基于被动源的滑坡地震信号分析研究概述

刘磊, 侯时平, 吴凯, 李成香, 唐启家, 胡焕新

刘磊,侯时平,吴凯,李成香,唐启家,胡焕新. 2023. 基于被动源的滑坡地震信号分析研究概述. 地震学报,45(5):929−941. DOI: 10.11939/jass.20220126
引用本文: 刘磊,侯时平,吴凯,李成香,唐启家,胡焕新. 2023. 基于被动源的滑坡地震信号分析研究概述. 地震学报,45(5):929−941. DOI: 10.11939/jass.20220126
Liu L,Hou S P,Wu K,Li C X,Tang Q J,Hu H X. 2023. An overview of landslide seismic signal analysis based on passive sources. Acta Seismologica Sinica45(5):929−941. DOI: 10.11939/jass.20220126
Citation: Liu L,Hou S P,Wu K,Li C X,Tang Q J,Hu H X. 2023. An overview of landslide seismic signal analysis based on passive sources. Acta Seismologica Sinica45(5):929−941. DOI: 10.11939/jass.20220126

基于被动源的滑坡地震信号分析研究概述

基金项目: 2021年度湖北省自然资源科技项目(ZRZY2021KJ05)资助
详细信息
    作者简介:

    刘磊,高级工程师,主要从事城市浅层精细化探测和地质灾害监测预警方面的研究,e-mail:l.lay@126.com

    通讯作者:

    李成香,正高职高级工程师,主要从事深部找矿及物探新方法技术应用方面的研究,e-mail:414781220@qq.com

  • 中图分类号: P315.73

An overview of landslide seismic signal analysis based on passive sources

  • 摘要:

    全球地震台站的增加及数据处理、建模和解释方面的进步为利用地震学研究滑坡区地下介质的动态变化提供了有利条件,使得利用滑坡地震信号研究滑坡特征逐渐成为滑坡监测中的重要手段之一。本文主要介绍了利用被动源地震学方法对滑坡信号进行识别分析和过程监测的技术和实际应用。通过案例研究表明,在合适的条件下,利用滑坡产生的地震信号可以经济又有效地监测滑坡过程,甚至能识别出滑坡灾害的前兆信号,为滑坡灾害预警提供技术支撑。未来若结合其它地球物理或遥感方法,建立多参数地球物理监测系统,将能大幅降低因滑坡灾害所导致的人员伤亡和经济损失。

    Abstract:

    The increase of seismic stations around the world and the progress in data processing, modeling, and interpretation provide favorable conditions for studying the dynamic changes of underground media in landslides, making the study of landslide characteristics using landslide seismic signals gradually become one of the important ways in landslide monitoring. This article mainly introduces the technology and practical application of passive source seismology for landslide signal recognition, analysis, and process monitoring. Many case studies show that seismic signals generated by landslides can be used to monitor the landslide process economically and effectively and even can identify the precursor signals of landslide disasters under appropriate conditions, providing technical support for landslide disaster warnings. If Combined with other geophysical or remote sensing methods, the establishment of a multi-parameter geophysical monitoring system will significantly reduce the casualties and economic losses caused by landslide disasters in the future.

  • 图  1   用于监测滑坡的地球物理学方法(修改自Whiteley等,2019

    Figure  1.   The geophysical methods for monitoring landslides,shown by mode of acquisition and method (modified from Whiteley et al2019

    图  2   滑坡源示意图(修改自Provost等,2018b

    (a) 湿粒状流;(b) 干粒状流;(c) 落石;(d) 张拉裂隙张开;(e) 裂隙拉张;(f) 剪切作用;(g) 裂隙内流体运移

    Figure  2.   Conceptual figure of the landslide sources (modified from Provost et al,2018b

    (a) Wet granular flow;(b) Dry granular flow;(c) Rockfall; (d) Tensile fracture opening;(e) Tensile cracks opening; (f) Shearing;(g) Fluid migration in fracture

