线源三维井地电法异常边界增强及地形校正技术

熊治涛, 唐新功, 张连群, 李丹丹, 余俊虎

熊治涛,唐新功,张连群,李丹丹,余俊虎. 2023. 线源三维井地电法异常边界增强及地形校正技术. 地震学报,45(1):46−61. DOI: 10.11939/jass.20220074
引用本文: 熊治涛,唐新功,张连群,李丹丹,余俊虎. 2023. 线源三维井地电法异常边界增强及地形校正技术. 地震学报,45(1):46−61. DOI: 10.11939/jass.20220074
Xiong Z T,Tang X G,Zhang L Q,Li D D,Yu J H. 2023. Anomaly edge enhancement and topographic correction technology of linear source 3D borehole-to-surface electrical method. Acta Seismologica Sinica45(1):46−61. DOI: 10.11939/jass.20220074
Citation: Xiong Z T,Tang X G,Zhang L Q,Li D D,Yu J H. 2023. Anomaly edge enhancement and topographic correction technology of linear source 3D borehole-to-surface electrical method. Acta Seismologica Sinica45(1):46−61. DOI: 10.11939/jass.20220074

线源三维井地电法异常边界增强及地形校正技术

基金项目: 国家自然科学基金(42274087,41874119,42174083)联合资助
详细信息
    作者简介:

    熊治涛,博士,主要从事电磁法勘探研究,e-mail:1228409354@qq.com

    通讯作者:

    唐新功,博士,教授,主要从事电磁法勘探与地球动力学研究,e-mail:tangxg@yangtzeu.edu.cn

  • 中图分类号: P319.12

Anomaly edge enhancement and topographic correction technology of linear source 3D borehole-to-surface electrical method

  • 摘要: 基于非结构网格有限元方法开展了三维复杂地电模型的线源井地电法的高效正演模拟研究,探讨了通过求取电场响应导数来刻画目标体边界范围、采用差异场地形校正技术来消除地形影响等措施对井地电法成像的效果和精度的影响。并通过对比与解析解,验证了本文数值解算法的有效性。模型计算结果表明:积水巷道的空间位置和走向均会引起视电阻率的显著变化,视电阻率变化率的极值准确且清晰地指示了巷道边界的位置;电位的归一化总水平导数极大地提高了井地电法对目标体复杂边界位置的识别能力;地形对井地电场分布的影响也很大,其视电阻率响应与地形形状近似呈对称关系,利用差异场技术能有效地削弱地形对井地电法高精度成像的影响。
    Abstract: Based on the finite element method of unstructured grid, the efficient forward modeling of the borehole-to-surface electrical method derived by the linear current source under the condition of the 3D complex geoelectric model was carried out. The effects on the effectiveness and accuracy of the borehole-to-surface electrical method imaging were discussed by obtaining the electric field response derivative to characterize the boundary range of the target body, and using the difference field topography correction technology to eliminate the topographic influence. And the comparison between the numerical solution and the analytical solution verifies the effectiveness of the algorithm in this paper. The model calculation results show that the spatial position and direction of the roadway with water accumulation cause significant changes in the apparent resistivity, and the extreme value of the apparent resistivity change rate accurately and clearly indicates the boundary position of the roadway. The normalized total horizontal derivative of the electric potential greatly improves the ability of the borehole-to-surface electrical method to identify the complex boundary position of the target body. Moreover, the influence of topography on the distribution of borehole-to-surface electrical field is also serious, and its apparent resistivity response is approximately symmetrical to the shape of the topography. The difference field technique can effectively weaken the influence of topography on the high-precision imaging of the borehole-to-surface electrical method. The research results have important theoretical and practical significance for improving the data interpretation level and application effect of the borehole-to-surface electrical method.
  • 图  15   地形校正之后以及水平地表模型的视电阻率等值线图

    (a) 地垒地形校正后;(b) 地堑地形校正后;(c) 水平地表模型

    Figure  15.   Apparent resistivity contour maps after topography correction and without topography

