Detecting shallow sedimentary structures in Sanhe and Tangshan seismic regions using H/V spectral ratio method
-
摘要:
利用一条穿过三河和唐山地震区的密集地震探测剖面数据,采用H/V谱比法获得了三河、唐山地震区及邻近区域的地壳浅部沉积结构特征、场地共振频率及易破坏程度等参数。结果表明:研究区松散沉积层厚度约为100—800 m,呈现出NW浅而SE深的变化特征;探测剖面西北部通县隆起的沉积层厚度约为350—450 m,沉积层界面起伏平缓;大厂凹陷沉积层厚度约为300—600 m,横向变化特征显著。测线东南部唐山地震区地壳浅部存在上下两组较明显的沉积界面:上层界面深度约为100 m,呈水平展布;下层界面深度约为300—800 m,且向东南方向逐渐加深。三河和唐山地震区的场地放大系数约为3—4,场地易破坏程度均大于20,显示出地表建筑物易破坏程度较高的特征。
Abstract:In the Sanhe and Tangshan seismic regions and their adjacent areas, the shallow crustal sedimentary structures detecting using H/V spectral ratio method has important scientific significance for regional seismic hazard risk assessment and engineering seismic fortification. In this paper, according to the data of a dense seismic sounding profile passing through the Sanhe and Tangshan seismic regions, the characteristics of the shallow crustal sedimentary structure, the site resonance frequency and the degree of vulnerability to damage in the Sanhe and Tangshan seismic regions and adjacent areas are obtained by using the H/V spectral ratio method. The results show that the thickness of loose sediment layer in the studied area is about 100–800 m, showing the characteristics of shallow in the northwest and deep in the southeast. The sedimentary thickness of the Tongxian uplift in the northwest of the exploration profile is about 350–450 m, the sedimentary interface fluctuates gently, and the sedimentary thickness of Dachang depression is about 300–600 m, with significant lateral variation characteristics. There are two sets of obvious sedimentary interfaces in the shallow part of the Tangshan earthquake region in the southeastern part of the survey line. The depth of the upper layer interface is about 100 m and is horizontally distributed. The depth of the lower layer interface is about 300–800 m, and gradually deepens toward the southeast. The site magnification factor of the Sanhe and Tangshan earthquake regions is about 3–4, and the site’s vulnerability to damage is greater than 20, showing that the surface buildings are more vulnerable to damage.
-
-
图 1 三河—唐山短周期密集地震测线分布图
F1:黄庄—高丽营断裂;F2:顺义—良乡断裂;F3:通县—南苑断裂;F4:夏垫断裂;F5:香河断裂;F6:丰台—野鸡坨断裂;F7:唐山断裂;F8:宁河—昌黎断裂(引自刘保金等,2009,2011),下同
Figure 1. Distribution map of short period dense seismic lines in Sanhe-Tangshan
F1:Huangzhuang-Gaoliying fault;F2:Shunyi-Liangxiang fault;F3:Tongxian-Nanyuan fault;F4:Xiadian fault;F5:Xianghe fault;F6:Fengtai-Yejituo fault;F7:Tangshan fault; F8:Ninghe-Changli fault (after Liu et al,2009,2011),the same below
图 4 三河地震区地壳浅部H/V谱比法二维伪深度剖面图与地震反射结果图对比
剖面位置为图1剖面线的西段,白色虚线为本文获得的三河地震区地壳浅部H/V谱比法二维伪深度剖面图中沉积层厚度走向
Figure 4. Comparison between 2D pseudo-depth profile by H/V spectral ratio method and seismic reflection result map of shallow crust in Sanhe seismic region
(The profile location is the west section of the profile line shown in Fig. 1,the white dashed line shows the thickness trend of sedimentary layer in the shallow crust 2D pseudo-depth profile by H/V spectral ratio method obtained in the Sanhe seismic region)
图 5 唐山地震区地壳浅部H/V谱比法二维伪深度剖面图(a)与地震反射结果图(b)(刘保金等,2011)对比
剖面位置为图1剖面线的东段,图(a)中紫色虚线为Bao等(2018)的剖面沉积层厚度走向,白色虚线为本文的沉积层厚度走向
Figure 5. Comparison between 2D pseudo depth profile by H/V spectral ratio method (a) and seismic reflection result map (b)(Liu et al,2011) of shallow crust in Tangshan seismic area
The profile location is the east section of the profile line shown in Fig. 1 ,in Fig. (a),the purple dotted line is the trend of sediment thickness from Bao et al (2018),and the white dotted line is the trend of sediment thickness in this paper
图 7 研究区场地放大系数(a)和场地易破坏程度(b)分布图
红色圆点代表每个台站的数据;蓝色三角形代表10 km内各台站数据的平均值
Figure 7. Distribution map of site magnification factor (a) and site vulnerability (b) in the studied area
The red dots represent the data of each station;the blue triangles represent the average value of the data from stations within 10 km
-
虢顺民,李志义,程绍平,陈献程,陈孝德,杨主恩,李如成. 1977. 唐山地震区域构造背景和发震模式的讨论[J]. 地质科学,12(4):305–321. Guo S M,Li Z Y,Cheng S P,Chen X C,Chen X D,Yang Z E,Li R C. 1977. Discussion: On the regional structural background and the seismogenic model of the Tangshan earthquake[J]. Chinese Journal of Geology,12(4):305–321 (in Chinese).
