Seismic monitoring of typhoons based on seismology
-
摘要: 台风是全球最具破坏力的气象灾害之一,由于台风过境时现场海洋观测资料相对匮乏,与目前对台风的监测、预报和防灾减灾的迫切需求尚不相匹配。近年来,利用地震学观测资料与技术手段,通过台风激发的地震背景噪声,对台风进行监测的新方法逐渐兴起。本文对近年来有关台风激发地震背景噪声机理、源区分布以及基于地震背景噪声的台风定位追踪、海浪参数反演等研究进展进行综述,分析已取得的研究成果及可能存在的问题,讨论并展望基于地震学的台风监测研究思路与热点。基于地震学的台风监测有望为传统台风观测与研究提供跨学科的观测资料与技术支持。Abstract: Typhoons are one of the most destructive meteorological disasters all over the world. However, because of the lack of in situ observations under such extreme weather conditions during the typhoon’s passage, typhoon monitoring and forecasting are still not able to meet the needs of typhoon prevention and mitigation. In recent years, a new method of typhoon monitoring based on seismological observations and techniques has emerged and developed, utilizing typhoon-generated seismic noise as a proxy. This paper reviews the recent progress in study of typhoon-induced microseisms, including the generation mechanisms, source location distribution, and its potential implications on typhoon monitoring and ocean wave parameter inversion. Future prospects on seismic monitoring of typhoons are provided and discussed. This newly emerging method may provide interdisciplinary support to traditional observation and investigation of typhoons.
-
Keywords:
- typhoon /
- ambient seismic noise /
- microseisms /
- seismic array /
- beamforming
-
-
图 6 利用NECESSArray台阵对西北太平洋台风“卢碧”激发P波地脉动源区聚束定位(引自Lin et al,2018a)
Figure 6. Bunching located source of Lupit-generated P-wave microseisms using the NECESSArray in northwestern Pacific (modified from Lin et al,2018a)
图 1 西北太平洋1980—2021年台风年频次分布(数据源于Japan Meteorological Agency,2022)
Figure 1. Annual distribution of typhoons in the period of 1980−2021 over the northwestern Pacific (Data from Japan Meteorological Agency,2022)
图 2 台风激发地震背景噪声能量谱示意图
图中标注出了不同频段的激发源对应的作用力,其中ER,EL,EP,ESV和ESH分别表示瑞雷波、勒夫波、P波、SV波和SH波的能量(修改自Nishida,2017)。
Figure 2. Schematic power spectrum of typhoon-generated seismic ambient noise
The excitation sources of different period bins are labeled,ER,EL,EP,ESV and ESH represent energy of Rayleigh,Love,P,SV and SH waves,respectively (modified from Nishida,2017)
图 3 台风“伊欧凯”激发第二类地脉动源区数值模拟结果(引自Farra et al,2016)
热力图表征数值模拟第二类地脉动源区能量强度的空间分布;灰色线表示台风轨迹;红色等值线表示定位区域;红色叉表示定位源区峰值点
Figure 3. Numerical simulation results of secondary microseisms sources, generated by typhoon “Ioke” (from Farra et al,2016)
Thermodynamic diagram shows the spatial distribution of secondary microseisms power;the gray line represents the typhoon track;the red isoline shows the located area;the red crosses show peak point of the located source
图 4 台风移动过程中前后不同时刻引起的海浪相互作用而激发第二类地脉动示意图
西南象限中灰色椭圆表示两个时刻产生的涌浪通过波-波相互作用而激发第二类地脉动的可能源区位置(修改自Lin et al,2017)
Figure 4. Schematic secondary microseisms generated by the interaction waves at different times during the moving process of typhoon
The gray ellipse in the southwestern quadrant represents the possible source of secondary microseisms generated by two swells through wave-wave interaction (modified from Lin et al,2017)
图 5 频率域反投影聚束法原理示意图(修改自IRIS DMC,2011)
