2022年青海门源MS6.9地震地表破裂特征分类及震害分析

苏瑞欢, 袁道阳, 谢虹, 文亚猛, 司国军, 薛善余

苏瑞欢,袁道阳,谢虹,文亚猛,司国军,薛善余. 2023. 2022年青海门源MS6.9地震地表破裂特征分类及震害分析. 地震学报,45(5):797−813. DOI: 10.11939/jass.20220075
引用本文: 苏瑞欢,袁道阳,谢虹,文亚猛,司国军,薛善余. 2023. 2022年青海门源MS6.9地震地表破裂特征分类及震害分析. 地震学报,45(5):797−813. DOI: 10.11939/jass.20220075
Su R H,Yuan D Y,Xie H,Wen Y M,Si G J,Xue S Y. 2023. Classified surface rupture characteristics and damage analysis of the 2022 MS6.9 Menyuan earthquake,Qinghai. Acta Seismologica Sinica45(5):797−813. DOI: 10.11939/jass.20220075
Citation: Su R H,Yuan D Y,Xie H,Wen Y M,Si G J,Xue S Y. 2023. Classified surface rupture characteristics and damage analysis of the 2022 MS6.9 Menyuan earthquake,Qinghai. Acta Seismologica Sinica45(5):797−813. DOI: 10.11939/jass.20220075

2022年青海门源MS6.9地震地表破裂特征分类及震害分析

基金项目: 第二次青藏高原综合科学考察研究(2019QZKK0901)、国家自然科学基金(42172227)和中国电建集团西北勘测设计研究院有限公司平台支撑项目(XBY-PTKJ-2022-5)共同资助
详细信息
    作者简介:

    苏瑞欢,在读博士研究生,主要从事活动构造方面的研究,e-mail:surh21@lzu.edu.cn

    通讯作者:

    袁道阳,博士,教授,主要从事新构造与活动构造方面的研究,e-mail:yuandy@lzu.edu.cn

  • 中图分类号: P315.2

Classified surface rupture characteristics and damage analysis of the 2022 MS6.9 Menyuan earthquake,Qinghai

  • 摘要:

    为了深入分析2022年1月8日青海门源MS6.9地震引发的不同类型地表破裂特征及震害现象,本文依据沿此次地震地表破裂带进行的野外实地考察和无人机航拍解译,将破裂带沿线的典型同震地表破裂特征归纳为:① 多种典型几何细结构,包括雁列状次级破裂、左旋左阶拉张区、左旋右阶挤压区以及树枝状、网状破裂等;② 多种地貌标志物水平位错,包括牧区围栏、车辙印、动物脚印和冲沟冰面的左旋断错等;③ 多种类型垂直破裂,如逆冲型地震陡坎和正断型地震陡坎;④ 多种类型挤压破裂,如挤压脊和挤压鼓包;⑤ 不同类型张性裂缝带,如纯张性裂缝带和张剪性裂缝带。将地震引发的地质及工程震害现象归纳为:① 跨地震断裂带的边坡垮塌失稳;② 跨地震断裂带的公路、桥梁和隧道损坏;③ 地震断裂带附近区域的冰面鼓包、公路裂隙等形变现象。此外,对上述现象的展布特征和成因机制进行了分析讨论,并强调了加强跨活动断裂带时工程抗断及近断层强地面运动的抗震设防的重要性。

    Abstract:

    At 01:45 on January 8, 2022, a MS6.9 earthquake occurred in Menyuan County, Haibei Tibetan Autonomous Prefecture, Qinghai Province. The epicenter was located at (37.77°N, 101.26°E) in Lenglongling area of the central Qilian mountains, with a focal depth of 10 km. According to the comprehensive results of field investigation and aerial image interpretation by unmanned aerial vehicle (UAV), the seismogenic fault of this earthquake undertakes a sinistral strike-slip motion, with a slight thrust component. The surface rupture zone of this earthquake is composed of the north main rupture zone located at the west end of Lenglongling fault and the southwest secondary traction rupture zone located at the east end of Tuolaishan fault. A series of extensional step-overs, sinistral displacements, tensional fractures, compressed bulges, and compressed ridges were formed along the surface rupture zone, resulting in damage to the Lanzhou-Ürümqi high-speed railway tunnels and bridges and the suspension of train services. In order to comprehensively analyze the different types of surface fracture features and seismic damage caused by this earthquake, field investigations and aerial interpretation using UAV were conducted along the rupture zone. As a result, typical coseismic surface fracture features along the rupture zone were categorized as follows: ① Various typical geometric structures, including echelon secondary rupture, sinistral extensional step-overs, sinistral compressed step-overs, dendritic and netlike forked rupture, etc; ② Horizontal displacement observed in various geomorphic markers, such as left-lateral dislocations in pastoral areas, truck trace, animal footprints, and gullies and gully ice; ③ Various types of vertical rupture, such as thrust seismic scarps and normal seismic scarps; ④ Various types of compressed rupture, such as compressed ridges and compressed bulges; ⑤ Different types of tensional crack zones, including pure tensional cracks and tensional-shear cracks. The geological and engineering seismic damage caused by the earthquake can be summarized as follows: ① Slope instability across the earthquake fault zone; ② Damage to highways, bridges, and tunnels across the earthquake fault zone; ③ Seismic deformation such as ice bulges and highway cracks in the areas near the earthquake fault zone. In addition, with the analysis and discussion on the distribution characteristics and formation mechanisms of the phenomena above mentioned, we should emphasize the importance of strengthening engineering anti-rupture fortification when engineering constructions cross active faults.