    图  3   不同类型的滑坡信号(修改自Provost et al,2018b

    (a) 块状落石;(b) 干颗粒流;(c) 湿颗粒流;(d) 低频滑坡震;(e) 高频滑坡震;(f) 混合型滑坡震。滑坡地点标记在各图上,不同颜色代表同一事件被不同台站记录到的波形,Amax表示波形信号的最大振幅值

    Figure  3.   Landslide seismic signals (modified from Provost et al,2018b

    (a) Rock fall;(b) Dry granular flow;(c) Wet granular flow;(d) Low-frequency slopequakes;(e) High-frequency slopequakes;(f) Hybrid slopequake。The landslide sites are shown on each figure. Different colors represent the waveforms of the same event recorded by different stations,and Amax represents the maximum amplitude value of the waveform signal

    图  4   可用地球物理方法调查和评估的滑坡模型示意图(改编自Whiteley等,2019

    Figure  4.   Conceptional figure of a landslide system that can be investigated and assessed using geophysical methods(modified from Whiteley et al2019

  • 盛敏汉,储日升,危自根,包丰,郭爱智. 2018. 四川省理县西山村滑坡运动变形过程中的微震研究[J]. 地球物理学报,61(1):171–182.

    Sheng M H,Chu R S,Wei Z G,Bao F,Guo A Z. 2018. Study of microseismicity caused by Xishancun landslide deformation in Li County,Sichuan Province[J]. Chinese Journal of Geophysics,61(1):171–182 (in Chinese).

    危自根,储日升,李志伟,盛敏汉,张海江,王宝善. 2017. 利用近震高频接收函数研究四川理县西山村滑坡体结构[J]. 地球物理学报,60(10):3793–3803.

    Wei Z G,Chu R S,Li Z W,Sheng M H,Zhang H J,Wang B S. 2017. Structures of Xishan village landslide in Li County,Sichuan,inferred from high-frequency receiver functions of local earthquakes[J]. Chinese Journal of Geophysics,60(10):3793–3803 (in Chinese).

    赵娟,漆静晨,杨佳琛,陈何玲. 2019. 基于地震信号反演滑坡动力学机制[J]. 大地测量与地球动力学,39(10):1007–1012.

    Zhao J,Qi J C,Yang J C,Chen H L. 2019. Inverted landslide dynamics based on seismic signals[J]. Journal of Geodesy and Geodynamics,39(10):1007–1012 (in Chinese).

    Alimohammadlou Y,Najafi A,Yalcin A. 2013. Landslide process and impacts:A proposed classification method[J]. Catena,104:219–232. doi: 10.1016/j.catena.2012.11.013

    Amitrano D,Gaffet S,Malet J P,Maquaire O. 2007. Understanding mudslides through micro-seismic monitoring:The Super-Sauze (South-East French Alps) case study[J]. Bull Soc Géol Fr,178(2):149–157.

    Bell A F. 2018. Predictability of landslide timing from quasi-periodic precursory earthquakes[J]. Geophys Res Lett,45(4):1860–1869. doi: 10.1002/2017GL076730

    Bièvre G,Jongmans D,Winiarski T,Zumbo V. 2012. Application of geophysical measurements for assessing the role of fissures in water infiltration within a clay landslide (Trièves area,French Alps)[J]. Hydrol Process,26(14):2128–2142. doi: 10.1002/hyp.7986

    Bichler A,Bobrowsky P,Best M,Douma M,Hunter J,Calvert T,Burns R. 2004. Three-dimensional mapping of a landslide using a multi-geophysical approach:The Quesnel Forks landslide[J]. Landslides,1(1):29–40. doi: 10.1007/s10346-003-0008-7

    Bontemps N,Lacroix P,Larose E,Jara J,Taipe E. 2020. Rain and small earthquakes maintain a slow-moving landslide in a persistent critical state[J]. Nat Commun,11:780. doi: 10.1038/s41467-020-14445-3

    Brückl E, Mertl S. 2006. Seismic monitoring of deep-seated mass movements[C]// Disaster Mitigation of Debris Flows, Slope Failures and Landslides. Tokyo: Universal Academic Press: 571–580.

