of shallow media in Binchuan basin using dense array data. Acta Seismologica Sinica45(6):1011−1024. DOI: 10.11939/jass.20220069

利用密集台阵资料研究宾川盆地浅层介质尾波Q

基金项目: 国家重点研发计划(2020YFA0710603)和中国地震局地球物理研究所基本科研业务专项(DQJB22Z03)联合资助
详细信息
    作者简介:

    都燊,博士,助理研究员,主要从事浅部介质衰减特征、土层地震反应等方面的研究,e-mail:shenDu93@hotmail.com

    通讯作者:

    俞言祥,博士,研究员,主要从事强地震动特性、地震动衰减关系、地震动数值模拟、地震区划理论与应用等方面的研究,e-mail:yuyx@cea-igp.ac.cn

  • 中图分类号: P315.31

Coda wave Q values of shallow media in Binchuan basin using dense array data

  • 摘要:

    为得到更准确的浅部介质衰减参数,便于工程地震领域开展更精细的地震动模拟等研究,以气枪密集台阵资料为基础,联合天然地震资料,利用Sato单散射模型研究了云南宾川盆地浅层介质尾波衰减特征。结果显示,随着频率的增加,尾波QQc整体呈增加趋势,符合Q值的频率依赖关系。在空间上,该地区Qc值分布具有明显的横向不均匀性,位于研究区中部宾川盆地的台站Qc值较低,而位于研究区南西和北东方向的山地丘陵地区的台站Qc值较高,与速度层析成像研究结果一致。研究区平均Qc频率依赖关系为$ { {Q}_{\mathrm{c}} ( f ) =28.04{f}^{1.07}}$,气枪震源密集台阵资料得到的Q0值较天然地震得到的值更低,证明使用密集台阵资料得到的结果反映了更浅部介质的衰减特征,而更高的频率依赖指数$\, \eta \,$值意味着浅层介质的非均匀性高于深部介质,符合实际情况。宾川盆地Q0值大于松辽盆地、华北盆地和中国大陆平均沉积层,而指数$\, \eta \,$小于松辽盆地和中国大陆,表明本研究所用资料反映的Q值信息介于近地表与深部介质之间。随着尾波流逝时间窗口的增大,Q0逐渐增大,而频率依赖性降低。因此,在研究区尺度较小且选择的天然地震事件震级不高的情况下,需要选取较小的流逝时间窗口以确保满足研究需要。此外,局部地形和地震地质构造变化可能导致衰减参数和相应的标准差相差较大。使用气枪震源和近震资料配合小尺度密集台阵,可以得到较准确的浅层介质衰减参数,为工程应用和浅部结构探测提供了新的思路。

    Abstract:

    In order to obtain more accurate attenuation parameters of shallow medium and carry out more detailed ground motion simulation research in the field of engineering earthquakes, this paper uses the Sato single scattering model to study the coda attenuation characteristics of shallow medium in the Binchuan basin based on the dense array data and combined with natural seismic data. The results showed that with the increase of frequency, the coda Q value Qc showed an increasing trend, which was in line with the frequency dependence of the Q value. The spatial distribution of Qc values in this area has obvious lateral inhomogeneity. The stations located in the Binchuan basin in the central part of the study area have lower Qc values, while the stations located in the hilly areas of the study area in the southwest and northeast directions have higher Qc values, which is consistent with the velocity tomography results. The frequency dependence of the average Qc in the study area is $ {Q}_{{\rm{c}}} ( f ) =28.04{f}^{1.07} $. The Q0 value obtained by the dense array data is lower than that obtained by the natural earthquake, which proves that the results obtained by the dense array data reflects the attenuation characteristics of the shallower medium. And a higher $ \eta $ value means that the inhomogeneity of the shallow medium is higher than that of the deep medium, which is in line with the actual situation. The Q0 value of the Binchuan basin is larger than the Q0 value of the Songliang basin, the North China basin and the average sedimentary layer of the Chinese mainland, while the index $ \eta $ is smaller than the $ \eta $ value of the Songliao basin and the Chinese mainland, indicating that the information reflected by the dense array is between the near-surface and deep media. As the depth increases, the inhomogeneity of the medium gradually decreases, and the dependence of the Q value with frequency gradually weakens. Q0 increases with the lapse time window of coda, and the index $ \eta $ is the opposite. It is necessary to select a small lapse time window to ensure the accuracy of the results when the scale of study area is small and the magnitude of the selected natural earthquake events not large. In addition, local topographic and seismic-tectonic changes may lead to large differences in attenuation parameters and standard deviations. The useage of airgun source and near-field earthquake with small-scale dense seismic arrays can obtain more accurate attenuation parameters in shallow media, which provides a new idea for engineering application and shallow structure detection.

