龙滩水库库区地震活动与水位的互相关分析及孔隙压力扩散系数估算

叶庆东, 余大新, 王凯明, 毛远凤, 阎春恒

叶庆东,余大新,王凯明,毛远凤,阎春恒. 2023. 龙滩水库库区地震活动与水位的互相关分析及孔隙压力扩散系数估算. 地震学报,45(6):1068−1078. DOI: 10.11939/jass.20220083
引用本文: 叶庆东,余大新,王凯明,毛远凤,阎春恒. 2023. 龙滩水库库区地震活动与水位的互相关分析及孔隙压力扩散系数估算. 地震学报,45(6):1068−1078. DOI: 10.11939/jass.20220083
Ye Q D,Yu D X,Wang K M,Mao Y F,Yan C H. 2023. Analysis of the cross-correlation between seismicity and water level and estimation of the hydraulic diffusivity in the Longtan reservoir area. Acta Seismologica Sinica45(6):1068−1078. DOI: 10.11939/jass.20220083
Citation: Ye Q D,Yu D X,Wang K M,Mao Y F,Yan C H. 2023. Analysis of the cross-correlation between seismicity and water level and estimation of the hydraulic diffusivity in the Longtan reservoir area. Acta Seismologica Sinica45(6):1068−1078. DOI: 10.11939/jass.20220083

龙滩水库库区地震活动与水位的互相关分析及孔隙压力扩散系数估算

基金项目: 中国地震局星火计划(XH21050Y)资助
详细信息
    通讯作者:

    叶庆东,博士,高级工程师,主要从事地震层析成像、微地震震源参数等方面的研究,e-mail:yeqingdongg@126.com

  • 中图分类号: P315.1

Analysis of the cross-correlation between seismicity and water level and estimation of the hydraulic diffusivity in the Longtan reservoir area

  • 摘要:

    对广西壮族自治区龙滩水库库区2013年3月1日至2019年10月31日的地震数目与水位进行互相关计算,得到了地震活动对库区蓄水响应的延迟时间为37天,并通过替代数据检验确认了其可靠性。37天的延迟时间说明在水位达到峰值后地震活动开始快速增强,可能暗示着现阶段库水流体作用的影响主要局限在库区内。根据延迟时间和地震深度分布,以及周期性边界条件下孔隙压力扩散方程的解,在不考虑孔隙压力扩散与应力耦合时得到孔隙压力扩散系数D=(8.66±4.11) m2/s;在考虑孔隙压力扩散与应力耦合时得到扩散系数D=(1.72±0.82) m2/s。后者在物理上更为合理,说明现阶段孔隙压力扩散与应力耦合可能是诱发龙滩库区水库地震的主要因素。

    Abstract:

    In this study, the 37-day time lag was estimated by cross-correlating the daily number of earthquakes and the daily water level data from 1 March 2013 to 31 October 2019 in the Longtan reservoir, Guangxi Zhuang Autonomous Region. Based on the surrogate data test, we confirmed the 37-day time lag was reliable. The 37-day time lag indicates reservoir-induced enhances seismic activity rapidly after the water level reaches peak value, which may suggest the fluid effect of reservoir water is mainly confined within the reservoir area at present. With the time lag, the depth distribution of the earthquakes, and the solutions of pore pressue diffusion equations derived under periodic boundary condition, the vertical hydraulic diffusivity were estimated to be D=(8.66±4.11) m2/s and D=(1.72±0.82) m2/s on the condition that the pore pressure diffusion uncoupled and coupled the stress, respectively. The latter is more reasonable physically, which may indicate the coupling between diffusion of the pore pressure and stress is the main reason for inducing the earthquakes in the Longtan reservoir at present stage.