  • 我国是一个地震多发的国家,尤其西部地区地震不断,且我国西部地形起伏多变,多高山峡谷。大量的强震动记录和震害调查表明,相较于平坦地形,复杂不规则地形对地震动影响更大(张建毅等,2012郭明珠等,2013)。研究地形效应最直观、最有效的方法是实际场地强震动观测及进行实地震害调查和实测数据的分析整理。但强震动观测受制于小概率地震事件,在科学研究和应用上存在一定的局限性。基于此,学者们开展了解析研究和数值模拟来研究地形效应。解析法主要针对简单模型,如圆弧形(Trifunac,1972)、椭圆形(Wong,1982)、U形(Gao et al,2012)及V形(Zhang et al,2012)地形,通过建立简化力学模型并利用波函数展开法进行求解,从本质上解释不规则地形对地震动的散射问题,同时也能为数值模拟精确度的验证提供依据;而数值模拟对复杂地形的研究更具普适性,可弥补解析法在求解复杂地形时的不足,是目前研究地震动在局部场地中的传播及散射的主要技术手段,以有限差分法和有限元法为代表。Ning等(2018)基于有限差分法提出波场分离方法,模拟瑞雷波在二维河谷地形上的传播;李平等(2018)采用二维显式有限差分法研究梯形河谷场地深宽比、河谷坡角、覆盖层厚度及输入地震动强度对场地地震动的影响,并探究了各因素的影响程度;Jahromi和Karkhaneh (2019)用ABAQUS有限元软件研究了不规则地形之间的相互作用对地震响应的影响;孙纬宇等(2019)基于黏弹性边界结合有限元法,研究了SV波入射角度和河谷斜坡坡度对河谷地形地震动放大系数分布特征的影响。为了使数值模拟的结果更精确可靠,要准确地模拟真实场地,科学合理地对其设置人工边界。目前使用的局部人工边界主要有透射边界、黏性边界和黏弹性边界。其中黏弹性边界克服了黏性边界引起的低频漂移问题,能吸收边界上散射波的能量,较好地模拟无限地基的弹性恢复能力和辐射阻尼效应,在一些大型有限元软件中广泛应用(孙纬宇等,2016马笙杰等,2020)。梁建文等(2014)采用黏弹性边界和等效结点力输入方法,对层状场地中三维凹陷地形进行地震响应分析;Chen等(2015)通过黏弹性人工边界条件,进行二维精细化非线性有限元建模,研究二维复合地形场地的地震效应特征;章小龙等(2017)运用结合黏弹性人工边界的显式有限元法,通过三维转二维的简化方法实现了SV波垂直入射下复杂三维地形地震反应的数值模拟。

    地震动在河谷地形中的传播是一个极其复杂的过程,会对跨河谷结构产生较大的不利影响,所以除了从时域角度分析,还应就其频谱特性作进一步研究。王国新等(2013)通过对实际台阵记录的分析,发现地震动相干性随深度的增加而降低;Zerva和Stephenson (2011)以功率谱密度和相干性为评估指标探讨了实际冲积河谷场地的地震动特性;Imtiaz等(2018)通过滞后相干性,研究了场地几何不规则性对地震动的影响。目前,关于从时域和频域角度综合分析三维河谷地形对地震动影响的研究尚不充分,仍需作进一步研究。

    本文基于西部某桥梁工程场地,利用ABAQUS有限元软件建立三维河谷地形,拟采用黏弹性人工边界结合隐式动力有限元法,进行动力响应分析,继而通过频谱分析,从时域和频域角度分别探讨河谷地形对地震动的影响,以期为开展河谷场地上桥梁三维地震反应分析提供非一致地震动输入,并进行三维河谷地形分析,以便确定因河谷地形产生的横桥向地震动。

    本文研究对象为西部地区一河谷地形,该地形属于半无限空间数值求解问题,通过人工边界的引入将其转化为有限域求解问题,形成几何尺寸为280 m×50 m×120 m的有限计算区域,剖面几何尺寸如图1所示。在此基础上,基于有限元计算精度要求并结合数值分析截止频率,确定六面体有限单元的几何尺寸为2 m×2 m×2 m,继而对分析区域进行有限单元离散,并建立三维有限元分析模型。之后通过动力有限元数值分析方法建立关于内节点的常微分方程组,并利用ABAQUS分析软件求解器实现其数值积分,其数值积分为隐式、非条件稳定的。假定该河谷场地为一均质且各向同性的弹性体,其密度为2 100 kg/m3,泊松比为0.35,弹性模量为860 MPa,剪切波速为390 m/s2。在河谷地形表面设置15个测点(图1),其中测点3与4,测点4与8,测点8与12,测点12与13之间的水平距离皆为30 m。

    图  1  河谷地形剖面图
    Figure  1.  Section of valley topography

    入射地震动选用一宽0.2 s、持时1 s的近似脉冲,其位移时程曲线及傅里叶谱如图2所示,截止频率约为12 Hz,有限元计算时间步长取0.002 s。地震动从底部基岩处垂直入射,通过自由场从人工边界面输入,沿河谷地形水平x向振动。

    图  2  输入脉冲位移时程(a)及其傅里叶振幅谱(b)
    Figure  2.  Displacement time history (a) of input pulse and its Fourier amplitude spectrum (b)

    在三维动力有限元分析中,为了消除人工边界的影响,在底边界和四周侧边界采用黏弹性人工边界条件模拟散射场自人工边界向计算区域外的辐射效应,实质是在人工截断边界上设置一系列并联的线性弹簧和黏滞阻尼器,如图3所示,其参数由围岩材料决定,具体计算公式(马笙杰等,2020)为:

    图  3  黏弹性人工边界等效弹簧-阻尼器系统
    Figure  3.  Viscous-elastic artificial boundary equivalent spring-damper system
    $$ {K_{{\text{BN}}}} = {\alpha _{\text{N}}}\frac{G}{R},{C_{{\text{BN}}}}= \rho {C_{\text{P}}} \text{,} $$ (1)
    $$ {K_{{\text{BT}}}} = {\alpha _{\text{T}}}\frac{G}{R},{C_{{\text{BT}}}} = \rho {C_{\text{S}}} \text{,} $$ (2)

    式中:KBNKBT分别为法向和切向弹簧的刚度系数;CBNCBT分别为法向和切向阻尼器的阻尼系数;$ {\alpha _{\text{N}}} $和$ {\alpha _{\text{T}}} $为修正系数,本文考虑三维黏弹性边界情况,取$ {\alpha _{\text{N}}} $=1.33,$ {\alpha _{\text{T}}} $=0.67;R为波源至人工边界点的距离;ρ为介质密度,G为介质的剪切模量,CPCS分别为P波和S波波速。

    刘晶波和吕彦东(1998)将地震动转化为等效节点力来实现地震动输入,根据力的平衡方程可得到在模型边界点上需要施加的等效荷载,计算公式为:

    $$ {F_{\text{B}}} ( t ) = {\sigma ^0} ( {{x_{\text{B}}}, {y_{\text{B}}}, t} ) A + {C_{\text{B}}}{\dot u^0} ( {{x_{\text{B}}}, {y_{\text{B}}}, t} ) A + {K_{\text{B}}}{u^0} ( {{x_{\text{B}}}, {y_{\text{B}}}, t} ) A \text{,} $$ (3)