高文学, 马瑾. 1993. 首都圈地震地质环境与地震灾害(附图册)[M]. 北京: 地震出版社: 8–9. Gao W X, Ma J. 1993. Seismo-Geological Background and Earthquake Hazard in Beijing Area (Atlas)[M]. Beijing: Seismological Press: 8–9 (in Chinese).
国家地震局《一九七六年唐山地震》 编辑组. 1982. 一九七六年唐山地震[M]. 北京: 地震出版社: 4–23. Editorial Group of “The 1976 Tangshan Earthquake” , State Seismological Bureau. 1982. The 1976 Tangshan Earthquake[M]. Beijing: Seismological Press: 4–23 (in Chinese).
刘保金,胡平,孟勇奇,酆少英,石金虎,姬计法. 2009. 北京地区地壳精细结构的深地震反射剖面探测研究[J]. 地球物理学报,52(9):2264–2272. doi: 10.3969/j.issn.0001-5733.2009.09.010 Liu B J,Hu P,Meng Y Q,Feng S Y,Shi J H,Ji J F. 2009. Research on fine crustal structure using deep seismic reflection profile in Beijing region[J]. Chinese Journal of Geophysics,52(9):2264–2272 (in Chinese).
刘保金,曲国胜,孙铭心,刘亢,赵成彬,徐锡伟,酆少英,寇昆朋. 2011. 唐山地震区地壳结构和构造:深地震反射剖面结果[J]. 地震地质,33(4):901–912. doi: 10.3969/j.issn.0253-4967.2011.04.014 Liu B J,Qu G S,Sun M X,Liu K,Zhao C B,Xu X W,Feng S Y,Kou K P. 2011. Crustal structures and tectonics of Tangshan earthquake area:Results from deep seismic reflection profiling[J]. Seismology and Geology,33(4):901–912 (in Chinese).
刘渊源,崇加军,倪四道. 2011. 基于井下摆天然地震数据测量首都圈近地表波速结构[J]. 地震学报,33(3):342–350. Liu Y Y,Chong J J,Ni S D. 2011. Near surface wave velocity structure in Chinese capital region based on borehole seismic records[J]. Acta Seismologica Sinica,33(3):342–350 (in Chinese).
彭菲,王伟君,寇华东. 2020. 三河—平谷地区地脉动H/V谱比法探测:场地响应、浅层沉积结构及其反映的断层活动[J]. 地球物理学报,63(10):3775–3790. doi: 10.6038/cjg2020O0025 Peng F,Wang W J,Kou H D. 2020. Microtremer H/V spectral ratio investigation in the Sanhe-Pinggu area:Site responses,shallow sedimentary structure,and fault activity revealed[J]. Chinese Journal of Geophysics,63(10):3775–3790 (in Chinese).
彭一民,李鼎容,谢振钊,王安德,刘清泗. 1981. 北京平原区同生断裂的某些特征及其研究意义[J]. 地震地质,3(2):57–64. Peng Y M,Li D R,Xie Z Z,Wang A D,Liu Q S. 1981. Some features of contemporaneous faults in Beijing plain and their significance[J]. Seismology and Geology,3(2):57–64 (in Chinese).