  • 图  1   龙滩水库地质构造及2006年9月至2019年10月的地震事件分布

    F1:罗甸—望谟断裂;F2:高圩—八茂断裂;F3:凤亭—下老断裂;F4:马耳—拉浪断裂;F5:达恒—达良断裂;F6:党明—桂花断裂;F7:望谟—逻西断裂;F8:长里—八南断裂;F9:龙凤—八腊断裂

    Figure  1.   Structural outlines and the distribution of seismic events from September of 2006 to October of 2019 in the Longtan reservoir

    F1:Luodian-Wangmo fault;F2:Gaoyu-Bamao fault;F3:Fengting-Xialao fault;F4:Maer-Lalang fault;F5:Daheng-Daliang fault;F6:Dangming-Guihua fault;F7:Wangmo-Luoxi fault;F8:Changli-Ba’nan fault;F9:Longfeng-Bala fault

    图  2   龙滩水库2013年3月1日至2019年10月31日地震活动和水位变化

    (a) 地震活动N-t图;(b) M-t图和水位变化

    Figure  2.   The seismicity and the variation of water level from March 1,2013 to October 31,2019 in the Longtan reservoir

    (a) The N-t map of seismicity;(b) The M-t map of seismicity and the change of water level

    图  3   标准化地震数目与水位的互相关

    (a) 以天为单位的标准化后的地震数目与水位的互相关,其中灰色代表滤波之前的结果,黑色为滤波后的结果;(b) 以月为单位的标准化后的地震数目与水位的互相关

    Figure  3.   Cross-correlation between the standardized number of earthquakes and water level

    (a) Cross-correlation between standardized number of earthquakes and water level in day,where the gray line represents the results before filtering,and the black line represents the results after filtering;(b) Cross-correlation between standardized number of earthquakes and water level in month

    图  4   标准化后的水位w (a)和地震数目n (b)的功率谱

    Figure  4.   The power spectra of standardized water level w (a) and number n of earthquakes (b)

    图  5   (a) 滤波后的标准化地震数目ns和水位ws;(b) 以月为单位的标准化地震数目nm和水位wm

    Figure  5.   (a) Standardized number of earthquakes ns and water level ws after filtering;(b) Standardized number of earthquakes nm and water level wm in month

    图  6   地震的深度-频次分布

    Figure  6.   Depth-frequency distribution of the earthquakes

    图  7   α取不同值时孔隙压力幅值(a)及相位(b)随$ \sqrt{\omega /2D}h $ 变化

    Figure  7.   Variation of the magnitude (a) and phase (b) of pore pressure as a function of $ \sqrt{\omega /2D}h $ for different α

  • 陈翰林,赵翠萍,修济刚,陈章立. 2009a. 龙滩水库地震精定位及活动特征研究[J]. 地球物理学报,52(8):2035–2043.

    Chen H L,Zhao C P,Xiu J G,Chen Z L. 2009a. Study on precise location of Longtan reservoir earthquake and its seismic activity[J]. Chinese Journal of Geophysics,52(8):2035–2043 (in Chinese).

    陈翰林,赵翠萍,修济刚,陈章立. 2009b. 龙滩库区水库地震震源机制及应力场特征[J]. 地震地质,31(4):686–698.

    Chen H L,Zhao C P,Xiu J G,Chen Z L. 2009b. Study on the characteristics of focal mechanisms of reservoir induced earthquakes and stress field in the Longtan reservoir area[J]. Seismology and Geology,31(4):686–698 (in Chinese).

    陈颙. 2009. 汶川地震是由水库蓄水引起的吗?[J]. 中国科学:地球科学,39(3):257–259.

    Chen Y. 2009. Did the reservoir impoundment trigger the Wenchuan earthquake?[J]. Science in China:Series D,52(4):431–433.

    龚钢延,谢原定. 1991. 新丰江水库地震区内孔隙流体扩散与原地水力扩散率的研究[J]. 地震学报,13(3):364–371.

    Gong G Y,Xie Y D. 1991. Research on the diffusion of pore fluid and in-situ hydraulic diffusivity in the epicentral region of Xinfengjiang reservoir earthquakes[J]. Acta Seismologica Sinica,13(3):364–371 (in Chinese).

    广西壮族自治区地质局. 1972. 乐业幅地质图[CM]. 北京: 地质出版社: 1.

    Geology Bureau of Guangxi Zhuang Autonomous Region. 1972. Leye Geological Map[CM]. Beijing: Geological Publishing House: 1 (in Chinese).

    郭培兰,姚宏,袁媛. 2006. 龙滩水库地震危险性分析[J]. 高原地震,18(4):17–23. doi: 10.3969/j.issn.1005-586X.2006.04.003

    Guo P L,Yao H,Yuan Y. 2006. Analysis on potential seismic risk in Longtan reservoir[J]. Earthquake Research in Plateau,18(4):17–23 (in Chinese).

