地震动场地调整系数研究

闫静茹 张郁山 阚文亮

闫静茹,张郁山,阚文亮. 2022. 地震动场地调整系数研究. 地震学报,44(5):783−796 doi: 10.11939/jass.20220086
引用本文: 闫静茹,张郁山,阚文亮. 2022. 地震动场地调整系数研究. 地震学报,44(5):783−796 doi: 10.11939/jass.20220086
Yan J R,Zhang Y S,Kan W L. 2022. Review on research of ground motion site adjustment coefficient. Acta Seismologica Sinica,44(5):783−796 doi: 10.11939/jass.20220086
Citation: Yan J R,Zhang Y S,Kan W L. 2022. Review on research of ground motion site adjustment coefficient. Acta Seismologica Sinica44(5):783−796 doi: 10.11939/jass.20220086

地震动场地调整系数研究

doi: 10.11939/jass.20220086
基金项目: 地震科技星火计划项目(XH22013YA)资助
详细信息
    作者简介:

    闫静茹,硕士,工程师,主要从事地震工程方面的研究,e-mail:qiaoxiage@sina.com

    通讯作者:

    张郁山,博士,研究员,主要从事地震工程的科学研究及工程应用工作,e-mail:hyszhang@163.com

  • 中图分类号: P315.9

Review on research of ground motion site adjustment coefficient

  • 摘要: 回顾总结了近20年国内外关于地震动场地调整系数的主要研究成果,重点分析强震动观测和数值理论方法在考虑场地条件对地震动参数影响方面的效果,总结各类方法的适用性和优缺点,结合国内外相关规范条文对比分析国内外的主要成果,得出我国软土的场地调整系数值小于国际水平,并进一步分析了造成这种差异的原因。最后基于目前国际地震区划工作的发展趋势以及各行业相关规范的新技术需求,对新一代区划图的研究工作进行了展望。

     

  • 图  1  不同研究人员基于统计方法给出的我国Ⅲ类场地的调整系数结果对比

    Figure  1.  Comparison of adjustment coefficient results of class Ⅲ sites in China by different scholars based on statistical methods

    图  2  利用洛马・普雷塔强震记录基于美国规范预测的各类场地的场地调整系数(Borcherdt et al,2005

    Figure  2.  Predicted site adjustment coefficients from Loma Prieta strong earthquake records based on US code (Borcherdt et al,2005

    图  3  基岩场地与软土场地(E类)加速度关系(Idriss,19901991

    Figure  3.  Acceleration relationship between bedrock site and soft soil site (class E) (Idriss,19901991

    图  4  建议的场地放大系数FPGA与欧洲规范及其它研究成果的对比(Tropeano et al,2018

    (a) B类场地;(b) C类场地;(c) D类场地

    Figure  4.  Comparison of the proposed site amplification coefficients FPGA with European code and other research achievements (Tropeano et al,2018

    (a) Site class B;(b) Site class C;(c) Site class D

    图  5  中国与欧美主要研究成果对比

    (a) Ⅲ类场地或D类场地;(b) Ⅳ类场地或E类场地

    Figure  5.  Comparison of major achievements between China and Europe and America

    (a) Site class Ⅲ or D;(b) Site class Ⅳ or E

    图  6  Eurocode 8推荐的不同类别场地的弹性反应谱(Ss为场地反应谱,ag为基岩加速度)

    Figure  6.  Recommended elastic response spectra for different types of sites in Eurocode 8 (Ss is site response spectrum,ag is ground acceleration)

    (a) M>5.5;(b) M≤5.5

    图  7  中国现行规范与美国、欧洲规范建议的 软弱土层场地调整系数对比

    Figure  7.  Comparison of site adjustment coefficient for soft soil layer suggested by current Chinese codes and American and European codes

    表  1  不同研究基于数值模拟方法给出的场地调整系数建议值

    Table  1.   Proposed values of site coefficients given by different researches based on numerical simulation methods