    Brückl E,Brunner F K,Lang E,Mertl S,Müller M,Stary U. 2013. The gradenbach observatory:Monitoring deep-seated gravitational slope deformation by geodetic,hydrological,and seismological methods[J]. Landslides,10(6):815–829. doi: 10.1007/s10346-013-0417-1

    Burtin A,Hovius N,Turowski J M. 2016. Seismic monitoring of torrential and fluvial processes[J]. Earth Surf Dynam,4(2):285–307. doi: 10.5194/esurf-4-285-2016

    Cadman J D,Goodman R E. 1967. Landslide noise[J]. Science,158(3805):1182–1184. doi: 10.1126/science.158.3805.1182

    Chao W A,Zhao L,Chen S C,Wu Y M,Chen C H,Huang H H. 2016. Seismology-based early identification of dam-formation landquake events[J]. Sci Rep,6(1):19259. doi: 10.1038/srep19259

    Chao W A,Wu Y M,Zhao L,Chen H,Chen Y G,Chang J M,Lin C M. 2017. A first near real-time seismology-based landquake monitoring system[J]. Sci Rep,7(1):43510. doi: 10.1038/srep43510

    Chen C H,Chao W A,Wu Y M,Zhao L,Chen Y G,Ho W Y,Lin T L,Kuo K H,Chang J M. 2013. A seismological study of landquakes using a real-time broad-band seismic network[J]. Geophys J Int,194(2):885–898. doi: 10.1093/gji/ggt121

    Clarkson P, Crickmore R, Godfrey A, Minto C, Purnell B, Gunn D, Dashwood B, Chambers J, Watlet A, Whiteley J. 2021. Ground condition monitoring of a landslide using distributed Rayleigh sensing[C]//EAGE GeoTech 2021 Second EAGE Workshop on Distributed Fibre Optic Sensing. European Association of Geoscientists & Engineers: 1–5.

    Colombero C,Comina C,Vinciguerra S,Benson P M. 2018. Microseismicity of an unstable rock mass:From field monitoring to laboratory testing[J]. J Geophys Res:Solid Earth,123(2):1673–1693. doi: 10.1002/2017JB014612

    Cook K L,Rekapalli R,Dietze M,Pilz M,Cesca S,Rao N P,Srinagesh D,Paul H,Metz M,Mandal P,Suresh G,Cotton F,Tiwari V M,Hovius N. 2021. Detection and potential early warning of catastrophic flow events with regional seismic networks[J]. Science,374(6563):87–92. doi: 10.1126/science.abj1227

    Dai F C,Lee C F,Ngai Y Y. 2002. Landslide risk assessment and management:An overview[J]. Eng Geol,64(1):65–87. doi: 10.1016/S0013-7952(01)00093-X

    Dammeier F,Moore J R,Hammer C,Haslinger F,Loew S. 2016. Automatic detection of alpine rockslides in continuous seismic data using hidden Markov models[J]. J Geophys Res:Earth Surf,121(2):351–371. doi: 10.1002/2015JF003647

    Deparis J,Jongmans D,Cotton F,Baillet L,Thouvenot F,Hantz D. 2008. Analysis of rock-fall and rock-fall avalanche seismograms in the French Alps[J]. Bull Seismol Soc Am,98(4):1781–1796. doi: 10.1785/0120070082

    Ekström G,Stark C P. 2013. Simple scaling of catastrophic landslide dynamics[J]. Science,339(6126):1416–1419. doi: 10.1126/science.1232887

    Fan X M,Xu Q,Scaringi G,Dai L X,Li W L,Dong X J,Zhu X,Pei X J,Dai K R,Havenith H B. 2017. Failure mechanism and kinematics of the deadly June 24th 2017 Xinmo landslide,Maoxian,Sichuan,China[J]. Landslides,14(6):2129–2146. doi: 10.1007/s10346-017-0907-7

    Farin M,Mangeney A,Roche O. 2014. Fundamental changes of granular flow dynamics,deposition,and erosion processes at high slope angles:Insights from laboratory experiments[J]. J Geophys Res:Earth Surf,119(3):504–532. doi: 10.1002/2013JF002750