  • 珊溪水库位于浙江省温州市文成县与泰顺县交界处,隶属于浙东南褶皱带次级构造单元温州—临海坳陷带南部的泰顺—青田断坳,其西侧以北东向的余姚—丽水深断层为界(马志江等,2016)。该水库于2000年5月开始蓄水,蓄水前地质构造相对稳定,无历史地震记录(赵冬等,2006)。蓄水两年后,库区附近浅源地震频发,且持续至今,震群在时空上呈明显的丛集分布特性,地震总体沿贯穿水库的双溪—焦溪垟断裂成组成段优势分布,先后发生多组显著的高密度震群活动,时序上沿断裂走向由断层库区淹没区向断层两端迁移(钟羽云等,2015)。该水库的地震活动与库区岩性、断层分布及水库蓄水等特征密切相关。双溪—焦溪垟断裂为高倾角(>70°)、右旋走滑兼逆冲型断层,总长度超过20 km,切割深度在5 km以上,切穿变质岩地层基底,为库区附近淹没段最长的断层分支,并发育次级断面,破碎带周围竖向节理发育,胶结程度差,断层两侧为隔水性较好的层状岩层,此断面结构易于库水下渗(周昕等,2006马志江等,2016)。珊溪水库孕震区是水库地震研究的热点(周昕等,2006朱新运等,2010钟羽云等,2015马志江等,2016马起杨,朱新运,2016侯林锋等,2018),通过库区地震震源深度的定位圈定孕震区范围,为水库地震孕震机理的分析提供重要信息。

    震源深度是确定孕震区范围的重要位置参数,能够反映地壳岩石流变特性和脆塑性特征(Scholz,2002),因此准确地确定震源深度一直是地震学研究的重要内容之一。然而震源深度的反演既依赖于地震波波速模型,又与发震时刻之间存在折衷,尤其是稀疏台网下,对震源深度的测定尤为困难。经典线性走时拟合方法是目前使用较为广泛的地震定位方法,通过拾取多个地震台的P波、S波震相到时,给定波速模型拟合各个台站的观测到时,使全部台站的走时误差达到最小,从而解算出发震时刻和震源位置。在此基础上发展的诸如联合定位法、相对定位法和双重残差法等方法,均是基于走时计算,需要计算观测值与理论值之间的残差函数,对台网的台站密度和波速模型的依赖较大(崇加军等,2010)。

    地震波深度震相蕴含丰富的震源深度信息,为震源深度定位提供了一种新的途径。深度震相是指地震波从震源上行出射经地表反射后传播至台站而形成的震相。震相经地表反射后的传播路径与其对应参考震相的传播路径相似,因此两者到时差主要与震源深度相关,利用深度震相进行震源深度定位可以规避传统走时定位发震时刻与定位深度的折衷性,且基本不依赖于震中距,降低了传统方法对传播路径的三维波速模型的依赖。不同深度震相有其相应的优势震中距范围。中强震在震中距远的波形记录上能够观测到远震深度震相pP和sP。对于中小地震可以采用近震深度震相(sPg,sPn,sPL)来约束震源深度(张瑞青,吴庆举,2008崇加军等,2010)。因首波的发育需要超过临界震中距,故以首波Pn为参考震相的深度震相sPn,观测台站的震中距通常大于100 km。震相sPg在地壳速度结构具有一定梯度时发育较为明显,其观测台站的震中距介于50—100 km之间。对于震中距50 km以内的台站,上行S波经地表反射转化为P波则会沿地表浅部直接传播到台站,传播过程同时耦合P波在地表浅部的多次波及散射波,其震相为sPL震相(崇加军等,2010Wang et al,2011)。由于sPL震相发育于较近震中距,可约束中小地震震源深度,适用于类似于珊溪水库这样震群震级普遍偏小的弱震区。

    珊溪水库蓄水后表现出间歇性的震群活动,最大余震与主震的震级差较小,持续时间长。浙江省地震监测台网记录到的最近一次高密度震群活动从2014年9月持续至2015年3月底,此次震群中地震的最大震级为ML4.2。自2002年起,浙江省地震局在珊溪水库的库区逐步建成了子台密度较大的水库地震监测台网,覆盖整个库区,库区周边台站及地震分布见图1。台网记录到的震群的最小完备震级Mc由2002年初始的ML1.5降至2014年的ML0.3(于俊谊,马起杨,2017),库区监测能力不断提高,台网的定位能力得到了改善。2014年之前监测到的水库地震,由于受台网台站密度条件限制,定位精度有限,台网定位地震的空间分布较为离散,未能显示出明显的优势分布方向;而台网定位的2014年震群的地震空间展布与贯穿库区的双溪—焦溪垟断裂一致,定位精度显著提高。