    式中:$ {F}_{\mathrm{B}} ( t ) $为边界节点处的等效节点力;${\sigma ^0} ( {{x_{\text{B}}}, {y_{\text{B}}}, t} ) $,${u^0} ( {{x_{\text{B}}}, {y_{\text{B}}}, t} ) $和${\dot u^0} ( {{x_{\text{B}}}, {y_{\text{B}}}, t} ) $分别为原自由场在边界处的应力、位移和速度,其中速度和应力可以根据边界处位移求得;KBCB分别为黏弹性边界上的弹簧刚度系数和阻尼器的阻尼系数;A为节点控制面积。

    在此基础上,刘晶波等(2018)提出新的地震动输入法,新方法可避免计算每一个边界节点处的自由场应力及由边界单元引起的附加荷载,也无需根据人工边界面的外法线确定等效节点力的作用方向,可简化等效节点力的计算过程。原有波动法在输入等效节点力后,有限元节点的动力方程为:

    $$ {\boldsymbol{M}}\ddot {\boldsymbol{u}} + {\boldsymbol{C}}\dot {\boldsymbol{u}} + {\boldsymbol{Ku}} = {\boldsymbol{F}} \text{,} $$ (4)

    式中,MCK分别为模型质量矩阵、阻尼矩阵和刚度矩阵;$ {\boldsymbol{u}} $,$ \dot {\boldsymbol{u}} $和$ \ddot {\boldsymbol{u}} $分别为模型节点位移、速度和加速度向量;$ {{\boldsymbol{F}}} $为输入的等效节点力向量。输入等效节点力后,模型的位移场与自由波场一致,根据自由波场运动方程可得:

    $$ {\boldsymbol{F}} = {{\boldsymbol{M}}^0}{\ddot {\boldsymbol{u}}^0} + {{\boldsymbol{C}}^0}{\dot {\boldsymbol{u}}^0} + {{\boldsymbol{K}}^0}{{\boldsymbol{u}}^0} \text{,} $$ (5)

    式中,上标0表示自由波场,若已知自由场,可根据式(5)计算等效节点力。原波动法需要对整个自由场模型进行计算,现仅需对子结构进行计算,即

    $$ {{\boldsymbol{F}}_{\text{B}}} = {{\boldsymbol{M}}_{\text{BC}}}\ddot {\boldsymbol{u}}_{\text{C}}^0 + {{\boldsymbol{M}}_{\text{BB}}}\ddot {\boldsymbol{u}}_{\text{B}}^0 + {{\boldsymbol{C}}_{\text{BC}}}\dot {\boldsymbol{u}}_{\text{C}}^0 + {{\boldsymbol{C}}_{\text{BB}}}\dot {\boldsymbol{u}}_{\text{B}}^0 + {{\boldsymbol{K}}_{\text{BC}}}{\boldsymbol{u}}_{\text{C}}^0 + {{\boldsymbol{K}}_{\text{BB}}}{\boldsymbol{u}}_{\text{B}}^0 \text{,} $$ (6)

    式中,下标B,C分别表示边界单元节点和相邻土体节点。式(6)表明,只要保证边界单元节点和相邻土体节点的运动与自由场一致,则人工边界节点上的外荷载即为所需的等效节点力。

    等效地震荷载输入的具体实施步骤为:① 根据三维河谷地形模型的空间尺寸建立三维人工边界子结构模型,如图4所示,对子结构模型最外侧节点设置弹簧—阻尼器;② 利用一维计算程序算得自由场位移时程u0;③ 对子结构模型所有节点输入相应的u0,进行子结构动力反应分析,计算求得人工边界节点处的反力FB即为等效地震荷载;④ 用代码自动读取和写入大批量节点时程数据,施加到三维河谷地形模型中,实现地震动输入。

    图  4  黏弹性人工边界三维子结构模型示意图
    Figure  4.  The diagram of three-dimensional substructure model of viscous-elastic artificial boundary

    以三维弹性均匀半空间模型为例,验证黏弹性人工边界子结构地震动输入方法的可靠性。首先通过引入人工边界截取长、宽、高分别为60 m,60 m和30 m的有限计算区域,其密度为2 000 kg/m3,剪切波速为200 m/s,泊松比为0.3。结合有限元计算精度要求,确定有限离散单元大小为2 m×2 m×2 m,以此有限离散单元对计算区域进行离散,形成如图5a所示的弹性均匀半空间有限元离散模型。针对离散后的有限元模型建立动力运动方程,并利用ABAQUS软件中的ABAQUS/Standard模块求解计算区域内节点的地震反应。对于人工边界上节点的地震反应则采用黏弹性人工边界子结构法计算得到,子结构模型如图5b所示。入射地震动选用宽0.3 s、持时1 s的单峰脉冲地震动,其位移幅值为1 m,位移时程及其傅里叶振幅谱如图6所示。

    图  5  弹性半空间三维有限元模型示意图
    (a) 三维有限元模型;(b) 黏弹性人工边界子结构三维有限元模型
    Figure  5.  Schematic diagram of elastic half-space three-dimensional finite element model
    (a) Three-dimensional finite element model;(b) Three-dimensional finite element model of viscous-elastic artificial boundary substructure
    图  6  输入脉冲位移时程(a)及其傅里叶振幅谱(b)
    Figure  6.  Displacement time history of input pulse (a) and its Fourier amplitude spectrum (b)

    计算得到垂直入射脉冲地震动作用下,三维弹性均匀半空间有限元模型的位移反应,图7给出了地表测点和底边界测点的位移时程。由图7可知,地表位移峰值为2 m,底边界位移峰值为1 m。由弹性均匀半空间波动理论可知,自由表面位移幅值应为入射地震动的两倍。同时在底边界处的上行波和下行波的幅值均为1 m,表明人工边界具有足够的精度,未对位移反应产生影响。这两方面验证了人工边界子结构地震动输入方法的可靠性。

    图  7  模型顶面和底面位移时程
    Figure  7.  Displacement time history of top and bottom surfaces of the model

    本文采用有限元法结合黏弹性边界,通过时域动力有限元方法研究河谷场地地震动.数值模拟得到了各测点的位移反应,以此为基础讨论了各测点地震动反应峰值和质点运动轨迹。

    由于河谷场地水平x向即地面运动主方向有更大的地震响应,此处仅针对水平x向的响应进行讨论。图8为河谷地形表面各测点处的水平x向位移时程曲线,图9为各测点水平x向的位移峰值较输入地震动的放大系数图。由图8图9可知,由于地形的不对称,河谷两边地震响应存在差异;河谷两岸坡顶处位移峰值放大显著,向两岸逐渐衰减至输入地震动的两倍;随坡高的增加,位移峰值呈增大趋势;测点4和测点12距测点8的水平距离相同,但放大系数存在明显差异,结合图1可知,这是由左坡下坡角大于右坡下坡角所致,即坡度越大,位移峰值放大越显著。这表明河谷地形效应引起了显著的地震动强度的差动效应。