    场地类别不同地震动峰值下的场地系数来源
    0.05g0.1g0.15g0.2g0.3g0.4g
    1.00 1.00 1.00 1.00 1.00 1.00 李小军和彭清(2001)
    1.00 1.00 1.00 1.00 1.00 1.00 吕悦军等(2008)
    1.50 1.45 1.40 1.33 1.25 1.18 李小军和彭清(2001)
    1.27 1.25 1.23 1.20 1.16 1.11 吕悦军等(2008)
    1.10 1.00 0.90 0.80 0.70 0.60 李小军和彭清(2001)
    1.22 1.18 1.13 1.08 0.99 0.90 吕悦军等(2008)
    0.80 0.70 0.60 0.55 0.50 0.45 李小军和彭清(2001)
    1.14 1.07 1.00 0.93 0.75 0.65 吕悦军等(2008)
    下载: 导出CSV

    表  2  2021年欧洲规范草案建议的场地放大因子(Paolucci et al,2021

    Table  2.   Site amplification coefficients proposed in the 2021 European draft code (Paolucci et al,2021

    场地
    分类
    FαFβ
    H800vS, H相关值默认值H800vSH相关值默认值
    A 1.0 1.0 1.0 1.0
    B ${\left(\dfrac{ {v}_{ {\rm{S} }, H} }{800}\right)}^ {-0.40{r}_{\alpha } }$ $1.3{\text{×} } ( 1-0.1{S}_{ \alpha , RP}/g ) $ ${\left(\dfrac{ {v}_{ {\rm{S} }, H} }{800}\right)}^ {-0.70{r}_{\beta } }$ $1.6{\text{×} } ( 1-0.2{S}_{ \beta , RP}/g ) $
    C $1.6{\text{×} } ( 1-0.2{S}_{ \alpha , RP}/g ) $ $2.3{\text{×} } ( 1-0.3{S}_{ \beta , RP}/g ) $
    D $1.8{\text{×} } ( 1-0.3{S}_{ \alpha , RP}/g ) $ $3.2{\text{×} } ( 1-{S}_{ \beta , RP}/g ) $
    E ${\left(\dfrac{ {v}_{ {\rm{S} }, H} }{800}\right)}^ {-0.40{r}_{\alpha }\frac{H}{30}\left(4-\frac{H}{10}\right)}$ $2.2{\text{×} } ( 1-0.5{S}_{ \alpha , RP}/g ) $ ${\left(\dfrac{ {v}_{ {\rm{S} }, H} }{800}\right)}^ {-0.70{r}_{\beta }\frac{H}{30} }$ $3.2{\text{×} } ( 1-{S}_{ \beta , RP}/g ) $
    F $0.9{\left(\dfrac{ {v}_{ {\rm{S} }, H} }{800}\right)}^ {-0.40{r}_{\alpha } }$ $1.7{\text{×} } ( 1-0.3{S}_{ \alpha , RP}/g ) $ $1.25{\left(\dfrac{ {v}_{ {\rm{S} }, H} }{800}\right)}^{-0.70{r}_{\beta } }$ $4.0{\text{×} } ( 1-{S}_{ \beta , RP}/g ) $
    注:${r}_{\alpha }=1-\dfrac{ {S}_{ \alpha , RP}/g}{ {v}_{{\rm{S}}, H}/150}$;$ {r}_{\beta }=1-\dfrac{ {S}_{ \beta , RP}/g}{ {v}_{{\rm{S}}, H}/150}$;αβ分别为地震活动性条件高和低;H为覆盖层厚度;S为反应谱;RP为相关性反应谱。
    下载: 导出CSV

    表  3  中国不同类别场地调整系数主要研究成果

    Table  3.   Main research achievements of adjustment coefficients for different types of sites in China