    Froude M J,Petley D N. 2018. Global fatal landslide occurrence from 2004 to 2016[J]. Nat Hazards Earth Syst Sci,18(8):2161–2181. doi: 10.5194/nhess-18-2161-2018

    Gomberg J,Bodin P,Savage W,Jackson M E. 1995. Landslide faults and tectonic faults,analogs?The Slumgullion earthflow,Colorado[J]. Geology,23(1):41–44. doi: 10.1130/0091-7613(1995)023<0041:LFATFA>2.3.CO;2

    Gomberg J,Schulz W,Bodin P,Kean J. 2011. Seismic and geodetic signatures of fault slip at the Slumgullion Landslide Natural Laboratory[J]. J Geophys Res:Solid Earth,116(B9):B09404.

    Grandjean G,Hibert C,Mathieu F,Garel E,Malet J P. 2009. Monitoring water flow in a clay-shale hillslope from geophysical data fusion based on a fuzzy logic approach[J]. Compt Rend Geosci,341(10/11):937–948.

    Hammer C,Ohrnberger M,Fäh D. 2013. Classifying seismic waveforms from scratch:A case study in the alpine environment[J]. Geophys J Int,192(1):425–439. doi: 10.1093/gji/ggs036

    Harba P,Pilecki Z. 2017. Assessment of time–spatial changes of shear wave velocities of flysch formation prone to mass movements by seismic interferometry with the use of ambient noise[J]. Landslides,14(3):1225–1233. doi: 10.1007/s10346-016-0779-2

    Helmstetter A,Nicolas B,Comon P,Gay M. 2015. Basal icequakes recorded beneath an Alpine glacier (Glacier d’Argentière,Mont Blanc,France):Evidence for stick-slip motion?[J]. J Geophys Res:Earth Surf,120(3):379–401. doi: 10.1002/2014JF003288

    Hibert C,Mangeney A,Grandjean G,Baillard C,Rivet D,Shapiro N M,Satriano C,Maggi A,Boissier P,Ferrazzini V,Crawford W. 2014. Automated identification,location,and volume estimation of rockfalls at Piton de la Fournaise volcano[J]. J Geophys Res:Earth Surf,119(5):1082–1105. doi: 10.1002/2013JF002970

    Hibert C,Malet J P,Bourrier F,Provost F,Berger F,Bornemann P,Tardif P,Mermin E. 2017a. Single-block rockfall dynamics inferred from seismic signal analysis[J]. Earth Surf Dynam,5(2):283–292. doi: 10.5194/esurf-5-283-2017

    Hibert C,Mangeney A,Grandjean G,Peltier A,DiMuro A,Shapiro N M,Ferrazzini V,Boissier P,Durand V,Kowalski P. 2017b. Spatio-temporal evolution of rockfall activity from 2007 to 2011 at the Piton de la Fournaise volcano inferred from seismic data[J]. J Volcanol Geoth Res,333-334:36–52. doi: 10.1016/j.jvolgeores.2017.01.007

    Hilley G E,Burgmann R,Ferretti A,Novali F,Rocca F. 2004. Dynamics of slow-moving landslides from permanent scatterer analysis[J]. Science,304(5679):1952–1955. doi: 10.1126/science.1098821

    Hruska J, Hubatka F. 2000. Landslide investigation and monitoring by a high-performance ground penetrating radar system[C]//8th International Conference on Ground Penetrating Radar. Gold Coast: SPIE.

    Imposa S,Grassi S,Fazio F,Rannisi G,Cino P. 2017. Geophysical surveys to study a landslide body (north-eastern Sicily)[J]. Nat Hazards,86:327–343.

    Jongmans D,Garambois S. 2007. Geophysical investigation of landslides:A review[J]. Bull Soc Géol Fr,178(2):101–112.

    Kearey P, Brooks M, Hill I. 2002. An Introduction to Geophysical Exploration[M]. Oxford: Blackwell: 262.