    蒋海昆, 张晓东, 单新建. 2014. 中国大陆水库地震统计特征及预测方法研究[M]. 北京: 地震出版社: 3–5.

    Jiang H K, Zhang X D, Shan X J. 2014. Study on the Statistical Characteristics of Reservoir-Induced Earthquakes and Prediction Methods in China Mainland[M]. Beijing: Seismological Press: 3–5 (in Chinese).

    刘鑫,鲍长春. 2014. 基于替代数据检测的音频信号非线性分析[J]. 数据采集与处理,29(2):243–247. doi: 10.3969/j.issn.1004-9037.2014.02.013

    Liu X,Bao C C. 2014. Nonlinear analysis of audio signals using surrogate data test[J]. Journal of Data Acquisition and Processing,29(2):243–247 (in Chinese).

    刘耀炜,许丽卿,杨多兴. 2011. 龙滩水库诱发地震的孔隙压力扩散特征[J]. 地球物理学报,54(4):1028–1037.

    Liu Y W,Xu L Q,Yang D X. 2011. Pore pressure diffusion characteristics of Longtan reservoir-induced-earthquake[J]. Chinese Journal of Geophysics,54(4):1028–1037 (in Chinese).

    潘建雄. 1989. 红水河龙滩水库诱发地震地质条件的探讨[J]. 地震地质,11(4):91–99.

    Pan J X. 1989. The geological environment for induced earthquake in Longtan reservoir of Hongshui river[J]. Seismology and Geology,11(4):91–99 (in Chinese).

    阎春恒,周斌,陆丽娟,孙学军,文翔. 2015. 龙滩水库蓄水后库区中小地震的震源机制[J]. 地球物理学报,58(11):4207–4222. doi: 10.6038/cjg20151127

    Yan C H,Zhou B,Lu L J,Sun X J,Wen X. 2015. Focal mechanisms of moderate and small earthquakes occurred after reservoir recharger in the Longtan reservoir region[J]. Chinese Journal of Geophysics,58(11):4207–4222 (in Chinese).

    阎春恒,周斌,李莎,向巍,郭培兰. 2020. 利用小震分布和区域应力场确定龙滩库区地震断层面参数[J]. 地震地质,42(3):562–580.

    Yan C H,Zhou B,Li S,Xiang W,Guo P L. 2020. Determination of fault plane parameters in the Longtan reservoir by using precisely located small earthquakes data and regional stress field[J]. Seismology and Geology,42(3):562–580 (in Chinese).

    叶庆东,阎春恒,王生文,毛远凤,余大新,闫琳琳. 2018. 广西龙滩水库地壳QS二维成像[J]. 地震学报,40(6):689–700.

    Ye Q D,Yan C H,Wang S W,Mao Y F,Yu D X,Yan L L. 2018. Crustal 2-D QS tomography in Longtan reservoir,Guangxi region[J]. Acta Seismologica Sinica,40(6):689–700 (in Chinese).

    詹艳,王立凤,王继军,肖骑彬,莫青云. 2012. 广西龙滩库区深部孕震结构大地电磁探测研究[J]. 地球物理学报,55(4):1400–1410. doi: 10.6038/j.issn.0001-5733.2012.04.036

    Zhan Y,Wang L F,Wang J J,Xiao Q B,Mo Q Y. 2012. Electromagnetic survey of the seismogenic structures beneath the Longtan reservoir in Guangxi Province[J]. Chinese Journal of Geophysics,55(4):1400–1410 (in Chinese).

    周斌,孙峰,阎春恒,薛世峰,史水平. 2014. 龙滩水库诱发地震三维孔隙弹性有限元数值模拟[J]. 地球物理学报,57(9):2846–2868.

    Zhou B,Sun F,Yan C H,Xue S F,Shi S P. 2014. 3D-pore elatstics finite element numerical simulation of Longtan reservoir-induced seismicity[J]. Chinese Journal of Geophysics,57(9):2846–2868 (in Chinese).