    (a) After topography correction for horst;(b) After topography correction for graben; (c) Model results without topography

    图  1   均匀半空间模型的电极布设及计算结果

    (a) 电极布设;(b) 数值解与解析解对比及其相对误差;(c) 电流密度lgJ (单位为A/m2)分布

    Figure  1.   Electrode layout and calculation results of uniform half-space model

    (a) Electrode layout;(b) Comparison of numerical solution with analytical solution and their relative error; (c) Distribution of current density lgJ (unit in A/m2

    图  2   模型的剖面(a)和平面(b)以及测点分布(c)示意图

    Figure  2.   Schematic diagram of profile (a) and plane (b) of the model and distribution of measuring points (c)

    图  3   地表的视电阻率等值线图

    Figure  3.   Contour map of apparent resistivity on surface

    图  4   模型的剖面(a)和平面(b)示意图

    Figure  4.   Schematic diagram of profile (a) and plane (b) of the model

    图  5   巷道模型地表视电阻率平面等值线图(白色方框代表巷道在地表的投影)

    (a) 模型1;(b) 模型2;(c) 模型3;(d) 模型4

    Figure  5.   Contour maps of apparent resistivity on surface of roadway model where the white box represents the projection of the roadway on the surface

    (a) Model 1;(b) Model 2;(c) Model 3;(d) Model 4

    图  6   巷道模型视电阻率一阶导数曲线图

    Figure  6.   Curves of the first-order derivative of apparent resistivity of the roadway models

    图  7   巷道模型3的视电阻率二阶导数曲线图

    Figure  7.   Curve of the second-order derivative of apparent resistivity of the roadway model 3

    图  8   垮塌巷道模型平面示意图

    Figure  8.   Plan view of the collapsed roadway model

    图  9   平面等值线图

    (a) 电位;(b) 视电阻率;(c) 异常电位;(d) 电位总水平导数的负对数;(e) 电位的归一化总水平导数

    Figure  9.   Plane contour maps

    (a) Electric potential;(b) Apparent resistivity;(c) Abnormal electric potential;(d) Negative logarithm of the total horizontal derivative of the electric potential;(e) Normalized total horizontal derivative of the electric potential

    图  10   地形模型的剖面(a)和平面(b)示意图

    Figure  10.   Schematic diagram of profile (a) and plane (b) of the topographic model

    图  11   当地垒(a,c)和地垫(b,d)深为20 m (上)和40 m (下)时纯地形模型地表视电阻率等值线图

    Figure  11.   Surface apparent resistivity contour maps of pure topography model with horst (a,c) and graben (b,d) being 20 m (upper panels) and 40 m (lower panels) deep

    图  12   纯地形模型的视电阻率曲线图

    Figure  12.   Apparent resistivity curves of pure topography model

    图  13   带地形模型的剖面(a)和平面(b)示意图

    Figure  13.   Schematic diagram of profile (a) and plane (b) of the topography model

    图  14   地垒(a)和地堑(b)地形未校正的地表视电阻率等值线图

    Figure  14.   Contour maps of surface apparent resistivity for uncorrected horst (a) and graben (b)

    图  16   模型剖面(a)和平面(b)示意图

    Figure  16.   Schematic diagram of model profile (a) and plane (b)

    图  17   地形校正前(a,c)、后(b,d)的视电阻率(上)和视电阻率归一化总水平导数(下)

    Figure  17.   Apparent resistivity (a,c) and normalized total horizontal derivative of apparent resistivity (c,d) before (upper panels) and after (lower panels) topographical correction

    表  1   巷道规模及位置

    Table  1   Roadway scale and location

    模型巷道规模巷道左侧距源/m
    长/m宽/m高/m
    12002010100
    220020100
    32020010100
    45002010−200
    下载: 导出CSV
  • 戴前伟,陈德鹏,陈勇雄,侯智超. 2013. 电法勘探中异常响应特征的增强算法及其实现[J]. 煤田地质与勘探,41(3):75–78. doi: 10.3969/j.issn.1001-1986.2013.03.018

    Dai Q W,Chen D P,Chen Y X,Hou Z C. 2013. The enhanced algorithms and its implementation for the abnormal response characteristics in electrical exploration[J]. Coal Geology &Exploration,41(3):75–78 (in Chinese).