    图  1  珊溪水库区域断裂、地震和台站分布图
    灰色填充区为珊溪水库,三角形为台站,圆圈代表2014年震群,加号为2014年之前地震,黑线为断层
    Figure  1.  Fault structure and distribution of earthquakes and stations in Shanxi reservoir region
    Gray region indicates Shanxi reservoir,and its surrounding fault system is depicted by line segments,open circles denote the swarm epicenters of the year 2014 while plus signs denote the swarm before the year 2014,seismic stations are indicated by triangles

    This page contains the following errors:

    error on line 1 at column 1: Start tag expected, '<' not found

    Below is a rendering of the page up to the first error.

    图  2  sPL射线路径示意图(a)和万阜台记录的三分向位移波形(b)
    图(a)中黑色为sPL及其参考震相Pg,灰色射线示意相对sPL震相其它深度震相则需更远的震中距才发育
    Figure  2.  Schematic illustration of sPL ray path (a) and three-component displacement waveforms recorded at Wanfu station to view sPL phase (b)
    Black ray for sPL-Pg pair and gray for other depth phases which appear in farther epicentral distance in Fig.(a)

    近震深度震相和其参考震相的走时差,与震源深度近于线性相关,可以用于约束地震震源深度。本文使用频率−波数域方法(Zhu,Rivera,2002)计算不同深度上走滑型双力偶源的三分量格林函数,来合成万阜台的理论地震图,以观测sPL震相随震源深度变化的敏感特性。速度模型采用从全球地壳模型CRUST1.0 (Laske et al,2013)提取的一维分层模型。如图3a所示,sPL与P波的到时差随着深度增加而明显增大,近乎呈线性关系。敏感性测试中波形合成采用的双力偶源震源机制是基于库区发震构造由CAP (cut and paste)波形拟合方法(Zhao,Helmberger,1994Zhu,Helmberger,1996)反演所得,符合库区实际情况。近震CAP方法是一种全波形拟合反演方法,由于反演结果对地壳速度模型和结构横向变化的依赖性相对较小,因此被广泛应用于震源机制和震源深度反演,其原理是在给定的参数空间中网格搜索使波形拟合误差达到最小的最佳解。2014年珊溪水库震群震级最大的主震震源机制和震源深度的CAP反演结果(图3b)显示,断层走向127°,倾角83°,滑动角−177°,为高倾角右旋走滑型震源机制,且走向与余震展布一致,表明其发震构造为双溪—焦溪垟断裂。

    图  3  基于sPL和CAP方法确定2014年珊溪水库震群主震震源深度
    (a) sPL震相敏感性测试,灰色波形表示不同深度三分向理论波形,红色波形表示万阜台显示的主震最佳拟合深度;(b) CAP反演所得的主震最优震源机制(左)和震源深度(右)
    Figure  3.  Focal depth determined by sPL and CAP method for the mainshock of the Shanxi reservoir swarm in 2014
    (a) sPL phase depth sensitivity test,where gray waveforms represent three-component synthetics at different focal depths and red ones represent data recorded by Wanfu staion at best fitting;(b) Focal mechanism (left) and depth (right) determined by CAP method

    This page contains the following errors:

    error on line 1 at column 1: Start tag expected, '<' not found

    Below is a rendering of the page up to the first error.

    表  1  珊溪水库震群七次地震事件震源深度的测定结果
    Table  1.  Focal depths of seven events from Shanxi reservoir seismic swarm
    序号 发震时刻 震中位置 ML 震源深度/km
    年−月−日 时:分:秒 东经 北纬 sPL结果 台网结果* CAP结果
    0 2014−10−14 04:14:57 119.94 27.71 4.2 5 4 4
    1 2014−09−17 20:47:31 119.95 27.71 3.5 4—5 4 4
    2 2014−09−23 17:40:25 119.94 27.71 3.7 4—5 4 4
    3 2014−10−15 15:49:27 119.95 27.71 4.0 5—6 5 5
    4 2014−10−15 16:37:24 119.96 27.70 4.0 6 5 5
    5 2014−10−23 08:35:02 119.93 27.72 3.7 5 4 4
    6 2014−10−26 07:03:41 119.97 27.69 3.4 4 4 /
     *引自浙江省数字地震台网中心地震目录(内部资料).
    下载: 导出CSV 
    | 显示表格
    图  4  表1中万阜台水库震群事件1—6的位移波形图
    Figure  4.  Displacement records of six events labeled with one to six in Table 1 at Wanfu station with vertical (red),radial (blue) and tangential (green) components

    This page contains the following errors:

    error on line 1 at column 1: Start tag expected, '<' not found

    Below is a rendering of the page up to the first error.