    图  8  河谷场地各测点水平x向位移时程曲线
    (a) 左岸;(b) 左坡;(c) 右岸;(d) 右坡
    Figure  8.  Displacement time history curve of horizontal x direction for each measuring point in valley site
    (a) Left bank;(b) Left slope;(c) Right bank;(d) Right slope
    图  9  河谷场地各测点水平x向位移峰值放大系数
    Figure  9.  Amplification factor of peak ground displacement of horizontal x direction for each measuring point in valley site

    由于分析模型实为二维问题,故在数值分析时仅考虑了输入地震动水平方向(x向)及入射方向(y向)的变化,并讨论了地形引起的地震动转换效应,图10给出了河谷表面一些测点的质点运动轨迹。由图可知,由于地形的复杂性,地震动在该区域的散射也较为复杂,各测点除有水平x向位移外,皆有竖直y向运动分量,表明各测点均存在地震动转换;两岸靠近边界的测点主要以水平往复运动为主,而由于两岸坡顶处存在着面的相交及转化,出现较强烈的地震动转换,其运动轨迹呈近似逆进椭圆;坡上各测点侧向运动及转向运动较大;对比测点4与测点8及测点8与测点12可以看出,前者地震动转换较后者更为明显,这是由左坡下坡角较大导致的。上述分析结果表明,河谷地形效应能产生明显的地震动转换,其特征为逆进椭圆面波。

    图  10  河谷场地部分测点质点运动轨迹
    Figure  10.  Particle motion trajectory of some measuring points in valley site

    基于时域数值模拟结果,从频域角度进行了地形效应的相干性及相位特性的分析,即以测点1为参考点,计算了其余各测点的地震反应与测点1的相干系数及相位差。

    对于两个计算点ij,相干系数的计算公式(万珂羽,孙晓丹,2022)为:

    $$ \left| {{\gamma _{ij}} ( \omega ) } \right| = \frac{{\left| { {{\overline S_{ij}} ( \omega ) } } \right|}}{{\sqrt { {{\overline S_{ii}} ( \omega ) {\overline S_{jj}} ( \omega ) } } }} \text{,} $$ (7)

    式中,$ {{\overline S_{ii}} ( \omega ) }$,$ {{\overline S_{jj}} ( \omega ) }$,$ {{\overline S_{ij}} ( \omega ) }$分别为平滑后ij点的自功率谱及两点间的互功率谱,本文采用汉明(Hamming)窗进行谱的平滑化,并据此计算得到了测点2至测点15相对于测点1的相干系数。相干系数是描述不同点间地震动相关程度的量,其值介于0至1之间,值越大表明两点间的相干性越强,0表示两点互不相干,1表示两点地震动过程完全一致。

    图11展示了测点2至测点15与测点1之间地震动的相干系数随频率的变化关系。由图可知,两岸各测点间地震动的相干性较好,基本趋于1;坡上各测点地震动由于其复杂的散射效应,与测点1的相干性较差;随着坡高的降低,相干性逐渐降低;相干性最差的区域集中在测点7至测点10,即谷底及其周围小范围影响区域。由此可知,河谷地形效应将减小地震动的相干性。

    图  11  河谷场地测点2至测点15与测点1的相干系数
    (a) 左岸;(b) 右岸;(c) 左坡;(d) 右坡
    Figure  11.  Coherence coefficients between measuring points 2 to 15 and measuring point 1 in valley site
    (a) Left bank;(b) Right bank;(c) Left slope;(d) Right slope

    图12为测点2至测点15与测点1之间地震动的相位差图。由图可知,两岸各测点间的地震动几乎不存在相位差;坡上各测点地震动与测点1之间的地震动存在显著的相位差,且相位差与场点位置相关,即各测点间皆存在不同的相位差,但相邻测点地震动相位差较相近。由此可以认为,河谷地形效应会导致地震动的相位差。

    图  12  河谷场地测点2至测点15与测点1的相位差
    (a) 左岸;(b) 右岸;(c) 左坡;(d) 右坡
    Figure  12.  Phase difference between measuring points 2 to 15 and measuring point 1 in valley site
    (a) Left bank;(b) Right bank;(c) Left slope;(d) Right slope

    本文针对西部某桥梁工程三维河谷地形场地,采用与黏弹性人工边界相结合的时域隐式动力有限元方法,在垂直入射下分析了河谷地形对地震动的影响,得到以下主要结论:

    1) 河谷地形对地震动强度有显著影响,且与河谷特征及场点位置相关,河谷底部地震动明显小于顶部和斜坡,河谷两岸坡顶处位移峰值放大最明显;随坡度的增大,位移峰值呈增长趋势。

    2) 河谷地形能产生特征为近似逆进椭圆的地震动转换,且两岸坡顶处地震动转换显著;随坡度的增加,地震动转换更明显。

    3) 河谷地形效应会减小地震动的相干性;河谷两岸地震动之间相干性较好,而与坡上地震动相干性较差;随边坡下降,地震动相干性逐渐降低,谷底地震动相干性最小。

    4) 河谷地形效应会引发地震动的相位差,且与边坡上场点位置相关,但相邻场点相位差相近;河谷两岸地震动之间几乎不存在相位差,而边坡及谷底相位差较大。

    5) 河谷地形会导致地震动明显的差动效应,即峰值差动、相位差,同时降低地震动的相干性。

    本研究可为开展非一致激励下河谷场地的桥梁三维地震反应分析提供参考依据,后续可进一步进行土结相互作用研究。

  • 图  1   祁连山中段活动构造分布及2022年门源MS6.9地震位置图

    断层数据修改自邓起东(2007)和徐锡伟等(2016),历史地震数据源自国家地震科学数据中心(2022),现代地震数据源自中国地震局震害防御司(1999)和中国地震台网中心(2022b),DEM数据源自美国地质调查局(USGS,2000

    Figure  1.   Active structures in central Qilian mountains and location of 2022 MS6.9 Menyuan earthquake

    Fault data are modified from Deng (2007) and Xu et al (2016),the historical earthquake data is from National Earthquake Data Center (2022),the modern earthquake data is from Earthquake Disaster Prevention Department of China Earthquake Administration (1999) and China Earthquake Networks Center (2022b). DEM data is from US Geological Survey (USGS,2000