    李长伟,阮百尧,吕玉增,段长生,杨庭伟,王建历. 2010. 点源场井-地电位测量三维有限元模拟[J]. 地球物理学报,53(3):729–736.

    Li C W,Ruan B Y,Lü Y Z,Duan C S,Yang T W,Wang J L. 2010. Three-dimensional FEM modeling of point source borehole-ground electrical potential measurements[J]. Chinese Journal of Geophysics,53(3):729–736 (in Chinese).

    谭河清,沈金松,周超,董辉,房锡业,张福莱. 2004. 井-地电位成像技术及其在孤东八区剩余油分布研究中的应用[J]. 石油大学学报(自然科学版),28(2):31–37.

    Tan H Q,Shen J S,Zhou C,Dong H,Fang X Y,Zhang F L. 2004. Borehole-to-surface electrical imaging technique and its application to residual oil distribution analysis of the eighth section in Gudong Oilfield[J]. Journal of the University of Petroleum,China (Edition of Natural Science),28(2):31–37 (in Chinese).

    汤井田,张继锋,冯兵,林家勇,刘长生. 2007. 井地电阻率法歧离率确定高阻油气藏边界[J]. 地球物理学报,50(3):926–931. doi: 10.3321/j.issn:0001-5733.2007.03.035

    Tang J T,Zhang J F,Feng B,Lin J Y,Liu C S. 2007. Determination of borders for resistive oil and gas reservoirs by deviation rate using the hole-to-surface resistivity method[J]. Chinese Journal of Geophysics,50(3):926–931 (in Chinese).

    王智,潘和平. 2014. 三维井地电阻率法异常响应特征增强算法模拟研究[J]. 石油物探,53(4):491–500. doi: 10.3969/j.issn.1000-1441.2014.04.016

    Wang Z,Pan H P. 2014. Research on the enhanced algorithms of the abnormal response characteristics for 3D borehole-to-surface resistivity method[J]. Geophysical Prospecting for Petroleum,53(4):491–500 (in Chinese).

    王智,吴爱平,李刚. 2018. 起伏地表条件下的井中激电井地观测正演模拟研究[J]. 石油物探,57(6):927–935. doi: 10.3969/j.issn.1000-1441.2018.06.015

    Wang Z,Wu A P,Li G. 2018. Forward modeling of borehole-ground induced polarization method under undulating topography[J]. Geophysical Prospecting for Petroleum,57(6):927–935 (in Chinese).

    薛国强,闫述,陈卫营. 2016. 电磁测深数据地形影响的快速校正[J]. 地球物理学报,59(12):4408–4413. doi: 10.6038/cjg20161202

    Xue G Q,Yan S,Chen W Y. 2016. A fast topographic correction method for electromagnetic data[J]. Chinese Journal of Geophysics,59(12):4408–4413 (in Chinese).

    杨沁润,谭茂金,李桂山,张福莱,白泽. 2020. 大斜度井和水平井井地三维电阻率数值模拟和联合反演[J]. 地球物理学报,63(12):4540–4552. doi: 10.6038/cjg2020O0137

    Yang Q R,Tan M J,Li G S,Zhang F L,Bai Z. 2020. Numerical simulation and joint inversion of three-dimensional borehole-to-surface resistivity of high deviated or horizontal wells[J]. Chinese Journal of Geophysics,63(12):4540–4552 (in Chinese).