    通过实际观测和正演分析可知,在震中距小于50 km的范围内,在近震深度发育sPL震相,sPL震相及其参考震相Pg之间的走时差与震中距无关,与深度存在线性关系,可用于约束震源深度。sPL震相具有低频特性,优势震中距30—50 km上的震相清晰,只在径向和垂向分量上出现,一般径向幅度大于垂向分量。

    采用万阜台观测到的sPL震相测定的珊溪水库地震序列中7次地震事件(包括主震)的震源深度介于4—6 km,与地下活动断层探测结果相一致。跨库区的花状构造的三条平行分支断层在地下深约6 km处交会(侯林锋等,2018),地下4—6 km处岩石相对更为破碎,库水沿断裂面向深部渗透易汇集于此深度,孔隙压升高,正应力降低,打破应力平衡诱发地震(马志江等,2016)。断层浅部有断层泥的充填难以积累足够应变产生地震,太深岩石强度又超过周围偏应力水平,地震很难往深部发展迁移。与高密度台站下台网采用Hyposat方法和波形CAP反演的深度结果进行对比,表明sPL震相测定的震源深度是非常可靠的。

    在地壳结构相对简单的情况下,sPL震相一般易于识别,可较好地应用于地震深度的测定,但不排除某些特殊情况,例如震源持续时间较长或震中距太近,sPL震相会受到扩展P波(Pnl)的干扰,震相拾取会相对困难。尽管精确拾取到时有时存在一定困难,但深度误差范围一般可控制在1—2 km之内。sPL震相的优势震中距为30—50 km,鉴于区域台网的台间距较小,通常不会大于50 km,sPL震相有很强的适用性。本文利用单台即可获取可信的震源深度,可运用于稀疏台网(如2014年之前珊溪水库台网),并适用于中小地震,扩展了其应用性。

    本研究虽然通过波形拟合,但sPL震相是利用到时差与深度的近乎线性关系来约束地震,对于区域台网,尤其震群来说,其线性关系是相对固定的,且一般从未滤波的原始波形能直接识别sPL震相,以理论到时差为量板,无需震中水平位置信息,sPL震相可快速地测定出可靠的震源深度。

  • 图  1   密集台阵及震源位置分布图

    Figure  1.   Location of dense seismic array and distribution of hypocenters

    图  2   研究区射线覆盖及信号叠加对比示意图

    (a) 研究区内的射线分布;(b) 710号台站原始信号(上)和叠加后信号(下)

    Figure  2.   Distribution of rays in the study area and the comparison of signal before and after stacking

    (a) Distribution of rays in the study area;(b) Original signal (upper) and stacked signal (lower) of the station No. 710

    图  3   尾波Q值拟合示意图(以气枪信号为例)

    (a) 11号台站叠加后信号,tc表示尾波起算时间,红色方框表示截取的尾波窗口;(b) 函数$\mathrm{l}\mathrm{n} [ A ( f|r \text{,} t ) /K ( r \text{,} \alpha ) ] $随时间的变化曲线,红色直线为最小二乘拟合线

    Figure  3.   Diagram of coda Q value fitting (take the airgun signal as an example)

    (a) The stacked signal of the station No. 11,tc represents the the starting point of coda,the red box indicates the selected coda window;(b) The function $\mathrm{l}\mathrm{n} [ A ( f|r \text{,} t ) /K ( r\text{,} \alpha ) ] $ versus lapse time along with least squares fits of selected coda window,the red line represents the fitted line

    图  4   不同中心频率下Qc值的空间分布及与速度层析成像结果对比

    (a−e) 2—6 Hz频率尾波Qc值的空间分布,黑线表示宾川盆地范围;(f) 宾川地区0 km处速度层析成像结果(引自张云鹏等,2020

    Figure  4.   Spatial distribution of Qc values at different frequencies and comparison with velocity tomography

    (a−e) Spatial distribution of coda Qc values at 2−6 Hz frequency,the black line indicates the extent of Binchuan basin;(f) Velocity tomography results at 0 km depth in Binchuan area (from Zhang et al,2020