    Biot M A. 1941. General theory of three-dimensional consolidation[J]. J App Phys,12(2):155–164. doi: 10.1063/1.1712886

    Christiansen L B,Hurwitz S,Saar M O,Ingebritsen S E,Hsieh P A. 2005. Seasonal seismicity at western United States volcanic centers[J]. Earth Planet Sci Lett,240(2):307–321. doi: 10.1016/j.jpgl.2005.09.012

    Doan M L,Brodsky E E,Kano Y,Ma K F. 2006. In situ measurement of the hydraulic diffusivity of the active Chelunpu fault,Taiwan[J]. Geophys Res Lett,33(16):L16317. doi: 10.1029/2006GL026889

    Ferreira J M,De Oliveira R T,Assumpção M,Moreira J A M,Pearce R G,Takeya M K. 1995. Correlation of seismicity and water level in the Açu reservoir:An example from Northeast Brazil[J]. Bull Seismol Soc Am,85(5):1483–1489. doi: 10.1785/BSSA0850051483

    Hardebeck J L,Nazareth J J,Hauksson E. 1998. The static stress change triggering model:Constraints from two southern California aftershock sequences[J]. J Geophys Res:Solid Earth,103(B10):24427–24437.

    Little M A,McSharry P E,Moroz I M,Roberts S J. 2006. Testing the assumptions of linear prediction analysis in normal vowels[J]. J Acousti Soc Am,119(1):549–558. doi: 10.1121/1.2141266

    Nur A,Booker J R. 1972. Aftershocks caused by pore fluid flow?[J]. Science,175(4024):885–887. doi: 10.1126/science.175.4024.885

    Roeloffs E A. 1988. Fault stability change induced beneath a reservoir with cyclic variations in water level[J]. J Geophys Res:Solid Earth,93(B3):2107–2124. doi: 10.1029/JB093iB03p02107

    Roeloffs E. 1996. Poroelastic techniques in the study of earthquake-related hydrological phenomena[J]. Adv Geophys,37:135–195.

    Saar M O,Manga M. 2003. Seismicity induced by seasonal groundwater recharge at Mt. Hood,Oregon[J]. Earth Planet Sci Lett,214(3/4):605–618. doi: 10.1016/S0012-821X(03)00418-7

    Stein R S. 1999. The role of stress transfer in earthquake occurrence[J]. Nature,402(6762):605–609.

    Talwani P,Acree S. 1984. Pore pressure diffusion and the mechanism of reservoir-induced seismicity[J]. Pure Appl Geophys,122(6):947–965. doi: 10.1007/BF00876395

    Telesca L. 2010. Analysis of the cross-correlation between seismicity and water Level in the Koyna area of India[J]. Bull Seismol Soc Am,100(5A):2317–2321. doi: 10.1785/0120090392

    Telesca L,ElShafey Fat ElBary R,El-Ela Amin Mohamed A,ElGabry M. 2012. Analysis of the cross-correlation between seismicity and water level in the Aswan area (Egypt) from 1982 to 2010[J]. Nat Hazards Earth Syst Sci,12(7):2203–2207. doi: 10.5194/nhess-12-2203-2012

    Telesca L,do Nascimento A F,Bezerra F H R,Ferreira J M. 2015. Analysis of the cross-correlation between water level and seismicity at Açu reservoir (Brazil)[J]. Tectonophysics,658:151–158. doi: 10.1016/j.tecto.2015.07.017

    Telesca L,Kadirov F,Yetirmishli G,Safarov R,Babayev G,Islamova S,Kazimova S. 2020. Analysis of the relationship between water level temporal changes and seismicity in the Mingechevir reservoir (Azerbaijan)[J]. J Seismol,24(7):937–952.

    Turcotte D L, Schubert G. 2002. Geodynamics[M]. 2nd edition. Cambridge: Cambridge University Press: 271−282.