    场地类别不同地震动锋值加速度下的场地调整系数来源
    0.05g0.1g0.15g0.2g0.3g0.4g
    0.98 0.93 1.00 1.00 1.00 0.90 薄景山(1998
    1.00 1.00 1.00 1.00 1.00 1.00 李小军和彭青(2001
    1.00 1.00 1.00 1.00 1.00 1.00 吕悦军等(2008
    1.00 1.00 1.00 1.00 郭锋等(2011
    0.77 0.96 0.82 0.70 0.87 栾极(2012
    0.50 0.64 0.69 0.50 0.51 郭晓云等(2012
    1.33 0.87 0.86 0.80 1.02 王金元(2013
    1.00 1.00 1.00 1.00 史大成(2013
    0.99 0.88 0.86 0.78 0.92 0.94 李洪达(2015
    0.70 0.75 0.80 0.90 0.90 0.90 崔昊和丁海平(2016
    0.58 0.61 0.70 0.60 0.60 0.63 丁海平和王康(2022
    1.00 1.00 1.00 1.00 1.00 1.00 薄景山(1998
    1.50 1.45 1.40 1.33 1.25 1.18 李小军和彭青(2001
    1.27 1.25 1.23 1.20 1.16 1.11 吕悦军等(2008
    1.80 1.63 1.57 1.46 郭锋等(2011
    1.00 1.00 1.00 1.00 1.00 1.00 栾极(2012
    1.00 1.00 1.00 1.00 1.00 1.00 郭晓云等(2012
    1.00 1.00 1.00 1.00 1.00 王金元(2013
    1.60 1.30 1.20 1.20 史大成(2013
    1.00 1.00 1.00 1.00 1.00 1.00 李洪达(2015
    1.00 1.00 1.00 1.00 1.00 1.00 崔昊和丁海平(2016
    1.00 1.00 1.00 1.00 1.00 1.00 丁海平和王康(2022
    0.99 0.88 0.88 0.88 0.88 0.89 薄景山(1998
    1.10 1.00 0.90 0.80 0.70 0.60 李小军和彭青(2001
    1.22 1.18 1.13 1.08 0.99 0.90 吕悦军等(2008
    1.29 1.25 1.20 1.24 郭锋等(2011
    1.34 1.23 1.10 1.02 1.00 1.01 栾极(2012
    1.66 1.02 0.98 郭晓云等(2012
    1.19 1.17 1.14 1.11 1.65 王金元(2013
    1.80 1.60 1.40 1.30 史大成(2013
    1.40 1.25 1.29 1.11 1.00 1.00 李洪达(2015
    0.90 0.85 0.80 0.70 0.70 0.70 崔昊和丁海平(2016
    1.00 0.73 0.77 0.56 0.71 0.73 丁海平和王康(2022
    0.80 0.70 0.60 0.55 0.50 0.45 李小军和彭青(2001
    1.14 1.07 1.00 0.93 0.75 0.65 吕悦军等(2008
    1.10 1.21 1.24 1.11 郭锋等(2011
    2.80 2.50 2.30 2.10 史大成(2013
    2.00 1.50 1.21 0.89 李洪达(2015
    0.41 0.47 0.45 0.52 0.53 0.40 丁海平和王康(2022
    下载: 导出CSV

    表  4  美国及欧洲不同类别场地调整系数主要研究成果

    Table  4.   Main research achievements of the adjustment coefficient of different types of sites in America and Europe