    图  5   六个台站位置(a)及其Qc值与频率的关系(b)

    Figure  5.   Location of the six stations (a) and the relationship between Qc and frequency for the stations (b)

    图  6   30号台站Q0和频率依赖指数 $ \eta $ 随流逝时间的变化曲线

    Figure  6.   Values of Q0 and frequency-dependent coefficient $ \eta $ as function of lapse time for the station No. 30

    图  7   全区域各台站尾波衰减参数及标准差

    (a) 各台站Q0统计特征;(b) 各台站频率依赖指数 $ \eta $ 统计特征

    Figure  7.   Coda attenuation parameters and their standard deviations of each station in the study area

    (a) The statistical characteristics of Q0 of each station;(b) The statistical characteristics of the frequency dependence coefficient $ \eta $ of each station

    表  1   所用地震详细参数

    Table  1   Parameters of the earthquakes using in the study

    发震时刻东经/°北纬/°ML震源
    深度/km
    发震时刻东经/°北纬/°ML震源
    深度/km
    年-月-日时:分:秒年-月-日时:分:秒
    2017-03-26 16:24:03 100.563 25.852 0.4 17 2017-04-28 00:16:55 100.445 25.831 1.3 15
    2017-03-27 03:28:14 100.394 25.928 0.8 8 2017-05-07 10:20:12 100.698 25.891 1.6 5
    2017-03-31 04:54:56 100.594 25.829 0.4 18 2017-05-12 11:27:14 100.681 25.863 1.3 6
    2017-04-03 17:48:41 100.409 25.815 1.0 14 2017-05-12 11:36:35 100.648 25.884 1.4 10
    2017-04-12 21:05:22 100.673 25.659 0.5 9 2017-05-21 21:42:29 100.451 25.771 1.0 5
    2017-04-13 10:41:05 100.613 25.908 1.7 5 2017-05-23 09:19:53 100.359 25.680 1.5 12
    下载: 导出CSV

    表  2   30号台站不同流逝时间下Q0和频率依赖指数 $ \eta $ 的统计结果

    Table  2   Q0 and frequency-dependent coefficient $ \mathrm{\eta } $ at different lapse times of the station No.30

    流逝时间/s Q0 ${ \delta }{ Q_0}$ $ \eta $ ${\delta }\eta$
    5 26.00 15.55 1.057 0.342
    10 38.11 18.59 0.988 0.242
    15 50.60 24.27 0.937 0.227
    下载: 导出CSV

    表  3   Q0标准差较大的台站详细信息

    Table  3   Information of the stations with larger standard deviation of Q0

    台站编号东经/°北纬/°Q0$\delta{ Q_0}$$ \eta $${\delta }\eta$
    195100.399 125.719 938371.1230.431
    633100.523 525.657 248360.7130.674
    613100.538 825.680 061330.7020.401
    83100.670 625.835 440310.9580.298
    18100.630 425.912 743290.8310.282
    下载: 导出CSV

    表  4   表3中相邻台站的Q0结果

    Table  4   Results of Q0 for neighboring stations in Table 3

    台站编号东经/°北纬/°Q0$\delta{ Q_0}$$ \eta $${\delta }\eta$
    196100.417 525.722 42551.1480.198
    632100.501 025.660 63450.9120.218
    752100.530 125.680 81861.1950.202
    81100.639 725.840 231160.8570.347
    17100.620 125.901 323111.1070.335
    下载: 导出CSV
  • 陈婷,董建辉,王晓山. 2017. 唐山地区尾波 Q值时空分布特征[J]. 地震地磁观测与研究,38(2):51–56.

    Chen T,Dong J H,Wang X S. 2017. Temporal and spatial distribution characteristics of the coda wave Q value in Tangshan region[J]. Seismological and Geomagnetic Observation and Research,38(2):51–56 (in Chinese).

    洪玉清,杨选. 2015. 利用Aki模型对新丰江水库地区尾波 Q值的研究[J]. 华南地震,35(3):66–71. doi: 10.13512/j.hndz.2015.03.010

    Hong Y Q,Yang X. 2015. Q value research of coda wave in Xinfengjiang reservoir area based on Aki model[J]. South China Journal of Seismology,35(3):66–71 (in Chinese).