    张天伦,张伯林. 1995. 消除直流电阻率三极梯度法中各种干扰的实验与研究[J]. 石油地球物理勘探,30(1):100–110. doi: 10.13810/j.cnki.issn.1000-7210.1995.01.013

    Zhang T L,Zhang B L. 1995. Research on removing noises in DC resistivity trielectrode gradient measurement[J]. Oil Geophysical Prospecting,30(1):100–110 (in Chinese).

    Kong F N,Johnstad S E,Røsten T,Westerdahl H. 2008. A 2.5D finite-element-modeling difference method for marine CSEM modeling in stratified anisotropic media[J]. Geophysics,73(1):F9–F19. doi: 10.1190/1.2819691

    Ku C C,Hsieh M S,Lim S H. 1973. The topographic effect in electromagnetic fields[J]. Can J Earth Sci,10(5):645–656. doi: 10.1139/e73-065

    Li L L,Han L G,Huang D N. 2014. Normalized edge detection,and the horizontal extent and depth of geophysical anomalies[J]. Appl Geophys,11(2):149–157. doi: 10.1007/s11770-014-0436-2

    Spitzer K. 1995. A 3-D finite-difference algorithm for DC resistivity modelling using conjugate gradient methods[J]. Geophys J Int,123(3):903–914. doi: 10.1111/j.1365-246X.1995.tb06897.x

    Xiong Z T,Tang X G,Li D D,Zhang L Q. 2019. Linear source CSAMT response simulation in the 2D anisotropic formation with topography[J]. J Appl Geophys,171:103861. doi: 10.1016/j.jappgeo.2019.103861

    Xiong Z T,Tang X G,Qiu W Z,Zhao C Y,Zhang L Q. 2020. New algorithm for three-dimensional borehole-to-surface apparent resistivity imaging based on unstructured mesh finite-element method[J]. IEEE Access,8:184–194. doi: 10.1109/ACCESS.2019.2961806

    Yang Q R,Tan M J,Zhang F L,Bai Z. 2021. Wireline logs constraint borehole-to-surface resistivity inversion method and water injection monitoring analysis[J]. Pure Appl Geophys,178(3):939–957. doi: 10.1007/s00024-021-02674-6

  • 期刊类型引用(28)