    场地类别地区不同地震动峰值加速度下的场地调整系数来源
    ≤0.1g0.2g0.3g0.4g≥0.5g
    FaFvFaFvFaFvFaFvFaFv
    C 美国 1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.40 Hwang等(1997
    美国 1.46 1.32 1.31 1.28 1.23 1.25 1.17 1.24 Rodriguez-Marek等(1999
    美国 1.23 1.80 1.16 1.80 1.10 1.80 1.04 1.80 0.99 1.80 Joyner和Boore (2000
    美国 1.62 1.96 1.54 1.86 1.46 1.76 1.38 1.66 1.29 1.56 Borcherdt (2002
    美国 1.31 1.80 1.23 1.75 1.19 1.74 1.16 1.72 1.14 1.70 Stewart等(2003
    美国 1.36 1.62 1.29 1.56 1.24 1.54 1.22 1.52 1.20 1.51 Choi和Stewart (2005
    欧洲 1.21 1.39 1.17 1.34 1.14 1.32 1.12 1.31 1.10 Sandikkaya等(2013
    美国 1.37 1.57 1.33 1.56 1.31 1.56 1.29 1.55 1.27 1.48 Borcherdt (2014
    D 美国 2.00 2.60 1.70 2.60 1.50 2.70 1.30 2.80 1.10 2.80 Hwang等(1997
    美国 1.81 2.04 1.61 1.94 1.50 1.89 1.42 1.85 Rodriguez-Marek等(1999
    美国 1.51 1.32 1.35 1.32 1.20 1.32 1.07 1.32 0.98 1.32 Joyner和Boore (2000
    美国 2.06 2.62 1.88 2.43 1.71 2.23 1.54 2.04 1.36 1.84 Borcherdt (2002
    美国 1.63 2.39 1.58 2.35 1.56 2.34 1.54 2.33 1.52 2.32 Stewart等(2003
    美国 1.81 2.60 1.47 2.14 1.27 1.92 1.19 1.74 1.13 1.66 Choi和Stewart (2005
    欧洲 1.37 2.22 1.13 1.88 1.01 1.81 0.94 1.74 0.89 Sandikkaya等(2013
    美国 1.68 2.35 1.47 2.25 1.34 2.19 1.24 2.14 1.16 1.97 Borcherdt (2014
    欧洲 1.90 3.80 1.60 3.30 1.40 3.00 1.20 2.80 1.00 2.70 Pitilakis等(2019
    E 美国 2.60 3.00 2.20 3.10 1.90 3.30 1.70 3.40 1.50 3.60 Hwang等(1997
    欧洲 1.20 2.48 0.94 2.00 0.82 1.92 0.75 1.85 0.70 Sandikkaya等(2013
    美国 1.87 3.38 1.31 2.83 1.02 2.52 0.84 2.31 0.72 2.08 Borcherdt (2014
    欧洲 1.60 1.30 1.60 1.20 1.50 1.20 1.50 1.20 1.50 1.20 Pitilakis等(2019
    下载: 导出CSV

    表  5  日本相关抗震设计规范中场地调整系数$ {F}_{{\rm{a}}} $与场地类别的关系

    Table  5.   The relationship between site influence factor $ {F}_{{\rm{a}}} $ and site classification in Japanese railway code