    刘斌,Kern H,Popp T. 1998. 不同围压下孔隙度不同的干燥及水饱和岩样中的纵横波速度及衰减[J]. 地球物理学报,41(4):537–546. doi: 10.3321/j.issn:0001-5733.1998.04.012

    Liu B,Kern H,Popp T. 1998. Velocities and attenuation of P- and S-waves in dry and wet rocks with different porosities under different confining pressures[J]. Acta Geophysica Sinica,41(4):537–546 (in Chinese).

    罗睿洁,吴中海,黄小龙,黄小巾,周春景,田婷婷. 2015. 滇西北宾川地区主要活动断裂及其活动构造体系[J]. 地质通报,34(1):155–170. doi: 10.3969/j.issn.1671-2552.2015.01.013

    Luo R J,Wu Z H,Huang X L,Huang X J,Zhou C J,Tian T T. 2015. The main active faults and the active tectonic system of Binchuan area,northwestern Yunnan[J]. Geological Bulletin of China,34(1):155–170 (in Chinese).

    师海阔,曾宪伟,张立恒,贺永忠. 2016. 利用Aki模型对宁夏及邻区尾波 Q值分布特征的研究[J]. 地震工程学报,38(1):51–57. doi: 10.3969/j.issn.1000-0844.2016.01.0051

    Shi H K,Zeng X W,Zhang L H,He Y Z. 2016. Distribution characteristics of Q values of seismic coda in Ningxia and neighboring area based on Aki model[J]. China Earthquake Engineering Journal,38(1):51–57 (in Chinese).

    史水平,周斌,黄树生,阎春恒,郭培兰. 2020. 广西龙滩水库库区地震尾波衰减特征[J]. 地震学报,42(2):151–162.

    Shi S P,Zhou B,Huang S S,Yan C H,Guo P L. 2020. Characteristics of seismic coda attenuation in Longtan reservoir of Guangxi region[J]. Acta Seismologica Sinica,42(2):151–162 (in Chinese).

    苏金波,王宝善,王海涛,王琼,冀战波. 2015. 利用大容量气枪震源资料研究北天山地区介质衰减特征[J]. 地震研究,38(4):598–605.

    Su J B,Wang B S,Wang H T,Wang Q,Ji Z B. 2015. Research on characteristic of seismic attenuation in the northern Tianshan area using seismic signal from airgun source[J]. Journal of Seismological Research,38(4):598–605 (in Chinese).

    苏有锦. 2009. 云南地区地震波衰减(Q值)结构反演成像研究[D]. 合肥:中国科学技术大学:36−38.

    Su Y J. 2009. Inversion Tomography of the Seismic Wave Attenuation (Q Value) Structure in Yunnan Region[D]. Hefei:University of Science and Technology of China:36−38 (in Chinese).

    孙业君,黄耘,王斌,王俊,李锋,江昊琳. 2014. 江苏地区尾波 Q值特征研究[J]. 地震,34(1):24–33.

    Sun Y J,Huang Y,Wang B,Wang J,Li F,Jiang H L. 2014. Characteristics of coda wave Q values in Jiangsu area[J]. Earthquake,34(1):24–33 (in Chinese).

    王宝善,王伟涛,葛洪魁,徐平,王彬. 2011. 人工震源地下介质变化动态监测[J]. 地球科学进展,26(3):249–256.

    Wang B S,Wang W T,Ge H K,Xu P,Wang B. 2011. Monitoring subsurface changes with active sources[J]. Advances in Earth Science,26(3):249–256 (in Chinese).

    王勤彩,陈章立,王中平,郑斯华. 2010. 云南地区散射衰减、吸收衰减及尾波衰减的综合研究[J]. 地球物理学进展,25(2):419–431. doi: 10.3969/j.issn.1004-2903.2010.02.007

    Wang Q C,Chen Z L,Wang Z P,Zheng S H. 2010. Comprehensive study of scattering,intrinsic and coda attenuation in the Yunnan area[J]. Progress in Geophysics,25(2):419–431 (in Chinese).

    王振宇,赵培培,薄景山. 2017. 地震动随机模拟方法主要影响参数分析[J]. 世界地震工程,33(3):34–41.

    Wang Z Y,Zhao P P,Bo J S. 2017. Analysis for the effects of main parameters on ground motions by stochastic simulation method[J]. World Earthquake Engineering,33(3):34–41 (in Chinese).

    杨微,王宝善,葛洪魁,王伟涛,陈颙. 2013. 大容量气枪震源主动探测技术系统及试验研究[J]. 中国地震,29(4):399–410.

    Yang W,Wang B S,Ge H K,Wang W T,Chen Y. 2013. The active monitoring system with large volume airgun source and experiment[J]. Earthquake Research in China,29(4):399–410 (in Chinese).