    1. 樊华,王文旭,孙杰,李晓阳. 基于遥感影像的重要地物的变化检测和标注. 科学技术与工程. 2024(09): 3586-3595 . 百度学术
    2. 翟玮,王晓青,朱贵钰,张皓然,刘海龙,邓津. 基于区域生长法和变差函数的PolSAR影像山脊线提取. 地震工程学报. 2023(04): 792-800 . 百度学术
    3. 刘苗苗,蒋宇帆,邢钉凡. 基于多特征核协同表示的SAR目标识别. 兵工自动化. 2022(04): 38-43 . 百度学术
    4. 李强,耿丹,张景发,龚丽霞. 面向地震应急调查的遥感应用现状及趋势分析. 遥感学报. 2022(10): 1920-1934 . 百度学术
    5. 李铭. 宜宾地震同震形变场双轨法D-InSAR技术的研究. 测绘与空间地理信息. 2021(06): 214-217 . 百度学术
    6. 肖修来,翟玮,郭晓,张皓然. 结合变差纹理特征的极化SAR建筑物震害信息提取. 地震工程学报. 2020(02): 568-578 . 百度学术
    7. 肖修来,翟玮,郭晓,裴万胜,邓津. 极化SAR建筑物震害信息识别研究方法综述. 遥感技术与应用. 2020(03): 509-516 . 百度学术
    8. 肖雯静. 地震灾害识别中遥感图像的应用研究. 轻工科技. 2019(02): 84-85+88 . 百度学术
    9. 韩鸣,张永志,程冬,尹鹏. 多视角InSAR数据解算2017两伊地震三维同震形变场. 测绘通报. 2019(04): 75-78+129 . 百度学术
    10. 王燕燕,于海洋. 九寨沟M_S7.0级地震三维同震形变场提取. 测绘科学. 2019(05): 8-13 . 百度学术
    11. 眭海刚,刘超贤,黄立洪,华丽. 遥感技术在震后建筑物损毁检测中的应用. 武汉大学学报(信息科学版). 2019(07): 1008-1019 . 百度学术
    12. 马威,马超,赵鹏飞,张舞燕. 高分辨SAR相干系数图像的开采沉陷区提取. 测绘科学. 2018(05): 115-120 . 百度学术
    13. 洪惠群,林金发. 灾情图中建筑物识别算法的研究. 绵阳师范学院学报. 2018(08): 101-106 . 百度学术
    14. 王志一,徐素宁,王娜,马秀强. 高分辨率光学和SAR遥感影像在地震地质灾害调查中的应用——以九寨沟M7.0级地震为例. 中国地质灾害与防治学报. 2018(05): 81-88 . 百度学术
    15. 袁玉,申旭辉,薛腾飞,张景发. SAR图像变化检测提取建筑物震害信息的研究综述. 地壳构造与地壳应力文集. 2017(00): 131-143 . 百度学术
    16. 贾明娟,万祥星. 相干变化指数法在震害快速评估中的应用. 测绘与空间地理信息. 2016(03): 59-61+64 . 百度学术
    17. 薛腾飞,张景发,李强. 基于相关变化检测与面向对象分类技术的多源遥感图像震害信息提取. 地震学报. 2016(03): 496-505+509 . 本站查看
    18. 温晓杨,匡纲要,胡杰民,张军. 相控阵雷达同时多波束SAR成像模式. 中国科学:信息科学. 2015(03): 354-371 . 百度学术
    19. 张舞燕,刘清臣,孟秀军. 基于SAR相干系数图像的城市边界提取. 测绘与空间地理信息. 2014(05): 56-59 . 百度学术
    20. 许仕敏,李文武,秦志远,张萍. 遥感技术在地震震害监测中的应用. 地理空间信息. 2014(05): 9-12+8 . 百度学术
    21. 张永梅,季艳,马礼,张睿,李洁琼,熊焰. 遥感图像建筑物识别及变化检测方法. 电子学报. 2014(04): 653-657 . 百度学术
    22. 龚丽霞,张景发,曾琪明,吴樊. 城镇建筑震害SAR遥感探测与评估研究综述. 地震工程与工程振动. 2013(04): 195-201 . 百度学术
    23. 马建军,冯启民,周宏宇. 基于影像解译的住宅建筑群体震害预测方法. 自然灾害学报. 2013(03): 62-67 . 百度学术
    24. 刘金玉,张景发. 合成孔径雷达图像震害信息提取应用. 地壳构造与地壳应力文集. 2012(00): 14-21 . 百度学术
    25. 金鼎坚,王晓青,窦爱霞,董彦芳. 雷达遥感建筑物震害信息提取方法综述. 遥感技术与应用. 2012(03): 449-457 . 百度学术
    26. 汤沛,邱玉宝,赵志芳. 合成孔径雷达(SAR)在地质、灾害应用研究中的新进展. 云南大学学报(自然科学版). 2012(S2): 305-313 . 百度学术
    27. 安立强,张景发. 遥感技术在震害调查中的应用现状及发展趋势. 地震工程与工程振动. 2011(02): 182-188 . 百度学术
    28. 张继贤,黄国满,刘纪平. 玉树地震灾情SAR遥感监测与信息服务系统. 遥感学报. 2010(05): 1038-1052 . 百度学术

    其他类型引用(34)

图(17)  /  表(1)
计量
  • 文章访问数:  318
  • HTML全文浏览量:  171
  • PDF下载量:  77
  • 被引次数: 62
出版历程
  • 收稿日期:  2022-05-18
  • 修回日期:  2022-08-04
  • 网络出版日期:  2022-11-06
  • 发布日期:  2023-01-16

目录

    /

    返回文章
    返回