王伟君,陈棋福,齐诚,谭毅培,张项,周青云. 2011. 利用噪声HVSR方法探测近地表结构的可能性和局限性:以保定地区为例[J]. 地球物理学报,54(7):1783–1797. Wang W J,Chen Q F,Qi C,Tan Y P,Zhang X,Zhou Q Y. 2011. The feasibilities and limitations to explore the near-surface structure with microtremor HVSR method:A case in Baoding area of Hebei Province,China[J]. Chinese Journal of Geophysics,54(7):1783–1797 (in Chinese).
张宝龙,李志伟,包丰,邓阳,游庆瑜,张森琦. 2016. 基于微动方法研究五大连池火山区尾山火山锥浅层剪切波速度结构[J]. 地球物理学报,59(10):3662–3673. Zhang B L,Li Z W,Bao F,Deng Y,You Q Y,Zhang S Q. 2016. Shallow shear-wave velocity structures under the Weishan volcanic cone in Wudalianchi volcano field by microtremor survey[J]. Chinese Journal of Geophysics,59(10):3662–3673 (in Chinese).
Agostini L,Boaga J,Galgaro A,Ninfo A. 2015. HVSR technique in near-surface thermal-basin characterization:The example of the Caldiero district (North-East Italy)[J]. Environ Earth Sci,74(2):1199–1210. doi: 10.1007/s12665-015-4109-0
Bao F,Li Z W,Yuen D A,Zhao J Z,Ren J,Tian B F,Meng Q J. 2018. Shallow structure of the Tangshan fault zone unveiled by dense seismic array and horizontal-to-vertical spectral ratio method[J]. Phys Earth Planet Inter,281:46–54. doi: 10.1016/j.pepi.2018.05.004
Bard P Y,Campillo M,Chávez-Garcia F J,Sánchez-Sesma F. 1988. The Mexico earthquake of September 19,1985:A theoretical investigation of large- and small-scale amplification effects in the Mexico City valley[J]. Earthq Spectra,4(3):609–633. doi: 10.1193/1.1585493
Guo H,Jiang W L,Xie X S. 2011. Late-Quaternary strong earthquakes on the seismogenic fault of the 1976 MS7.8 Tangshan earthquake,Hebei,as revealed by drilling and trenching[J]. Science China Earth Science,54(11):1696–1715. doi: 10.1007/s11430-011-4218-x
Ibs-von Seht M,Wohlenberg J. 1999. Microtremor measurements used to map thickness of soft sediments[J]. Bull Seismol Soc Am,89(1):250–259. doi: 10.1785/BSSA0890010250
Jemberie A L,Langston C A. 2005. Site amplification,scattering,and intrinsic attenuation in the Mississippi embayment from coda waves[J]. Bull Seismol Soc Am,95(5):1716–1730. doi: 10.1785/0120040203
Konno K,Ohmachi T. 1998. Ground-motion characteristics estimated from spectral ratio between horizontal and vertical components of microtremor[J]. Bull Seismol Soc Am,88(1):228–241. doi: 10.1785/BSSA0880010228
Nakamura Y. 1989. A Method for Dynamic Characteristics Estimation of Subsurface Using Microtremor on the Ground Surface[R]. Tokyo: Railway Technical Research Institute: 25–30.
Nakamura Y. 1997. Seismic vulnerability indices for ground and structures using microtremor[C]//World Congress on Railway Research. Florence, Italy: World Congress on Railway Research: 1–7.
Nakamura Y. 2009. Basic structure of QTS (HVSR) and examples of applications[C]//Increasing Seismic Safety by Combining Engineering Technologies and Seismological Data. Dordrecht: Springer: 33–51.
Ni S D,Li Z W,Somerville P. 2014. Estimating subsurface shear velocity with radial to vertical ratio of local P waves[J]. Seismol Res Lett,85(1):82–90. doi: 10.1785/0220130128
Parolai S,Bormann P,Milkereit C. 2002. New relationships between vS,thickness of sediments,and resonance frequency calculated by the H/V ratio of seismic noise for the Cologne area (Germany)[J]. Bull Seismol Soc Am,92(6):2521–2527. doi: 10.1785/0120010248
Seale S H,Archuleta R J. 1989. Site amplification and attenuation of strong ground motion[J]. Bull Seismol Soc Am,79(6):1673–1696.
Withers M,Aster R C,Young C,Beiriger J,Harris M,Moore S,Trujillo J. 1998. A comparison of select trigger algorithms for automated global seismic phase and event detection[J]. Bull Seismol Soc Am,88(1):95–106. doi: 10.1785/BSSA0880010095