当震源位于特定搜索格点时,基于该格点至台阵走时的聚束能量最强
Figure 5. Schematic back projection bunching method in frequency domain (modified from IRIS DMC,2011)
The bunching energy based on the travel time from the grid to the array is the strongest when the source is located in a specific search grid
图 7 基于YULB单地震台站观测数据反演估计的t2时刻涌浪源区可能位置(虚线圆)与ERA5再分析数据集中t1时刻总涌浪有效波高(左)和最大波周期(右)的对比(引自Lin et al,2018b)
Figure 7. Comparison of the possible position (dotted circle) of swell source at time t2 estimated from inversion of the observation data at the station YULB with the significant heights of total swells (left panels) and peak wave periods (right panels) at time t1 in ERA5 reanalysis data set (after Lin et al,2018b)
图 8 基于地脉动的海浪波高反演结果与浮标观测结果对比
(a) 试验海域及地震台站、浮标分布图;(b) 浮标实测有效波高与反演所得有效波高估计值的对比(引自Ferretti et al,2018)
Figure 8. Comparison between inversion results of wave height based on microseisms and buoy observation
(a) Distribution of test sea,seismic stations and buoys;(b) Comparison between the measured significant wave heights of buoy and the estimated significant wave heights from inversion (after Ferretti et al,2018)
-
陈栋炉,林建民,倪四道,祝翔宇,郑红. 2018. 西北太平洋海岛地区地震背景噪声特征及海洋学解释[J]. 地球物理学报,61(1):230–241. doi: 10.6038/cjg2018L0047 Chen D L,Lin J M,Ni S D,Zhu X Y,Zheng H. 2018. Characteristics of seismic noise on ocean islands in Northwest Pacific and its oceanographic interpretation[J]. Chinese Journal of Geophysics,61(1):230–241 (in Chinese).
端义宏,方娟,程正泉,徐晶,李青青,占瑞芬,钱传海,陈静,任福民. 2020. 热带气旋研究和业务预报进展:第九届世界气象组织热带气旋国际研讨会(IWTC-9)综述[J]. 气象学报,78(3):537–550. doi: 10.11676/qxxb2020.050 Duan Y H,Fang J,Cheng Z Q,Xu J,Li Q Q,Zhan R F,Qian C H,Chen J,Ren F M. 2020. Advances and trends in tropical cyclone research and forecasting:An overview of the ninth world meteorological organization international workshop on tropical cyclones (IWTC-9)[J]. Acta Meteorologica Sinica,78(3):537–550 (in Chinese).
林建民,方孙珂,倪四道. 2021. 台风“海鸥”激发地脉动源区的联合台阵定位研究[J]. 地球物理学报,64(12):4341–4354. doi: 10.6038/cjg2021P0051 Lin J M,Fang S K,Ni S D. 2021. Investigation of typhoon Kalmaegi-induced microseism source regions using combined seismic arrays[J]. Chinese Journal of Geophysics,64(12):4341–4354 (in Chinese).
刘巧霞,邱勇,曾祥方,王夫运,段永红,贾宇鹏,周铭. 2020. 基于中国内陆大孔径地震台阵的Rayleigh面波噪声源分布特征研究[J]. 地球物理学报,63(7):2534–2547. doi: 10.6038/cjg2020M0624 Liu Q X,Qiu Y,Zeng X F,Wang F Y,Duan Y H,Jia Y P,Zhou M. 2020. Distribution characteristics of Rayleigh wave noise sources derived from records of a large-aperture seismic array in Northwest China[J]. Chinese Journal of Geophysics,63(7):2534–2547 (in Chinese).
鲁来玉,何正勤,丁志峰,姚志祥. 2009. 华北科学探测台阵背景噪声特征分析[J]. 地球物理学报,52(10):2566–2572. doi: 10.3969/j.issn.0001-5733.2009.10.015 Lu L Y,He Z Q,Ding Z F,Yao Z X. 2009. Investigation of ambient noise source in North China Array[J]. Chinese Journal of Geophysics,52(10):2566–2572 (in Chinese).
夏英杰,倪四道,曾祥方. 2011. 汶川地震前地脉动信号的单台法研究[J]. 地球物理学报,54(10):2590–2596. doi: 10.3969/j.issn.0001-5733.2011.10.016 Xia Y J,Ni S D,Zeng X F. 2011. Polarization research on seismic noise before Wenchuan earthquake[J]. Chinese Journal of Geophysics,54(10):2590–2596 (in Chinese).