    Wiemer S,Wyss M. 2000. Minimum magnitude of completeness in earthquake catalogs:Examples from Alaska,the western United States,and Japan[J]. Bull Seismol Soc Am,90(4):859–869. doi: 10.1785/0119990114

    Xue L,Brodsky E E,Erskine J,Fulton P M,Carter R. 2016. A permeability and compliance contrast measured hydrogeologically on the San Andreas fault[J]. Geochem Geophys Geosyst,17(3):858–871. doi: 10.1002/2015GC006167

  • 期刊类型引用(48)

    1. Yu Li,Yuebing Wang,Lijiang Zhao,Hongbo Shi,Pingping Wang. Kinematic deformation and intensity assessment of the 2021 Maduo M_S7.4 earthquake in Qinghai revealed by high-frequency GNSS. Geodesy and Geodynamics. 2024(03): 230-240 . 必应学术
    2. 宫悦,龙锋,赵敏,杨鹏,王宇玺,梁明剑,乔慧珍,王宇航. 2022年6月10日四川马尔康M_S6.0震群序列时空演化特征. 地震学报. 2024(02): 173-191 . 本站查看
    3. 杨晨艺,石富强,季灵运,杨宜海,苏利娜,杨敏,郑怡. 2013年岷县漳县M_S6.6地震和2017年九寨沟M_S7.0地震震前地球物理观测异常空间分布机理分析. 地震学报. 2024(02): 307-326 . 本站查看
    4. 王莹,金昭娣,赵韬. 2022年四川马尔康6.0级震群序列震源机制特征分析. 地震研究. 2024(03): 379-390 . 百度学术
    5. 朱家正,孙玉军,谢志远,吴刚. 四川大岗山水库蓄水对2022年泸定M_S6.8地震及余震的影响. 地质力学学报. 2024(02): 363-376 . 百度学术
    6. 冯锐. 魏晋·说说地震活动性——漫步地震五千年(7). 地震科学进展. 2024(05): 359-371 . 百度学术
    7. 郑文俊,彭慧,刘兴旺,张竹琪,张冬丽,魏拾其,王旭龙. 鄂尔多斯活动地块边界带15000年以来强震活动与现今大地震空区. 科学通报. 2024(18): 2632-2647 . 百度学术
    8. 李兵,郭啟良,姜大伟,丁立丰,王建新,许俊闪,王显军. 汶川和芦山地震前后浅部应力对深部应力的响应及地震危险性分析. 地质学报. 2023(02): 339-348 . 百度学术
    9. 宋程,张永仙,周少辉,毕金孟,徐小远. 2021年玛多M_S7.4地震的PI热点特征回溯性预测研究. 地震研究. 2023(02): 226-236 . 百度学术
    10. 梁明剑,周文英,董云,廖程,左洪,陈翰,赵国华. 巴颜喀拉块体内部NW向主要断裂研究新进展. 四川地震. 2023(01): 12-17 . 百度学术
    11. 董金元,周晓成,李营,李静超. 2021年青海玛多M_W7.4地震地表破裂带CO_2脱气特征. 第四纪研究. 2023(02): 485-493 . 百度学术
    12. 王博,崔凤珍,刘静,周永胜,徐胜,邵延秀. 玛多M_S7.4地震断层土壤气特征与地表破裂的相关性. 地震地质. 2023(03): 772-794 . 百度学术
    13. 张致伟,龙锋,石富强,路茜,杨宜海,杨星,王迪,祁玉萍,杨鹏. 2022年6月1日四川芦山M_S6.1地震的发震构造与力学机制探讨. 地球物理学报. 2023(10): 4095-4110 . 百度学术
    14. 黄伟亮,张家乐,项闻,杨虔灏. 晚第四纪以来巴塘断裂的活动特征及滑动速率. 地震地质. 2023(06): 1265-1285 . 百度学术
    15. 王阅兵,李瑜,蔡毅,蒋连江,师宏波,江在森,甘卫军. GNSS观测的2021年5月22日玛多M_S7.4地震同震位移及其约束反演的滑动破裂分布. 地球物理学报. 2022(02): 523-536 . 百度学术
    16. 梁明剑,黄飞鹏,孙凯,张会平,吴微微,张佳伟,杜方,周文英. 巴颜喀拉块体内部五道梁-长沙贡玛断裂中段全新世活动及最新古地震证据. 地球科学. 2022(03): 766-778 . 百度学术