    图  2   2022年门源MS6.9地震破裂带展布图

    绿点代表后文介绍的几种破裂带典型几何结构,黄点代表水平位错地貌,白点代表垂直位错地貌,橙点代表挤压脊、鼓包,蓝点代表张性裂缝,青点代表典型震害,黑点代表远端地表效应。F1-1:主破裂带硫磺沟段;F1-2:主破裂带硫磺沟—下大圈沟段;F1-3:硫磺沟次级破裂带;F2-1:南西侧次级破裂带大西沟段; F2-2:南西侧次级破裂带狮子口段,下同

    Figure  2.   Distribution characteristics of the 2022 MS6.9 Menyuan earthquake rupture zone

    The green dots represent several typical geometric structures described later,the yellow dots represent the horizontal dislocations,the white dots represent the vertical dislocations,the orange dots represent the compressed ridges and bulges,the blue dots represent the tensional cracks,the cyan dots represent the typical earthquake damage,the black dots represent the remote surface effect。F1-1:Liuhuanggou section of the main rupture zone;F1-2:Liuhuanggou-Xiadaquangou section of the main rupture zone;F1-3:Liuhuanggou secondary rupture zone;F2-1:Daxigou section of the southwest secondary rupture zone;F2-3:Shizikou section of the southwest secondary rupture zone,the same below

    图  3   破裂带典型区域无人机影像(左)与几何结构及成因机制素描图(右)

    R:里德尔剪切破裂;R′:共轭里德尔剪切破裂;T:张性破裂;Y:平行主位移方向的剪切破裂;P:次生压剪性破裂。(a) 雁列状破裂区;(b) 左旋左阶区,以左阶拉张为主,相邻左阶区间连接部位为挤压区;(c) 左旋右阶区,以右阶挤压为主;(d) 树枝状、网状分叉区,端部以分叉及网格状交错裂隙为主

    Figure  3.   UAV images (left panels),geometric structures and genetic mechanism sketches (right panels) of typical areas of the earthquake rupture zone

    R:Riedel shear fault;R′:Conjugate Riedel shear fault;T:Tensional fault;Y:Shear fault parallel to the principal displacement direction;P:Secondary compressed shear fault. (a) Echelon rupture;(b) Sinistral extensional step-overs dominated by stretching,where the connecting parts are compressed regions;(c) Sinistral compressed step-overs dominated by extruding;(d) The dendritic and netlike forked areas. The end member is dominated by bifurcation and meshed crisscrossed cracks

    图  4   沿2022年门源MS6.9地震地表破裂带的水平位错空间分布特征(据袁道阳等,2023修改)

    Figure  4.   Distribution characteristics of horizontal dislocations along the surface rupture zone of the 2022 MS6.9 Menyuan earthquake (modified from Yuan et al,2023

    图  5   多种类型地貌标志物的左旋位错

    黄色箭头为破裂带两盘水平相对运动方向;红色箭头为破裂带宏观展布方向(a) 围栏;(b) 车辙印;(c) 狼脚印;(d) 冲沟冰面

    Figure  5.   Left-lateral offsets of various types of geomorphic markers

    The yellow arrows represent the horizontal relative motion direction of both sides,and the red arrows represent the macroscopic direction spreading of the rupture zone。 (a) Fences;(b) Truck trace;(c) Wolf footprints;(d) Gully ice

    图  6   2022年门源MS6.9地震破裂形成的各类垂直陡坎及其断错类型(左下角小图)

    (a) 近垂直逆冲陡坎;(b) 复合型逆冲陡坎;(c) 拉张型正断陡坎;(d) 近垂直正断陡坎

    Figure  6.   Various types of vertical scarps resulted from the 2022 MS6.9 Menyuan earthquake and their disloaction types (bottom-left insets)

    (a) Near-vertical thrust scarp;(b) Compound thrust scarp;(c) Tensional normal scarp;(d) Near-vertical normal scarp

    图  7   2022年门源MS6.9地震形成的挤压脊(a)和鼓包(b)

    黄色箭头为破裂带两盘水平相对运动方向,黑色箭头为受力方向

    Figure  7.   Compressed ridges (a) and bulges (b) caused by the 2022 MS6.9 Menyuan earthquake

    The yellow arrows represent the horizontal relative motion direction on both sides of the rupture zone,and the black arrows represent the directions of force

    图  8   2022年门源MS6.9地震破裂形成的各类裂缝和拉张阶区

    黄色箭头为破裂带两盘水平相对运动方向;红色箭头为破裂带的宏观展布方向。(a) 主破裂张裂缝;(b) 雁列状张剪裂缝及追踪式裂缝;(c) 拉分区张剪裂缝;(d) 南北两侧为挤压破裂,其间为左旋左阶阶区内束状拉张裂缝

    Figure  8.   Various types of cracks and extensional step-overs formed by the rupture of 2022 MS6.9 Menyuan earthquake

    The yellow arrows represent the horizontal relative motion direction of both sides of the rupture zone,and the red arrows mark the macroscopic distribution direction of the rupture zone。(a) Tensional cracks on the main rupture zone;(b) Echelon tensional shear cracks and tracing cracks;(c) Tensional shear cracks in the extensional step-overs;(d) Compressed ruptures on the north and south sides,between of which are bundles of tensional cracks in sinistral extensional step-overs

    图  9   2022年门源MS6.9地震造成的各类地质灾害及工程破坏现象

    红色箭头为破裂带展布,黑色箭头为桥面同震水平运动幅度

    Figure  9.   Various geological disasters and engineering damages caused by the 2022 MS6.9 Menyuan earthquake

    The red arrows represent the distribution of the rupture zone,and the black arrows represent the coseismic horizontal motion amplitude of the bridge deck

    图  10   2022年门源MS6.9地震破裂带远端的地表效应

    (a) 地表裂隙;(b) 桥梁裂隙;(c) 冰面鼓包

    Figure  10.   Remote surface effects of the rupture zone of the 2022 MS6.9 Menyuan earthquake (a) Surface cracks;(b) Bridge cracks;(c) Ice bulges

  • 邓起东,张培震,冉勇康,杨晓平,闵伟,楚全芝. 2002. 中国活动构造基本特征[J]. 中国科学:D辑,32(12):1020–1030.

    Deng Q D,Zhang P Z,Ran Y K,Yang X P,Min W,Chu Q Z. 2003. Basic characteristics of active tectonics of China[J]. Science in China:Series D,46(4):356–372.

    邓起东. 2007. 中国活动构造图[CM]. 北京: 地震出版社: 2.

    Deng Q D. 2007. Map of Active Tectonics in China[CM]. Beijing: Seismological Press: 2 (in Chinese).

    徐锡伟, 韩竹军, 杨晓平, 张世民, 于贵华, 周本刚, 李峰, 马保起, 陈桂华, 冉勇康. 2016. 中国及邻近地区地震构造图[CM]. 北京: 地震出版社: 1.