徐义贤,罗银河. 2015. 噪声地震学方法及其应用[J]. 地球物理学报,58(8):2618–2636. doi: 10.6038/cjg20150803 Xu Y X,Luo Y H. 2015. Methods of ambient noise-based seismology and their applications[J]. Chinese Journal of Geophysics,58(8):2618–2636 (in Chinese).
郑露露,林建民,倪四道,祝捍皓,郑红. 2017. 台风激发的第二类地脉动特征及激发模式分析[J]. 地球物理学报,60(1):187–197. Zheng L L,Lin J M,Ni S D,Zhu H H,Zheng H. 2017. Characteristics and generation mechanisms of double frequency microseisms generated by typhoons[J]. Chinese Journal of Geophysics,60(1):187–197 (in Chinese).
郑燕,程守长,蔡亲波,任福民. 2018. 台风鲸鱼(1508)路径和降水业务预报偏差原因分析[J]. 气象,44(1):170–179. doi: 10.7519/j.issn.1000-0526.2018.01.015 Zheng Y,Cheng S C,Cai Q B,Ren F M. 2018. Analysis on the forecast deviation of typhoon Kujira (1508) in track and rainfall distribution[J]. Meteorological Monthly,44(1):170–179 (in Chinese).
周磊,陈大可,雷小途,王伟,王桂华,韩桂军. 2019. 海洋与台风相互作用研究进展[J]. 科学通报,64(1):60–72. Zhou L,Chen D K,Lei X T,Wang W,Wang G H,Han G J. 2019. Progress and perspective on interactions between ocean and typhoon[J]. Chinese Science Bulletin,64(1):60–72 (in Chinese). doi: 10.1360/N972018-00668
Amante C,Eakins B. 2009. ETOPO1 1 arc-minute global relief model:Procedures,data sources and analysis[J]. Psychologist,16:20–25.
Ardhuin F,Stutzmann E,Schimmel M,Mangeney A. 2011. Ocean wave sources of seismic noise[J]. J Geophys Res:Oceans,116(C9):C09004.
Ardhuin F,Balanche A,Stutzmann E,Obrebski M. 2012. From seismic noise to ocean wave parameters:General methods and validation[J]. J Geophys Res:Oceans,117(C5):C05002.
Ardhuin F,Herbers T H C. 2013. Noise generation in the solid Earth,oceans and atmosphere,from nonlinear interacting surface gravity waves in finite depth[J]. J Fluid Mech,716:316–348. doi: 10.1017/jfm.2012.548
Ardhuin F,Gualtieri L,Stutzmann E. 2015. How ocean waves rock the Earth:Two mechanisms explain microseisms with periods 3 to 300 s[J]. Geophys Res Lett,42(3):765–772. doi: 10.1002/2014GL062782
Barruol G,Davy C,Fontaine F R,Schlindwein V,Sigloch K. 2016. Monitoring austral and cyclonic swells in the “Iles Eparses” (Mozambique channel) from microseismic noise[J]. Acta Oecol,72:120–128. doi: 10.1016/j.actao.2015.10.015
Behr Y,Townend J,Bowen M,Carter L,Gorman R,Brooks L,Bannister S. 2013. Source directionality of ambient seismic noise inferred from three-component beamforming[J]. J Geophys Res:Solid Earth,118(1):240–248. doi: 10.1029/2012JB009382
Bensen G D,Ritzwoller M H,Barmin M P,Levshin A L,Lin F,Moschetti M P,Shapiro M M,Yang Y. 2007. Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements[J]. Geophys J Int,169(3):1239–1260. doi: 10.1111/j.1365-246X.2007.03374.x
Bromirski P D,Flick R E,Graham N. 1999. Ocean wave height determined from inland seismometer data:Implications for investigating wave climate changes in the NE Pacific[J]. J Geophys Res:Oceans,104(C9):20753–20766. doi: 10.1029/1999JC900156
Bromirski P D. 2001. Vibrations from the “Perfect Storm”[J]. Geochem Geophys Geosyst,2(7):2000GC000119.