    17. Jihong LIU,Jun HU,Zhiwei LI,Zhangfeng MA,Lixin WU,Weiping JIANG,Guangcai FENG,Jianjun ZHU. Complete three-dimensional coseismic displacements due to the2021 Maduo earthquake in Qinghai Province, China from Sentinel-1 and ALOS-2 SAR images. Science China(Earth Sciences). 2022(04): 687-697 . 必应学术
    18. Jihong LIU,Jun HU,Zhiwei LI,Zhangfeng MA,Lixin WU,Weiping JIANG,Guangcai FENG,Jianjun ZHU. Complete three-dimensional coseismic displacements due to the 2021 Maduo earthquake in Qinghai Province, China from Sentinel-1 and ALOS-2 SAR images. Science China(Life Sciences). 2022(04): 687-697 . 必应学术
    19. 刘计洪,胡俊,李志伟,马张烽,吴立新,姜卫平,冯光财,朱建军. 融合哨兵1号和ALOS-2数据的2021年青海玛多地震高精度三维同震形变场研究. 中国科学:地球科学. 2022(05): 882-892 . 百度学术
    20. 姚文倩,王子君,刘静,刘小利,韩龙飞,邵延秀,王文鑫,徐晶,秦可心,高云鹏,王焱,李金阳,曾宪阳. 2021年青海玛多M_W7.4地震同震地表破裂长度的讨论. 地震地质. 2022(02): 541-559 . 百度学术
    21. 刘小利,夏涛,刘静,姚文倩,徐晶,邓德贝尔,韩龙飞,贾治革,邵延秀,王焱,乐子扬,高天琪. 2021年青海玛多M_W7.4地震分布式同震地表裂缝特征. 地震地质. 2022(02): 461-483 . 百度学术
    22. 李兵,谢富仁,黄金水,徐锡伟,郭啟良,张广伟,许俊闪,王建新,姜大伟,王健,丁立丰. 龙门山断裂带大邑地震空区地应力状态与地震危险性. 中国科学:地球科学. 2022(07): 1409-1418 . 百度学术
    23. Bing LI,Furen XIE,Jinshui HUANG,Xiwei XU,Qiliang GUO,Guangwei ZHANG,Junshan XU,Jianxin WANG,Dawei JIANG,Jian WANG,Lifeng DING. In situ stress state and seismic hazard in the Dayi seismic gap of the Longmenshan thrust belt. Science China(Earth Sciences). 2022(07): 1388-1398 . 必应学术
    24. Guanghao Ha,Jinrui Liu,Zhikun Ren,Xiaoxiao Zhu,Guodong Bao,Dengyun Wu,Zhiliang Zhang. The Interpretation of Seismogenic Fault of the Maduo Mw 7.3Earthquake, Qinghai Based on Remote Sensing Images——A Branch of the East Kunlun Fault System. Journal of Earth Science. 2022(04): 857-868 . 必应学术
    25. 韩明明,陈立春,曾蒂,李彦宝,梁明剑,高帅坡,王冬兵,罗亮. 鲜水河断裂带色拉哈段中谷村一带的最新地表破裂讨论. 地质力学学报. 2022(06): 969-980 . 百度学术
    26. 杜航,杨云,郑江蓉,王俊,张扬,宫杰. 青海玛多M_S7.4地震前b值时空变化特征. 震灾防御技术. 2022(04): 691-700 . 百度学术
    27. 李昭,付碧宏. 东昆仑断裂带玛沁—玛曲段晚第四纪构造活动特征的地貌响应定量研究. 地震地质. 2022(06): 1421-1447 . 百度学术
    28. Ruifang Yu,Xiao Hu,Ruizhi Wen. Preface to the special issue on ground motion input at dam sites and reservoir earthquakes. Earthquake Science. 2022(05): 311-313 . 必应学术
    29. 姜佳佳,冯建刚. 2017年九寨沟7.0级地震前应力状态及b值异常特征研究. 地震工程学报. 2021(03): 575-582 . 百度学术