    张云鹏,王宝善,林国庆,王伟涛,杨微,吴中海. 2020. 利用密集台阵近震层析成像研究云南宾川上地壳速度结构[J]. 地球物理学报,63(9):3292–3306.

    Zhang Y P,Wang B S,Lin G Q,Wang W T,Yang W,Wu Z H. 2020. Upper crustal velocity structure of Binchuan,Yunnan revealed by dense array local seismic tomography[J]. Chinese Journal of Geophysics,63(9):3292–3306 (in Chinese).

    赵秋芳,云美厚,朱丽波,李晓斌,李伟娜. 2019. 近地表 Q值测试方法研究进展与展望[J]. 石油地球物理勘探,54(6):1397–1418. doi: 10.13810/j.cnki.issn.1000-7210.2019.06.026

    Zhao Q F,Yun M H,Zhu L B,Li X B,Li W N. 2019. Progress and outlook of near-surface quality factor Q measurement and inversion[J]. Oil Geophysical Prospecting,54(6):1397–1418 (in Chinese).

    周连庆,赵翠萍,修济刚,陈章立,郑斯华. 2008. 利用天然地震研究地壳 Q值的方法和进展[J]. 国际地震动态,(2):1–11.

    Zhou L Q,Zhao C P,Xiu J G,Chen Z L,Zheng S H. 2008. Methods and developments of research on crustal Q value by using earthquakes[J]. Recent Developments in World Seismology,(2):1–11 (in Chinese).

    周庆,虢顺民,向宏发. 2004. 滇西北地区潜在震源区的划分原则和方法[J]. 地震地质,26(4):761–771. doi: 10.3969/j.issn.0253-4967.2004.04.022

    Zhou Q,Guo S M,Xiang H F. 2004. Principle and method of delineation of potential seismic sources in northeastern Yunnan Province[J]. Seismology and Geology,26(4):761–771 (in Chinese).

    朱新运. 2011. 衰减、场地响应等地震波传播相关信息综合研究[D]. 北京:中国地震局地球物理研究所:66−79.

    Zhu X Y. 2011. Comprehensive Study on Seismic Wave Propagation Related Information Such as Attenuation and Site Response[D]. Beijing:Institute of Geophysics,China Earthquake Administration:66−79 (in Chinese).

    朱新运,刘杰,张帆. 2006. 基于Aki模型的近震S波尾波 Q值求解及分析软件研制[J]. 地震研究,29(1):76–80. doi: 10.3969/j.issn.1000-0666.2006.01.015

    Zhu X Y,Liu J,Zhang F. 2006. Development of Q-value calculating and processing software using S-wave coda in local earthquakes based on Aki model[J]. Journal of Seismological Research,29(1):76–80 (in Chinese).

    Abdel-Fattah A K,Morsy M,El-Hady S,Kim K Y,Sami M. 2008. Intrinsic and scattering attenuation in the crust of the Abu Dabbab area in the eastern desert of Egypt[J]. Phys Earth Planet Inter,168(1/2):103–112.

    Aki K. 1969. Analysis of the seismic coda of local earthquakes as scattered waves[J]. J Geophys Res,74(2):615–631. doi: 10.1029/JB074i002p00615

    Aki K,Chouet B. 1975. Origin of coda waves:Source,attenuation,and scattering effects[J]. J Geophys Res,80(23):3322–3342. doi: 10.1029/JB080i023p03322

    Aki K. 1980. Scattering and attenuation of shear waves in the lithosphere[J]. J Geophys Res: Solid Earth,86(B11):6496–6504.

    Correig A M,Mitchell B J,Ortiz R. 1990. Seismicity and coda Q values in the eastern Pyrenees:First results from the La Cerdanya seismic network[J]. Pure Appl Geophys,132(1):311–329.

    Das R,Mukhopadhyay S,Singh R K,Baidya P R. 2018. Lapse time and frequency-dependent coda wave attenuation for Delhi and its surrounding regions[J]. Tectonophysics, 738 739 :51−63.