Bromirski P D,Duennebier F K. 2002. The near-coastal microseism spectrum:Spatial and temporal wave climate relationships[J]. J Geophys Res:Solid Earth,107(B8):2166. doi: 10.1029/2001JB000265
Bromirski P D,Duennebier F K,Stephen R A. 2005. Mid-ocean microseisms[J]. Geochem Geophys Geosyst,6(4):Q04009.
Bromirski P D,Gerstoft P. 2009. Dominant source regions of the Earth’s “Hum” are coastal[J]. Geophys Res Lett,36(13):L13303. doi: 10.1029/2009GL038903
Bromirski P D,Stephen R A,Gerstoft P. 2013. Are deep-ocean-generated surface-wave microseisms observed on land?[J]. J Geophys Res:Solid Earth,118(7):3610–3629. doi: 10.1002/jgrb.50268
Brooks L A,Townend J,Gerstoft P,Bannister S,Carter L. 2009. Fundamental and higher-mode Rayleigh wave characteristics of ambient seismic noise in New Zealand[J]. Geophys Res Lett,36(23):L23303. doi: 10.1029/2009GL040434
Butler R,Aucan J. 2018. Multisensor,microseismic observations of a hurricane transit near the ALOHA cabled observatory[J]. J Geophys Res:Solid Earth,123(4):3027–3046. doi: 10.1002/2017JB014885
Chen Y N,Gung Y,You S H,Hung S H,Chiao L Y,Huang T Y,Chen Y L,Liang W T,Jan S. 2011. Characteristics of short period secondary microseisms (SPSM) in Taiwan:The influence of shallow ocean strait on SPSM[J]. Geophys Res Lett,38(4):L04305.
Chen Z,Gerstoft P,Bromirski P D. 2016. Microseism source direction from noise cross-correlation[J]. Geophys J Int,205(2):810–818. doi: 10.1093/gji/ggw055
Chevrot S,Sylvander M,Benahmed S,Ponsolles C,Lefèvre J M,Paradis D. 2007. Source locations of secondary microseisms in western Europe:Evidence for both coastal and pelagic sources[J]. J Geophys Res:Solid Earth,112(B11):B11301. doi: 10.1029/2007JB005059
Chi W C,Chen W J,Kuo B Y,Dolenc D. 2010. Seismic monitoring of western Pacific typhoons[J]. Mar Geophys Res,31(4):239–251. doi: 10.1007/s11001-010-9105-x
Cutroneo L,Ferretti G,Barani S,Scafidi D,De Leo F,Besio G,Capello M. 2021. Near real-time monitoring of significant sea wave height through microseism recordings:Analysis of an exceptional sea storm event[J]. J Mar Sci Eng,9(3):319. doi: 10.3390/jmse9030319
Davy C,Barruol G,Fontaine F R,Sigloch K,Stutzmann E. 2014. Tracking major storms from microseismic and hydroacoustic observations on the seafloor[J]. Geophys Res Lett,41(24):8825–8831. doi: 10.1002/2014GL062319
Davy C,Barruol G,Fontaine F R,Cordier E. 2016. Analyses of extreme swell events on La Réunion Island from microseismic noise[J]. Geophys J Int,207(3):1767–1782. doi: 10.1093/gji/ggw365
Donn W L. 1966. Microseisms[J]. Earth-Sci Rev,1(2/3):213–230.