    30. 潘家伟,白明坤,李超,刘富财,李海兵,刘栋梁,Marie-Luce CHEVALIER,吴坤罡,王平,卢海建,陈鹏,李春锐. 2021年5月22日青海玛多M_S7.4地震地表破裂带及发震构造. 地质学报. 2021(06): 1655-1670 . 百度学术
    31. 詹艳,梁明剑,孙翔宇,黄飞鹏,赵凌强,宫悦,韩静,李陈侠,张培震,张会平. 2021年5月22日青海玛多M_S7.4地震深部环境及发震构造模式. 地球物理学报. 2021(07): 2232-2252 . 百度学术
    32. 李智敏,李文巧,李涛,徐岳仁,苏鹏,郭鹏,孙浩越,哈广浩,陈桂华,袁兆德,李忠武,李鑫,杨理臣,马震,姚生海,熊仁伟,张彦博,盖海龙,殷翔,徐玮阳,董金元. 2021年5月22日青海玛多M_S7.4地震的发震构造和地表破裂初步调查. 地震地质. 2021(03): 722-737 . 百度学术
    33. 徐志国,梁姗姗,张广伟,梁建宏,邹立晔,李旭茂,陈彦含. 2021年5月22日青海玛多M_S7.4地震发震构造分析. 地球物理学报. 2021(08): 2657-2670 . 百度学术
    34. 赵韬,王莹,马冀,邵若潼,徐一斐,胡景. 2021年青海玛多7.4级地震序列重定位和震源机制特征. 地震地质. 2021(04): 790-805 . 百度学术
    35. 任晴晴,陆丽娜,钱小仕,赵宜宾. 巴颜喀拉地块及其周边地震危险性分析. 地震. 2021(03): 144-156 . 百度学术
    36. 张志文,任俊杰,章小龙. 高精度无人机航测在2021年玛多7.4级地震地表破裂精细研究中的应用. 震灾防御技术. 2021(03): 437-447 . 百度学术
    37. 盖海龙,姚生海,杨丽萍,亢太波,殷翔,陈庭,李鑫. 青海玛多“5·22”M_S7.4级地震的同震地表破裂特征、成因及意义. 地质力学学报. 2021(06): 899-912 . 百度学术
    38. 姚生海,盖海龙,殷翔,李鑫. 青海玛多M_S7.4地震地表破裂带的基本特征和典型现象. 地震地质. 2021(05): 1060-1072 . 百度学术
    39. 尹晓菲,张国民,邵志刚,王芃,孙鑫喆. 华北地区强震活动特点研究. 地震. 2020(01): 11-33 . 百度学术
    40. 胡翔,白文科,董鑫. 四川省九寨沟县地震前后区域生态环境质量评价. 生态学杂志. 2020(03): 969-978 . 百度学术
    41. 付平,张新辉,尹健民,韩晓玉,周春华. 龙门山断裂带中段及邻区构造变形特征及应力场演化的数值模拟研究. 地震研究. 2020(01): 28-36+207 . 百度学术
    42. 万森林,张军龙,刘明军,贺为民,李海龙,郭长宝,李智敏. 岷山断块的发震构造与地震活动性分析. 地震. 2020(02): 49-70 . 百度学术
    43. 张翼,唐姝娅,周妍,陈文捷. 四川地震应急指挥大厅综合调度平台设计与实现. 地震科学进展. 2020(01): 27-35 . 百度学术
    44. 邵志刚,冯蔚,王芃,尹晓菲. 中国大陆活动地块边界带的地震活动特征研究综述. 地震地质. 2020(02): 271-282 . 百度学术
    45. 徐旭,徐锦承,张伟. 2017年四川九寨沟M_s7.0地震及余震定位研究. 中国地震. 2020(02): 324-332 . 百度学术
    46. 李莎,阎春恒,周斌,郭培兰,周军学. 2016年广西苍梧M_S5.4地震前地震活动图像演化特征. 华北地震科学. 2020(03): 19-26 . 百度学术
    47. 唐小明,王晓琴,贺维,吴世磊,苏宇,陈涤非,鄢武先,邓东周. 九寨沟地震灾区珍稀保护动物受损栖息地维管植物区系组成及特征分析. 四川林业科技. 2020(06): 124-130 . 百度学术
    48. Feng Long,GuiXi Yi,SiWei Wang,YuPing Qi,Min Zhao. Geometry and tectonic deformation of the seismogenic structure for the 8 August 2017 M_S 7.0 Jiuzhaigou earthquake sequence, northern Sichuan, China. Earth and Planetary Physics. 2019(03): 253-267 . 必应学术

    其他类型引用(19)

图(7)
计量
  • 文章访问数:  127
  • HTML全文浏览量:  39
  • PDF下载量:  46
  • 被引次数: 67
出版历程
  • 收稿日期:  2022-06-01
  • 修回日期:  2022-09-26
  • 网络出版日期:  2023-12-24
  • 刊出日期:  2023-12-24

目录

    /

    返回文章
    返回