    Dinesh K,Sarkar I,Sriram V,Khattri K N. 2005. Estimation of the source parameters of the Himalaya earthquake of October 19,1991,average effective shear wave attenuation parameter and local site effects from accelerograms[J]. Tectonophysics,407:1–24

    Domínguez T,Rebollar C J,Fabriol H. 1997. Attenuation of coda waves at the Cerro Prieto geothermal field,Baja California,Mexico[J]. Bull Seismol Soc Am,87(5):1368–1374. doi: 10.1785/BSSA0870051368

    Herrmann R B. 1980. Q estimates using the coda of local earthquake[J]. Bull Seismol Soc Am,70(2):447–468. doi: 10.1785/BSSA0700020447

    Jin A S,Aki K. 1988. Spatial and temporal correlation between coda Q and seismicity in China[J]. Bull Seismol Soc Am,78(2):741–769. doi: 10.1785/BSSA0780020741

    Kosuga M. 1992. Dependence of coda Q on frequency and lapse time in the western Nagano region,central Japan[J]. J Phys Earth,40(2):421–445. doi: 10.4294/jpe1952.40.421

    Ma’hood M,Hamzehloo H. 2009. Estimation of coda wave attenuation in east central Iran[J]. J Seismol,13(1):125–139. doi: 10.1007/s10950-008-9130-2

    Padhy S,Subhadra N,Kayal J R. 2011. Frequency-dependent attenuation of body and coda waves in the Andaman Sea Basin[J]. Bull Seismol Soc Am,101(1):109–125. doi: 10.1785/0120100032

    Pulli J J. 1984. Attenuation of coda waves in New England[J]. Bull Seismol Soc Am,74(4):1149–1166.

    Rautian T G,Khalturin V I. 1978. The use of the coda for determination of the earthquake source spectrum[J]. Bull Seismol Soc Am,68(4):923–948. doi: 10.1785/BSSA0680040923

    Roecker S W,Tucker B,King J,Hatzfeld D. 1982. Estimates of Q in central Asia as a function of frequency and depth using the coda of locally recorded earthquakes[J]. Bull Seismol Soc Am,72(1):129–149. doi: 10.1785/BSSA0720010129

    Sato H. 1977. Energy propagation including scattering effects single isotropic scattering approximation[J]. J Phys Earth,25(1):27–41. doi: 10.4294/jpe1952.25.27

    Su F,Aki K. 1995. Site amplification factors in central and southern California determined from coda waves[J]. Bull Seismol Soc Am,85(2):452–466.

    Tian W,Li Z W. 2020. S wave anelastic attenuation of shallow sediments in mainland China[J]. Earth Space Sci,7(10):e2020EA001348. doi: 10.1029/2020EA001348

    Toksöz M N,Johnston D H,Timur A. 1979. Attenuation of seismic waves in dry and saturated rocks:I. Laboratory measurements[J]. Geophysics,44(4):681–690. doi: 10.1190/1.1440969

    Wang S,Li Z W. 2018. S-wave attenuation of the shallow sediments in the North China basin based on borehole seismograms of local earthquakes[J]. Geophys J Int, 214 :1391−1400.

    Wang W,Shearer P M. 2019. An improved method to determine coda- Q,earthquake magnitude,and site amplification:Theory and application to southern California[J]. J Geophys Res: Solid Earth,124(1):578–598. doi: 10.1029/2018JB015961

    Wong V,Rebollar C J,Munguía L. 2001. Attenuation of coda waves at the Tres Vírgenes Volcanic area,Baja California Sur,Mexico[J]. Bull Seismol Soc Am,91(4):683–693. doi: 10.1785/0120000025

  • 期刊类型引用(5)

    1. 彭骁,张蓓蕾. 多种方法测定2019年皎口水库地区2.5级以上地震震源深度. 地震科学进展. 2023(04): 145-152 . 百度学术
    2. 赵韬,王莹,徐一斐,刘盼,刘春. 利用CAP方法和瑞利面波振幅谱联合反演宁强5.3级地震震源深度. 中国地震. 2023(04): 893-901 . 百度学术
    3. 郑雪刚,马学军,赵鹏毕. 新疆伽师M_S6.4地震震源深度测定研究. 内陆地震. 2022(02): 130-138 . 百度学术
    4. 尹晶飞,张明,汪贞杰,沈钰. 珊溪水库地震台阵建设. 地震地磁观测与研究. 2021(01): 126-131 . 百度学术
    5. 龚俊,汪贞杰,戴煜暄. 联合测震和GPS资料反演双溪-焦溪垟断裂运动特征. 测绘科学. 2021(12): 1-6+15 . 百度学术

    其他类型引用(0)

图(7)  /  表(4)
计量
  • 文章访问数:  132
  • HTML全文浏览量:  51
  • PDF下载量:  29
  • 被引次数: 5
出版历程
  • 收稿日期:  2022-05-11
  • 修回日期:  2022-07-21
  • 网络出版日期:  2023-12-24
  • 刊出日期:  2023-12-24

目录

/

返回文章
返回