    场地类别G0G1G2G3G4G5G6G7
    SL1 0.80 1.00 1.20 1.40 1.48 1.60 1.36 1.12
    SL2 (远场) 0.80 1.00 1.27 1.36 1.45 1.27 1.09 0.91
    SL2 (近场) 0.80 1.00 1.18 1.06 0.94 0.82 0.71 0.59
    下载: 导出CSV
  • 薄景山. 1998. 场地分类和设计反应谱调整方法研究(博士后研究报告)[R]. 哈尔滨: 中国地震局工程力学研究所: 55–58.
    Bo J S. 1998. Site Classification and Design Response Spectrum Adjustment Method Postdoctoral Research Report)[R]. Harbin: Institute of Engineering Mechanics, China Earthquake Administration: 55–58 (in Chinese).
    崔昊,丁海平. 2016. 基于KiK-net强震记录的场地调整系数估计[J]. 地震工程与工程振动,36(4):147–152. doi: 10.13197/j.eeev.2016.04.147.cuih.017
    Cui H,Ding H P. 2016. Estimation of site coefficient based on KiK-net strong-motion seismograph network[J]. Earthquake Engineering and Engineering Vibration,36(4):147–152 (in Chinese).
    丁海平,王康. 2022. 基于反演基岩地震波的场地调整系数估计[J]. 地震工程与工程振动,42(1):25–33. doi: 10.13197/j.eeed.2022.0103
    Ding H P,Wang K. 2022. Estimation of site coefficient based on inversion of bedrock input[J]. Earthquake Engineering and Engineering Vibration,42(1):25–33 (in Chinese).
    窦立军. 2001. 场地条件与设计地震动[D]. 哈尔滨: 中国地震局工程力学研究所: 20–21.
    Dou L J. 2001. Site Conditions and Design Ground Motion[D]. Harbin: Institute of Engineering Mechanics, China Earthquake Administration: 20–21 (in Chinese).
    耿淑伟. 2005. 抗震设计规范中地震作用的规定[D]. 哈尔滨: 中国地震局工程力学研究所: 67–68.
    Geng S W. 2005. Regulation of Seismic Action in Earthquake Resistant Design Code[D]. Harbin: Institute of Engineering Mechanics, China Earthquake Administration: 67–68 (in Chinese).
    郭锋,吴东明,许国富,伋雨林. 2011. 场地条件对抗震设计反应谱最大值的影响[J]. 土木工程与管理学报,28(1):69–72. doi: 10.3969/j.issn.2095-0985.2011.01.015
    Guo F,Wu D M,Xu G F,Ji Y L. 2011. Effect of site condition on the maximum value of seismic design response spectrum[J]. Journal of Civil Engineering and Management,28(1):69–72 (in Chinese).
    郭晓云,薄景山,巴文辉. 2012. 汶川地震不同场地反应谱平台值统计分析[J]. 地震工程与工程振动,32(4):54–62. doi: 10.13197/j.eeev.2012.04.006
    Guo X Y,Bo J S,Ba W H. 2012. Statistical analysis of peak flat values of response spectra in different site conditions based on Wenchuan strong ground motions[J]. Earthquake Engineering and Engineering Vibration,32(4):54–62 (in Chinese).
    蒋通,邢海灵. 2007. 水平土层地震反应分析考虑频率相关性的等效线性化方法[J]. 岩土工程学报,29(2):218–223. doi: 10.3321/j.issn:1000-4548.2007.02.011
    Jiang T,Xing H L. 2007. An equivalent linear method considering frequency-dependent soil properties for seismic response analysis[J]. Chinese Journal of Geotechnical Engineering,29(2):218–223 (in Chinese).
    李洪达. 2015. 基于NGA-West2数据的场地系数研究[D]. 哈尔滨: 哈尔滨工业大学: 59–60.
    Li H D. 2015. Site Coefficients From NGA-West2 Data[D]. Harbin: Harbin Institute of Technology: 59–60 (in Chinese).
    李瑞山,袁晓铭. 2019. 场地放大系数的理论解答[J]. 岩土工程学报,41(6):1066–1073.
    Li R S,Yuan X M. 2019. Theoretical solution of site amplification coefficient[J]. Chinese Journal of Geotechnical Engineering,41(6):1066–1073 (in Chinese).
    李小军,彭青. 2001. 不同类别场地地震动参数的计算分析[J]. 地震工程与工程振动,21(1):29–36. doi: 10.3969/j.issn.1000-1301.2001.01.005
    Li X J,Peng Q. 2001. Calculation and analysis of earthquake ground motion parameters for different site categories[J]. Earthquake Engineering and Engineering Vibration,21(1):29–36 (in Chinese).
    李小军. 2013. 地震动参数区划图场地条件影响调整[J]. 岩土工程学报,35(增刊):21–29.