    Kirschbaum D,Stanley T,Zhou Y P. 2015. Spatial and temporal analysis of a global landslide catalog[J]. Geomorphology,249:4–15. doi: 10.1016/j.geomorph.2015.03.016

    Lenti L, Martino S, Paciello A, Prestininzi A, Rivellino S. 2013. Seismometric monitoring of hypogeous failures due to slope deformations[M]//Margottini C, Canuti P, Sassa K, eds. Landslide Science and Practice. Berlin, Heidelberg: Springer: 309–315.

    Li W,Chen Y,Liu F,Yang H F,Liu J L,Fu B H. 2019. Chain-style landslide hazardous process:Constraints from seismic signals analysis of the 2017 Xinmo landslide,SW China[J]. J Geophys Res:Solid Earth,124(2):2025–2037. doi: 10.1029/2018JB016433

    Lin C H,Jan J C,Pu H C,Tu Y,Chen C C,Wu Y M. 2015. Landslide seismic magnitude[J]. Earth Planet Sci Lett,429:122–127. doi: 10.1016/j.jpgl.2015.07.068

    Michlmayr G,Cohen D,Or D. 2012. Sources and characteristics of acoustic emissions from mechanically stressed geologic granular media:A review[J]. Earth-Sci Rev,112(3/4):97–114.

    Mikesell T D,van Wijk K,Haney M M,Bradford J H,Marshall H P,Harper J T. 2012. Monitoring glacier surface seismicity in time and space using Rayleigh waves[J]. J Geophys Res:Earth Surf,117(F2):F02020.

    Ogiso M,Yomogida K. 2015. Estimation of locations and migration of debris flows on Izu-Oshima Island,Japan,on 16 October 2013 by the distribution of high frequency seismic amplitudes[J]. J Volcanol Geoth Res,298:15–26. doi: 10.1016/j.jvolgeores.2015.03.015

    Orozco A F,Bücker M,Steiner M,Malet J P. 2018. Complex-conductivity imaging for the understanding of landslide architecture[J]. Eng Geol,243:241–252. doi: 10.1016/j.enggeo.2018.07.009

    Palis E,Lebourg T,Tric E,Malet J P,Vidal M. 2017. Long-term monitoring of a large deep-seated landslide (La Clapiere,South-East French Alps):Initial study[J]. Landslides,14(1):155–170. doi: 10.1007/s10346-016-0705-7

    Pérez-Guillén C,Sovilla B,Suriñach E,Tapia M,Köhler A. 2016. Deducing avalanche size and flow regimes from seismic measurements[J]. Cold Reg Sci Technol,121:25–41. doi: 10.1016/j.coldregions.2015.10.004

    Podolskiy E A,Walter F. 2016. Cryoseismology[J]. Rev Geophys,54(4):708–758. doi: 10.1002/2016RG000526

    Poli P. 2017. Creep and slip:Seismic precursors to the Nuugaatsiaq landslide (Greenland)[J]. Geophys Res Lett,44(17):8832–8836. doi: 10.1002/2017GL075039

    Provost F,Hibert C,Malet J P. 2017. Automatic classification of endogenous landslide seismicity using the Random Forest supervised classifier[J]. Geophys Res Lett,44(1):113–120. doi: 10.1002/2016GL070709

    Provost F,Malet J P,Gance J,Helmstetter A,Doubre C. 2018a. Automatic approach for increasing the location accuracy of slow-moving landslide endogenous seismicity:The APOLoc method[J]. Geophys J Int,215(2):1455–1473. doi: 10.1093/gji/ggy330

    Provost F,Malet J P,Hibert C,Helmstetter A,Radiguet M,Amitrano D,Langet N,Larose E,Abancó C,Hürlimann M,Lebourg T,Levy C,Le Roy G,Ulrich P,Vidal M,Vial B. 2018b. Towards a standard typology of endogenous landslide seismic sources[J]. Earth Surf Dynam,6(4):1059–1088. doi: 10.5194/esurf-6-1059-2018

    Renalier F,Jongmans D,Campillo M,Bard P Y. 2010. Shear wave velocity imaging of the Avignonet landslide (France) using ambient noise cross correlation[J]. J Geophys Res:Earth Surf,115(F3):F03032.