Euler G G,Wiens D A,Nyblade A A. 2014. Evidence for bathymetric control on the distribution of body wave microseism sources from temporary seismic arrays in Africa[J]. Geophys J Int,197(3):1869–1883. doi: 10.1093/gji/ggu105
Fan W Y,McGuire J J,De Groot-Hedlin C D,Hedlin M A H,Coats S,Fiedler J W. 2019. Stormquakes[J]. Geophys Res Lett,46(22):12909–12918. doi: 10.1029/2019GL084217
Fang S K,Lin J M,Ni S D,Li X F,Xu X Q,Zheng H,Xu W. 2020. Improving seismic remote sensing of typhoon with a three-dimensional Earth model[J]. J Acoust Soc Am,148(2):478–491. doi: 10.1121/10.0001624
Farra V,Stutzmann E,Gualtieri L,Schimmel M,Ardhuin F. 2016. Ray-theoretical modeling of secondary microseism P waves[J]. Geophys J Int,206(3):1730–1739. doi: 10.1093/gji/ggw242
Feng X P,Chen X F. 2022. Rayleigh‐wave dispersion curves from energetic hurricanes in the southeastern United States[J]. Bull Seismol Soc Am,112(2):622–633. doi: 10.1785/0120210192
Ferretti G,Zunino A,Scafidi D,Barani S,Spallarossa D. 2013. On microseisms recorded near the Ligurian Coast (Italy) and their relationship with sea wave height[J]. Geophys J Int,194(1):524–533. doi: 10.1093/gji/ggt114
Ferretti G,Scafidi D,Cutroneo L,Gallino S,Capello M. 2016. Applicability of an empirical law to predict significant sea-wave heights from microseisms along the Western Ligurian Coast (Italy)[J]. Cont Shelf Res,122:36–42. doi: 10.1016/j.csr.2016.03.029
Ferretti G,Barani S,Scafidi D,Capello M,Cutroneo L,Vagge G,Besio G. 2018. Near real-time monitoring of significant sea wave height through microseism recordings:An application in the Ligurian Sea (Italy)[J]. Ocean Coast Manag,165:185–194. doi: 10.1016/j.ocecoaman.2018.08.023
Friedrich A,Krüger F,Klinge K. 1998. Ocean-generated microseismic noise located with the Grafenberg array[J]. J Seismol,2(1):47–64. doi: 10.1023/A:1009788904007
Gal M,Reading A M,Ellingsen S P,Koper K D,Burlacu R,Gibbons S J. 2016. Deconvolution enhanced direction of arrival estimation using one- and three-component seismic arrays applied to ocean induced microseisms[J]. Geophys J Int,206(1):345–359. doi: 10.1093/gji/ggw150
Gal M,Reading A M,Rawlinson N,Schulte-Pelkum V. 2018. Matched field processing of three-component seismic array data applied to Rayleigh and Love microseisms[J]. J Geophys Res:Solid Earth,123(8):6871–6889. doi: 10.1029/2018JB015526
Gerstoft P,Fehler M C,Sabra K G. 2006. When Katrina hit California[J]. Geophys Res Lett,33(17):L17308. doi: 10.1029/2006GL027270
Gerstoft P,Shearer P M,Harmon N,Zhang J. 2008. Global P,PP,and PKP wave microseisms observed from distant storms[J]. Geophys Res Lett,35(23):L23306. doi: 10.1029/2008GL036111
Gerstoft P,Bromirski P D. 2016. “Weather bomb” induced seismic signals[J]. Science,353(6302):869–870. doi: 10.1126/science.aag1616
Gualtieri L,Stutzmann E,Capdeville Y,Ardhuin F,Schimmel M,Mangeney A,Morelli A. 2013. Modelling secondary microseismic noise by normal mode summation[J]. Geophys J Int,193(3):1732–1745. doi: 10.1093/gji/ggt090
Gualtieri L,Serretti P,Morelli A. 2014a. Finite-difference P wave travel time seismic tomography of the crust and uppermost mantle in the Italian region[J]. Geochem Geophys Geosyst,15(1):69–88. doi: 10.1002/2013GC004988
Gualtieri L,Stutzmann E,Farra V,Capdeville Y,Schimmel M,Ardhuin F,Morelli A. 2014b. Modelling the ocean site effect on seismic noise body waves[J]. Geophys J Int,197(2):1096–1106. doi: 10.1093/gji/ggu042
Gualtieri L,Stutzmann E,Capdeville Y,Farra V,Mangeney A,Morelli A. 2015. On the shaping factors of the secondary microseismic wavefield[J]. J Geophys Res:Solid Earth,120(9):6241–6262. doi: 10.1002/2015JB012157
Gualtieri L,Camargo S J,Pascale S,Pons F M E,Ekström G. 2018. The persistent signature of tropical cyclones in ambient seismic noise[J]. Earth Planet Sci Lett,484:287–294. doi: 10.1016/j.jpgl.2017.12.026
Gualtieri L,Bachmann E,Simons F J,Tromp J. 2020. The origin of secondary microseism Love waves[J]. Proc Natl Acad Sci USA,117(47):29504–29511. doi: 10.1073/pnas.2013806117
Gualtieri L,Bachmann E,Simons F J,Tromp J. 2021. Generation of secondary microseism Love waves:Effects of bathymetry,3-D structure and source seasonality[J]. Geophys J Int,226(1):192–219. doi: 10.1093/gji/ggab095
Guo Z,Xue M,Aydin A,Ma Z T. 2020. Exploring source regions of single- and double-frequency microseisms recorded in eastern North American margin (ENAM) by cross-correlation[J]. Geophys J Int,220(2):1352–1367.