    Li X J. 2013. Adjustment of seismic ground motion parameters considering site effects in seismic zonation map[J]. Chinese Jour- nal of Geotechnical Engineering,35(S2):21–29 (in Chinese).
    卢滔. 2003. 响嘡台阵场地特征及其反应的分析[D]. 哈尔滨: 中国地震局工程力学研究所: 75–77.
    Lu T. 2003. Analysis of Site Characteristics and Reaction of the Boomed Array in Xiangtang[D]. Harbin: Institute of Engineering Mechanics, China Earthquake Administration: 75–77 (in Chinese).
    栾极. 2012. 设计反应谱场地放大系数和动力放大系数的研究[D]. 武汉: 华中科技大学: 30–31.
    Luan J. 2012. Study on Site Amplification Coefficient and Dynamic Amplification Coefficient of Seismic Design Response Spectrum[D]. Wuhan: Huazhong University of Science and Technology: 30–31 (in Chinese).
    吕红山,赵凤新. 2007. 适用于中国场地分类的地震动反应谱放大系数[J]. 地震学报,29(1):67–76. doi: 10.3321/j.issn:0253-3782.2007.01.008
    Lü H S,Zhao F X. 2007. Site coefficients suitable to China site category[J]. Acta Seismologica Sinica,29(1):67–76 (in Chinese).
    吕悦军,彭艳菊,兰景岩,孟小红. 2008. 场地条件对地震动参数影响的关键问题[J]. 震灾防御技术,3(2):126–135. doi: 10.3969/j.issn.1673-5722.2008.02.003
    Lü Y J,Peng Y J,Lan J Y,Meng X H. 2008. Some key problems about site effects on seismic ground motion parameters[J]. Technology for Earthquake Disaster Prevention,3(2):126–135 (in Chinese).
    齐鑫,肖遥. 2012. 下辽河地区典型土层地震反应时域和频域方法对比[J]. 地震工程与工程振动,32(1):23–29. doi: 10.13197/j.eeev.2012.01.003
    Qi X,Xiao Y. 2012. Comparison of seismic responses of typical soil layers in Liaohe River plain by using time domain method and frequency domain method[J]. Earthquake Engineering and Engineering Vibration,32(1):23–29 (in Chinese).
    荣棉水,李小军,卢滔,黄雅虹,吕悦军. 2013. 对含厚软表层海域工程场地设计地震动参数确定的一点建议[J]. 地震学报,35(2):262–271. doi: 10.3969/j.issn.0253-3782.2013.02.012
    Rong M S,Li X J,Lu T,Huang Y H,Lü Y J. 2013. Suggestion on determination of design ground motion parameters for offshore engineering sites with deep soft surface layers[J]. Acta Seismologica Sinica,35(2):262–271 (in Chinese).
    史大成. 2013. 区域性场地地震动放大研究及应用[D]. 哈尔滨: 中国地震局工程力学研究所: 86–87.
    Shi D C. 2013. Study on Ground Motion Amplification of Regional Site and Application[D]. Harbin: Institute of Engineering Mechanics, China Earthquake Administration: 86–87 (in Chinese).
    王金元. 2013. 抗震设计规范中竖向地震作用规定的研究[D]. 哈尔滨: 哈尔滨工业大学: 35–36.
    Wang J Y. 2013. Study on Vertical Earthquake Action Stipulated in Seismic Design Specification[D]. Harbin: Harbin Institute of Technology: 35–36 (in Chinese).
    闫静茹,张郁山,郝明辉. 2020. 山东省不同场地PGA放大影响研究[J]. 地震研究,43(3):569–575. doi: 10.3969/j.issn.1000-0666.2020.03.020
    Yan J R,Zhang Y S,Hao M H. 2020. Study on amplification effect of peak ground acceleration based on different sites in Shandong Province[J]. Journal of Seismological Research,43(3):569–575 (in Chinese).
    赵艳,郭明珠,李化明,王文仲. 2009. 对比分析中国有关场地条件对设计反应谱最大值的影响[J]. 地震地质,31(1):186–196. doi: 10.3969/j.issn.0253-4967.2009.01.017
    Zhao Y,Guo M Z,Li H M,Wang W Z. 2009. Contrast analysis of effect of site condition on the maximum of design response spectra[J]. Seismology and Geology,31(1):186–196 (in Chinese).
    中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 2016. GB18306—2015 中国地震动参数区划图[S]. 北京: 中国标准出版社: 240.