    Schöpa A, Chao W A, Lipovsky B P, Hovius N, White R S, Green R G, Turowski J M. 2018. Dynamics of the Askja caldera July 2014 landslide, Iceland, from seismic signal analysis: Precursor, motion and aftermath[J], Earth Surf Dynam, (6): 467–485.

    Smith A,Dixon N,Fowmes G J. 2017. Early detection of first-time slope failures using acoustic emission measurements:Large-scale physical modelling[J]. Géotechnique,67(2):138–152.

    Stumpf A,Malet J P,Kerle N,Niethammer U,Rothmund S. 2013. Image-based mapping of surface fissures for the investigation of landslide dynamics[J]. Geomorphology,186:12–27. doi: 10.1016/j.geomorph.2012.12.010

    Thomas A M,Beroza G C,Shelly D R. 2016. Constraints on the source parameters of low-frequency earthquakes on the San Andreas Fault[J]. Geophys Res Lett,43(4):1464–1471. doi: 10.1002/2015GL067173

    Tonnellier A,Helmstetter A,Malet J P,Schmittbuhl J,Corsini A,Joswig M. 2013. Seismic monitoring of soft-rock landslides:The Super-Sauze and Valoria case studies[J]. Geophysical Journal International,193(3):1515–1536. doi: 10.1093/gji/ggt039

    Walter F,Burtin A,McArdell B W,Hovius N,Weder B,Turowski J M. 2017. Testing seismic amplitude source location for fast debris-flow detection at Illgraben,Switzerland[J]. Nat Hazards Earth Syst Sci,17(6):939–955. doi: 10.5194/nhess-17-939-2017

    Walter M,Joswig M. 2008. Seismic monitoring of fracture processes generated by a creeping landslide in the Vorarlberg Alps[J]. First Break,26(6):131–135.

    Walter M,Niethammer U,Rothmund S,Joswig M. 2009. Joint analysis of the Super-Sauze (French Alps) mudslide by nanoseismic monitoring and UAV-based remote sensing[J]. First break,27(8):75–82.

    Walter M,Walser M,Joswig M. 2011. Mapping rainfall-triggered slidequakes and seismic landslide-volume estimation at heumoes slope[J]. Vadose Zone J,10(2):487–495. doi: 10.2136/vzj2009.0147

    Walter M,Arnhardt C,Joswig M. 2012. Seismic monitoring of rockfalls,slide quakes,and fissure development at the Super-Sauze mudslide,French Alps[J]. Eng Geol,128:12–22. doi: 10.1016/j.enggeo.2011.11.002

    Walter M,Gomberg J,Schulz W,Bodin P,Joswig M. 2013. Slidequake generation versus viscous creep at softrock-landslides:Synopsis of three different scenarios at slumgullion landslide,heumoes slope,and super-sauze mudslide[J]. J Environ Eng Geophys,18(4):269–280. doi: 10.2113/JEEG18.4.269

    Whiteley J S,Chambers J E,Uhlemann S,Wilkinson P B,Kendall J M. 2019. Geophysical monitoring of moisture-induced landslides:A review[J]. Rev Geophys,57(1):106–145. doi: 10.1029/2018RG000603

    Zhang Z,He S M. 2019. Analysis of broadband seismic recordings of landslide using empirical Green’s function[J]. Geophys Res Lett,46(9):4628–4635. doi: 10.1029/2018GL081448

    Zhang Z,He S M,Li Q F. 2020. Analyzing high-frequency seismic signals generated during a landslide using source discrepancies between two landslides[J]. Eng Geol,272:105640. doi: 10.1016/j.enggeo.2020.105640

    Zhao J,Ouyang C J,Ni S D,Chu R S,Mangeney A. 2020. Analysis of the 2017 June Maoxian landslide processes with force histories from seismological inversion and terrain features[J]. Geophys J Int,222(3):1965–1976. doi: 10.1093/gji/ggaa269

图(4)
计量
  • 文章访问数:  365
  • HTML全文浏览量:  93
  • PDF下载量:  117
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-13
  • 修回日期:  2022-10-17
  • 网络出版日期:  2023-07-27
  • 刊出日期:  2023-10-29

目录

    /

    返回文章
    返回