    Xu X W, Han Z J, Yang X P, Zhang S M, Yu G H, Zhou B G, Li F, Ma B Q, Chen G H, Ran Y K. 2016. Seismotectonic Map of China and Adjacent Areas[CM]. Beijing: Seismological Press: 1 (in Chinese).

    国家地震科学数据中心. 2022. 中国历史地震目录[DB/OL]. [2022-03-05]. https://data.earthquake.cn/datashare/report.shtml?PAGEID=earthquake_lsdz.

    National Earthquake Data Center. 2022. Catalogue of historical earthquakes in China[DB/OL]. [2022-03-05]. https://data.earthquake.cn/datashare/report.shtml?PAGEID=earthquake_lsdz (in Chinese).

    郭敬信,侯珍清,侯康明. 1990. 昌马—祁连断裂带中段全新世活动特征与古地震[J]. 西北地震学报,12(3):38–43.

    Guo J X,Hou Z Q,Hou K M. 1990. Active character and paleoearthquake on median section of Changma-Qilian fault zone in Holocene[J]. Northwestern Seismological Journal,12(3):38–43 (in Chinese).

    郭鹏,韩竹军,安艳芬,姜文亮,毛泽斌,冯蔚. 2017. 冷龙岭断裂系活动性与2016年门源6.4级地震构造研究[J]. 中国科学:地球科学,47(5):617–630.

    Guo P,Han Z J,An Y F,Jiang W L,Mao Z B,Feng W. 2017. Activity of the Lenglongling fault system and seismotectonics of the 2016 MS6.4 Menyuan earthquake[J]. Science China Earth Sciences,60(5):929–942. doi: 10.1007/s11430-016-9007-2

    郭增建,谢原定,李孟銮,秦保燕,杨兴昌. 1976. 1920年12月16日的海原大地震[J]. 地球物理学报,19(1):42–49.

    Guo Z J,Xie Y D,Li M L,Qin B Y,Yang X C. 1976. Great Haiyuan earthquake on December 16,1920[J]. Acta Geophysica Sinica,19(1):42–49 (in Chinese).

    韩帅,吴中海,高扬,卢海峰. 2022. 2022年1月8日青海门源MS6.9地震地表破裂考察的初步结果及对冷龙岭断裂活动行为和区域强震危险性的启示[J]. 地质力学学报,28(2):155–168.

    Han S,Wu Z H,Gao Y,Lu H F. 2022. Surface rupture investigation of the 2022 Menyuan MS6.9 earthquake,Qinghai,China:Implications for the fault behavior of the Lenglongling fault and regional intense earthquake risk[J]. Journal of Geomechanics,28(2):155–168 (in Chinese).

    何文贵,袁道阳,葛伟鹏,罗浩. 2010. 祁连山活动断裂带中东段冷龙岭断裂滑动速率的精确厘定[J]. 地震,30(1):131–137. doi: 10.3969/j.issn.1000-3274.2010.01.015

    He W G,Yuan D Y,Ge W P,Luo H. 2010. Determination of the slip rate of the Lenglongling fault in the middle and eastern segments of the Qilian Mountain active fault zone[J]. Earthquake,30(1):131–137 (in Chinese).

    侯康明. 1998. 1927年古浪8级大震地表破裂特征及形成机制[J]. 地震地质,20(1):20–27.

    Hou K M. 1998. Characteristics of ground ruptures caused by 1927 Gulang M8 earthquake and their causative mechanisms[J]. Seismology and Geology,20(1):20–27 (in Chinese).

    侯珍清,才树骅. 1990. 甘肃景泰—天祝6.2级地震[J]. 西北地震学报,12(4):48.

    Hou Z Q,Cai S H. 1990. The M6.2 Jingtai-Tianzhu earthquake of Gausu Province[J]. Northwestern Seismological Journal,12(4):48 (in Chinese).

    胡朝忠,杨攀新,李智敏,黄帅堂,赵妍,陈丹,熊仁伟,陈庆宇. 2016. 2016年1月21日青海门源6.4级地震的发震机制探讨[J]. 地球物理学报,59(5):1637–1646. doi: 10.6038/cjg20160509

    Hu C Z,Yang P X,Li Z M,Huang S T,Zhao Y,Chen D,Xiong R W,Chen Q Y. 2016. Seismogenic mechanism of the 21 January 2016 Menyuan,Qinghai MS6.4 earthquake[J]. Chinese Journal of Geophysics,59(5):1637–1646 (in Chinese).

    姜文亮,李永生,田云锋,韩竹军,张景发. 2017. 冷龙岭地区2016年青海门源6.4级地震发震构造特征[J]. 地震地质,39(3):536–549. doi: 10.3969/j.issn.0253-4967.2017.03.007

    Jiang W L,Li Y S,Tian Y F,Han Z J,Zhang J F. 2017. Research of seismogenic structure of the Menyuan MS6.4 earthquake on January 21,2016 in Lenglongling area of NE Tibetan Plateau[J]. Seismology and Geology,39(3):536–549 (in Chinese).

    兰州地震研究所、青海省地震局联合考察队. 1987. 1986年8月26日门源6.4级地震考察初步总结[J]. 西北地震学报,9(2):75–80.

    Joint Investigation Team of Seismological Institute of Lanzhou and Seismological Bureau of Qinghai Province. 1987. A preliminary summarization of Menyuan earthquake (M=6.4) on Aug. 26,1986[J]. Northwestern Seismological Journal,9(2):75–80 (in Chinese).

    李强,江在森,武艳强,赵静,魏文薪,刘晓霞. 2013. 海原—六盘山断裂带现今构造变形特征[J]. 大地测量与地球动力学,33(2):18–22.

    Li Q,Jiang Z S,Wu Y Q,Zhao J,Wei W X,Liu X X. 2013. Present-day tectonic deformation characteristics of Haiyuan-Liupanshan fault zone[J]. Journal of Geodesy and Geodynamics,33(2):18–22 (in Chinese).

    李智敏,盖海龙,李鑫,袁道阳,谢虹,姜文亮,李永生,苏琦. 2022. 2022年青海门源MS6.9级地震发震构造和地表破裂初步调查[J]. 地质学报,96(1):330–335.

    Li Z M,Gai H L,Li X,Yuan D Y,Xie H,Jiang W L,Li Y S,Su Q. 2022. Seismogenic fault and coseismic surface deformation of the Menyuan MS6.9 earthquake in Qinghai,China[J]. Acta Geologica Sinica,96(1):330–335 (in Chinese).