    General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, China National Standardization Administration. 2016. Seismic Ground Motion Parameters Zonation Map of China[S]. Beijing: Standards Press of China: 240 (in Chinese).
    Aboye S A,Andrus R D,Ravichandran N,Bhuiyan A H,Martin J R,Harman N E. 2014. A new seismic site coefficient model based on conditions in the South Carolina coastal plain[J]. Bull Seismol Soc Am,104(6):2866–2883. doi: 10.1785/0120140005
    Andreotti G, Lai C G, Francesca B, Scandella L. 2013. New soil factors for the ItalianBuilding Code (NTC08) derived from 1D fully stochastic ground response analyses[C]//Proceedings XV Symp. Roma: Italian National Association of Earthquake Engineering: 1–12.
    Borcherdt R D. 1994. Estimates of site-dependent response spectra for design:Methodology and justification[J]. Earthq Spectra,10(4):617–653. doi: 10.1193/1.1585791
    Borcherdt R D. 2002. Empirical evidence for site coefficients in building code provisions[J]. Earthq Spectra,18(2):189–217. doi: 10.1193/1.1486243
    Borcherdt R D, Glassmoyer G, Dietel C, Westerlund R E. 2005. Integrated surface and borehole strong-motion, soil-response arrays in San Francisco, California: Empirical measurements of low-strain site coefficients at site class E and D soil sites[G]//Directions in Strong Motion Instrumentation. Dordrecht: Springer: 55.
    Borcherdt R D. 2014. Implications of next generation attenuation ground motion prediction equations for site coefficients used in earthquake resistant design[J]. Earthq Eng Struct Dyn,43(9):1343–1360. doi: 10.1002/eqe.2400
    Choi Y,Stewart J P. 2005. Nonlinear site amplification as function of 30 m shear wave velocity[J]. Earthq Spectra,21(1):1–30. doi: 10.1193/1.1856535
    Crouse C B,McGuire J W. 1996. Site response studies for purpose of revising NEHRP seismic provisions[J]. Earthq Spectra,12(3):407–439. doi: 10.1193/1.1585891
    Dobry R, Ramos R, Power M S. 1999. Site Factors and Site Categories in Seismic Codes: Technical Report MCEER-99-0010[R]. New York: Department of Civil and Environmental Engineering, Rensselaer Polytechnic Institute: 1−81.
    European Committee for Standardization. 2003. CEN-EN 1998-1 Eurocode 8: Design of Structures for Earthquake Resistance-Part 1: General Rules, Seismic Actions and Rules for Buildings[S]. Brussels: European Committee for Standardization: 19–30.
    Hwang H H M,Lin H J,Huo J R. 1997. Site coefficients for design of buildings in eastern United States[J]. Soil Dyn Earthq Eng,16(1):29–40. doi: 10.1016/S0267-7261(96)00031-0
    Idriss H M. 1990. Response of soft soil sites during earthquakes[C]//Proceedings Memorial Symposium to Honor Professor H B Seed. Berkeley: BiTech Publisher: 273–289.
    Idriss H M. 1991. Earthquake ground motions at soft sites[C]//Proceedings of the Second International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics. St. Louis: University of Missouri-Rolla: 2265–2273.
    Joyner W B, Boore D M. 2000. Recent developments in earthquake ground-motion estimation[C]//Proc. of Sixth International Conference on Seismic Zonation. California: Earthquake Engineering Research Institute: 3–4.
    Moon S W,Hashash Y M A,Park D. 2017. USGS hazard map compatible depth-dependent seismic site coefficients for the Upper Mississippi Embayment[J]. KSCE J Civil Eng,21(1):220–231. doi: 10.1007/s12205-016-0681-4