    刘建生, 刘百篪, 袁道阳. 1994. 肃南断裂晚第四纪活动特征及古地震初步研究[G]//中国活动断层研究. 北京: 地震出版社: 36–41.

    Liu J S, Liu B C, Yuan D Y. 1994. Preliminary study on Late Quaternary movement and paleoseismicity along the Sunan fault[G]//Research on Active Faults in China. Beijing: Seismological Press: 36–41 (in Chinese).

    潘家伟,李海兵,Chevalier M L,刘栋梁,李超,刘富财,吴琼,卢海建,焦利青. 2022. 2022年青海门源MS6.9地震地表破裂带及发震构造研究[J]. 地质学报,96(1):215–231. doi: 10.3969/j.issn.0001-5717.2022.01.018

    Pan J W,Li H B,Chevalier M L,Liu D L,Li C,Liu F C,Wu Q,Lu H J,Jiao L Q. 2022. Coseismic surface rupture and seismogenic structure of the 2022 MS6.9 Menyuan earthquake,Qinghai Province,China[J]. Acta Geologica Sinica,96(1):215–231 (in Chinese).

    徐纪人,姚立珣,汪进. 1986. 1986年8月26日门源6.4级地震及其强余震的震源机制解[J]. 西北地震学报,8(4):82–84.

    Xu J R,Yao L X,Wang J. 1986. Earthquake source mechanisms of Menyuan earthquake (MS=6.4,on Aug. 26,1986) and its strong aftershocks[J]. Northwestern Seismological Journal,8(4):82–84 (in Chinese).

    薛善余,谢虹,袁道阳,李智敏,苏瑞欢,文亚猛. 2022. 2022门源MS6.9地震地表破裂带震害特征调查[J]. 地震工程学报,44(2):458–467.

    Xue S Y,Xie H,Yuan D Y,Li Z M,Su R H,Wen Y M. 2022. Seismic disaster characteristics of the surface rupture ofMenyuan MS6.9 earthquake in 2022[J]. China Earthquake Engineering Journal,44(2):458–467 (in Chinese).

    袁道阳,刘百篪,吕太乙,何文贵,刘小凤,甘卫军. 1998. 北祁连山东段活动断裂带的分段性研究[J]. 西北地震学报,20(4):27–34.

    Yuan D Y,Liu B C,Lü T Y,He W G,Liu X F,Gan W J. 1998. Study on the segmentation in east segment of the northern Qilianshan fault zone[J]. Northwestern Seismological Journal,20(4):27–34 (in Chinese).

    袁道阳,张培震,刘百篪,甘卫军,毛凤英,王志才,郑文俊,郭华. 2004. 青藏高原东北缘晚第四纪活动构造的几何图像与构造转换[J]. 地质学报,78(2):270–278. doi: 10.3321/j.issn:0001-5717.2004.02.017

    Yuan D Y,Zhang P Z,Liu B C,Gan W J,Mao F Y,Wang Z C,Zheng W J,Guo H. 2004. Geometrical imagery and tectonic transformation of Late Quaternary active tectonics in northeastern margin of Qinghai-Xizang Plateau[J]. Acta Geologica Sinica,78(2):270–278 (in Chinese).

    袁道阳,谢虹,苏瑞欢,李智敏,文亚猛,司国军,薛善余,陈干,刘炳旭,梁淑敏,彭慧,段磊,魏拾其. 2023. 2022年1月8日青海门源MS6.9地震地表破裂带特征与发震机制[J]. 地球物理学报,66(1):229–244. doi: 10.6038/cjg2022Q0093

    Yuan D Y,Xie H,Su R H,Li Z M,Wen Y M,Si G J,Xue S Y,Chen G,Liu B X,Liang S M,Peng H,Duan L,Wei S Q. 2023. Characteristics of co-seismic surface rupture zone of Menyuan MS6.9 earthquake in Qinghai Province on January 8,2022 and seismogenic mechanism[J]. Chinese Journal of Geophysics,66(1):229–244 (in Chinese).

    张培震. 1999. 中国大陆岩石圈最新构造变动与地震灾害[J]. 第四纪研究,(5):404–413. doi: 10.3321/j.issn:1001-7410.1999.05.003

    Zhang P Z. 1999. Late Quaternary tectonic deformation and earthquake hazard in continental China[J]. Quaternary Sciences,(5):404–413 (in Chinese).

    郑文俊,袁道阳,何文贵. 2004. 祁连山东段天桥沟—黄羊川断裂古地震活动习性研究[J]. 地震地质,26(4):645–657. doi: 10.3969/j.issn.0253-4967.2004.04.011

    Zheng W J,Yuan D Y,He W G. 2004. Characteristics of palaeo-earthquake activity along the active Tianqiaogou-Huangyangchuan fault on the eastern section of the Qilianshan mountains[J]. Seismology and Geology,26(4):645–657 (in Chinese).

    郑文俊,张培震,袁道阳,郑德文. 2009. GPS观测及断裂晚第四纪滑动速率所反映的青藏高原北部变形[J]. 地球物理学报,52(10):2491–2508. doi: 10.3969/j.issn.0001-5733.2009.10.008

    Zheng W J,Zhang P Z,Yuan D Y,Zheng D W. 2009. Deformation on the northern of the Tibetan Plateau from GPS measurement and geologic rates of Late Quaternary along the major fault[J]. Chinese Journal of Geophysics,52(10):2491–2508 (in Chinese).

    中国地震局. 2022. 中国地震局发布青海门源6.9级地震烈度图[EB/OL]. [2022-01-11]. https://www.cea.gov.cn/cea/xwzx/fzjzyw/5646200/index.html.

    China Earthquake Administration. 2022. China Earthquake Administration releases intensity map of MS6.9 earthquake in Menyuan, Qinghai Province[EB/OL]. [2022-01-11]. https://www.cea.gov.cn/cea/xwzx/fzjzyw/5646200/index.html (in Chinese).

    中国地震局震害防御司. 1999. 中国近代地震目录[M]. 北京: 中国科学技术出版社: 1–637.

    Department of Earthquake Disaster Prevention, China Seismological Bureau. 1999. The Catalogue of Modern Earthquakes in China[M]. Beijing: China Science and Technology Press: 1–637 (in Chinese).

    中国地震台网中心. 2022a. 1月8日1时45分青海海北州门源县发生6.9级地震[EB/OL]. [2022-01-15]. http://www.cenc.ac.cn/cenc/dzxx/396391/index.html.

    China Earthquake Networks Center. 2022a. A MS6.9 earthquake hit Menyuan County, Haibei Prefecture, Qinghai Province at 1:45 am on January 8[EB/OL]. [2022-01-15]. http://www.cenc.ac.cn/cenc/dzxx/396391/index.html (in Chinese).

    中国地震台网中心. 2022b. 历史地震查询[DB/OL]. [2022-08-31]. http://www.ceic.ac.cn/history.

    China Earthquake Networks Center. 2022b. Historical earthquake search[DB/OL]. [2022-08-31]. http://www.ceic.ac.cn/history (in Chinese).

    周春景,吴中海,尼玛次仁,李家存,蒋瑶,刘艳辉. 2014. 青海玉树MS7.1级地震同震地表破裂构造[J]. 地质通报,33(4):551–566. doi: 10.3969/j.issn.1671-2552.2014.04.011

    Zhou C J,Wu Z H,Nima C R,Li J C,Jiang Y,Liu Y H. 2014. Structural analysis of the co-seismic surface ruptures associated with the Yushu MS7.1 earthquake,Qinghai Province[J]. Geological Bulletin of China,33(4):551–566 (in Chinese).

    Gaudemer Y,Tapponnier P,Meyer B,Peltzer G,Shunmin G,Zhitai C,Huagung D,Cifuentes I. 1995. Partitioning of crustal slip between linked,active faults in the eastern Qilian Shan,and evidence for a major seismic gap,the ‘Tianzhu gap’,on the western Haiyuan fault,Gansu (China)[J]. Geophys J Int,120(3):599–645. doi: 10.1111/j.1365-246X.1995.tb01842.x

    Hu X F,Cao X L,Li T,Mao J W,Zhang J,He X,Zhang Y N,Pan B T. 2021. Late Quaternary fault slip rate within the Qilian orogen,insight into the deformation kinematics for the NE Tibetan Plateau[J]. Tectonics,40(5):e2020TC006586.

    Lasserre C,Gaudemer Y,Tapponnier P,Mériaux A S,van der Woerd J,Yuan D Y,Ryerson F J,Finkel R C,Caffee M W. 2002. Fast Late Pleistocene slip rate on the Leng Long Ling segment of the Haiyuan fault,Qinghai,China[J]. J Geophys Res:Solid Earth,107(B11):2276. doi: 10.1029/2000JB000060

    Li H B,Pan J W,Lin A M,Sun Z M,Liu D L,Zhang J J,Li C L,Liu K,Chevalier M L,Yun K,Gong Z. 2016. Coseismic surface ruptures associated with the 2014 MW6.9 Yutian earthquake on the Altyn Tagh fault,Tibetan Plateau[J]. Bull Seismol Soc Am,106(2):595–608. doi: 10.1785/0120150136

    Liu J R,Ren Z K,Zhang H P,Li C Y,Zhang Z Q,Zheng W J,Li X M,Liu C C. 2022. Slip rates along the Laohushan fault and spatial variation in slip rate along the Haiyuan fault zone[J]. Tectonics,41(2):e2021TC006992.

    Ren J J,Zhang Z W,Gai H L,Kang W J. 2021. Typical Riedel shear structures of the coseismic surface rupture zone produced by the 2021 MW7.3 Maduo earthquake,Qinghai,China,and the implications for seismic hazards in the block interior[J]. Natural Hazards Research,1(4):145–152. doi: 10.1016/j.nhres.2021.10.001

    Shao Y X,Liu-Zeng J,van der Woerd J,Klinger Y,Oskin M E,Zhang J Y,Wang P,Wang P T,Wang W,Yao W Q. 2021. Late Pleistocene slip rate of the central Haiyuan fault constrained from optically stimulated luminescence,14C,and cosmogenic isotope dating and high-resolution topography[J]. GSA Bull,133(7/8):1347–1369.

    USGS. 2000. SRTMGL1 v003[DB/OL]. [2022-03-05]. https://lpdaac.usgs.gov/products/srtmgl1v003.

    USGS. 2022. M6.6: Northern Qinghai, China[EB/OL]. [2022-01-12]. https://earthquake.usgs.gov/earthquakes/eventpage/us7000g9zq/technical.

    Yuan D Y, Zhang P Z, Ge W P, Liu X, Zhang H, Liang M. 2008. Late Quaternary strike-slip features along the western segment of Haiyuan-Qilianshan fault, NE Tibetan Plateau[C]//American Geophysical Union Fall Meeting. San Francisco: AGU: T33B-2057.

    Zhang Y P,Zheng W J,Zhang D L,Zhang P Z,Yuan D Y,Tian Q Y,Zhang B X,Liang S M. 2019. Late Pleistocene left-lateralslip rates of the Gulang fault and its tectonic implications in eastern Qilian Shan (NE Tibetan Plateau),China[J]. Tectonophysics,756:97–111. doi: 10.1016/j.tecto.2019.02.013

    Zheng W J,Zhang P Z,He W G,Yuan D Y,Shao Y X,Zheng D W,Ge W P,Min W. 2013. Transformation of displacement between strike-slip and crustal shortening in the northern margin of the Tibetan Plateau:Evidence from decadal GPS measurements and Late Quaternary slip rates on faults[J]. Tectonophysics,584:267–280. doi: 10.1016/j.tecto.2012.01.006

  • 期刊类型引用(4)

    1. 陆诗铭,吴中海,黄婷. 甘肃积石山M_S 6.2地震地质灾害发育特征及孕灾环境分析. 地质力学学报. 2025(01): 139-155 . 百度学术
    2. 邵延秀,王爱生,刘静,王文鑫,韩龙飞,邢麟杰,许建红,王霁川,姚文倩,张惠心,刘小利. 2025年1月7日西藏定日地震地表破裂特征和野外同震位移测量初步结果. 地球科学. 2025(05): 1677-1695 . 百度学术
    3. 黄婷,吴中海,韩帅,高扬,柏伟国. 西藏日喀则地区的活断层基本特征及地震灾害潜在风险评估. 地震科学进展. 2024(10): 696-711 . 百度学术
    4. 郑周,林彬华,于伟恒,金星,王士成,李水龙,周施文,丁炳火,韦永祥,周跃勇,陈辉. Transformer模型和迁移学习在地震P波和噪声判别中的应用研究. 地球物理学报. 2024(11): 4189-4203 . 百度学术

    其他类型引用(1)

图(10)
计量
  • 文章访问数:  233
  • HTML全文浏览量:  58
  • PDF下载量:  69
  • 被引次数: 5
出版历程
  • 收稿日期:  2022-05-18
  • 修回日期:  2022-12-05
  • 网络出版日期:  2023-08-23
  • 刊出日期:  2023-10-29

目录

/

返回文章
返回