    Paolucci R,Aimar M,Ciancimino A,Dotti M,Foti S,Lanzano G,Mattevi P,Pacor F,Vanini M. 2021. Checking the site categorization criteria and amplification factors of the 2021 draft of Eurocode 8 Part 1-1[J]. Bull Seismol Soc Am,19(11):4199–4234.
    Pitilakis K,Riga E,Anastasiadis A,Fotopoulou S,Karafagka S. 2019. Towards the revision of EC8:Proposal for an alternative site classification scheme and associated intensity dependent spectral amplification factors[J]. Soil Dyn Earthq Eng,126:105137. doi: 10.1016/j.soildyn.2018.03.030
    Régnier J,Bonilla L F,Bard P Y,Bertrand E,Hollender F,Kawase H,Sicilia D,Arduino P,Amorosi A,Asimaki D,Boldini D,Chen L,Chiaradonna A,Demartin F,Elgamal A,Falcone G,Foerster E,Foti S,Garini E,Gazetas G,Gélis C,Ghofrani A,Giannakou A,Gingery J,Glinsky N,Harmon J,Hashash Y,Iai S,Kramer S,Kontoe S,Kristek J,Lanzo G,Lernia A D,Lopez‐caballero F,Marot M,Mcallister G,Mercerat E D,Moczo P,Montoya‐Noguera S,Musgrove M,Nieto‐ferro A,Pagliaroli A,Passeri F,Richterova A,Sajana S,D’avila M P S,Shi J,Silvestri F,Taiebat M,Tropeano G,Vandeputte D,Verrucci L. 2018. PRENOLIN:International benchmark on 1D nonlinear site-response analysis:Validation phase exercise[J]. Bull Seismol Soc Am,108(2):876–900.
    Rodriguez-Marek A, Bray J D, Abrahamson N. 1999. Characterization of Site Response General Categories, Pacific Earthquake Engineering Research Center Report[R]. Berkeley: Pacific Gas and Electric Company: 75–84.
    Sandikkaya M A,Akkar S,Bard P Y. 2013. A nonlinear site‐amplification model for the next Pan-European ground-motion prediction equations[J]. Bull Seismol Soc Am,103(1):19–32. doi: 10.1785/0120120008
    Seyhan E,Stewart J P. 2014. Semi-empirical nonlinear site amplification from NGA-West2 data and simulations[J]. Earthq Spectra,30(3):1241–1256. doi: 10.1193/063013EQS181M
    Silva W, Darragh R, Gregor N, Martin G, Abrahamson N, Kircher C. 2000. Reassessment of Site Coefficients and Near-fault Factors for Building Code Provisions[R]. Reston, Virginia: U.S. Geological Survey (USGS).
    Society of Civil Engineerings. 2000. Earthquake Resistance Design Codes in Japan[S]. Tokyo: The Publication Committee of Earthquake Resistant Design Codes of Civil Engineering Structures in Japan: 57.
    Stewart J P,Liu A H,Choi Y. 2003. Amplification factors for spectral acceleration in tectonically active regions[J]. Bull Seismol Soc Am,93(1):332–352. doi: 10.1785/0120020049
    Sun J, Idriss I M. 1992. Users Manual for SHAKE91: A Computer Program for Conducting Equivalent Linear Seismic Response Analyses of Horizontally Layered Soil Deposits[M]. California: University of California: 1–2.
    Tropeano G,Soccodato F M,Silvestri F. 2018. Re-evaluation of code-specified stratigraphic amplification factors based on Italian experimental records and numerical seismic response analyses[J]. Soil Dyn Earthq Eng,110:262–275. doi: 10.1016/j.soildyn.2017.12.030
  • 加载中
图(7) / 表(5)
计量
  • 文章访问数:  192
  • HTML全文浏览量:  125
  • PDF下载量:  114
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-06
  • 修回日期:  2022-08-10
  • 网络出版日期:  2022-09-01
  • 刊出日期:  2022-09-15

目录

    /

    返回文章
    返回