Hasselmann K. 1963. A statistical analysis of the generation of microseisms[J]. Rev Geophys,1(2):177–209. doi: 10.1029/RG001i002p00177
Hillers G,Graham N,Campillo M,Kedar S,Landès M,Shapiro N. 2012. Global oceanic microseism sources as seen by seismic arrays and predicted by wave action models[J]. Geochem Geophys Geosyst,13(1):Q01021.
IRIS DMC. 2011. Data Services Products: BackProjection[EB/OL]. [2022-05-12]. http://ds.iris.edu/ds/products/backprojection/.
Japan Meteorological Agency. 2022. Best track data[EB/OL]. [2022-04-06]. https://www.jma.go.jp/jma/jma-eng/jma-center/rsmc-hp-pub-eg/trackarchives.html.
Juretzek C,Hadziioannou C. 2016. Where do ocean microseisms come from? A study of Love-to-Rayleigh wave ratios[J]. J Geophys Res:Solid Earth,121(9):6741–6756. doi: 10.1002/2016JB013017
Kedar S,Longuet-Higgins M,Webb F,Graham N,Clayton R,Jones C. 2008. The origin of deep ocean microseisms in the North Atlantic Ocean[J]. Proc Roy Soc Math Phys Eng Sci,464(2091):777–793.
Kedar S. 2011. Source distribution of ocean microseisms and implications for time-dependent noise tomography[J]. Compt Rendus Geosci,343(8/9):548–557.
Kennett B L N,Engdahl E R,Buland R. 1995. Constraints on seismic velocities in the Earth from traveltimes[J]. Geophys J Int,122(1):108–124. doi: 10.1111/j.1365-246X.1995.tb03540.x
Knaff J A,DeMaria M,Molenar D A,Sampson C R,Seybold M G. 2011. An automated,objective,multiple-satellite-platform tropical cyclone surface wind analysis[J]. J Appl Meteorol Climatol,50(10):2149–2166. doi: 10.1175/2011JAMC2673.1
Koper K D,De Foy B,Benz H. 2009. Composition and variation of noise recorded at the Yellowknife Seismic Array,1991−2007[J]. J Geophys Res:Solid Earth,114(Bl0):B10310.
Koper K D,Hawley V L. 2010. Frequency dependent polarization analysis of ambient seismic noise recorded at a broadband seismometer in the central United States[J]. Earthquake Science,23(5):439–447. doi: 10.1007/s11589-010-0743-5
Landès M,Hubans F,Shapiro N M,Paul A,Campillo M. 2010. Origin of deep ocean microseisms by using teleseismic body waves[J]. J Geophys Res:Solid Earth,115(B5):B05302.
Le Pape F,Craig D,Bean C J. 2021. How deep ocean-land coupling controls the generation of secondary microseism Love waves[J]. Nat Commun,12(1):2332. doi: 10.1038/s41467-021-22591-5
Lepore S,Markowicz K,Grad M. 2016. Impact of wind on ambient noise recorded by seismic array in northern Poland[J]. Geophys J Int,205(3):1406–1413. doi: 10.1093/gji/ggw093
Lin J M,Lin J,Xu M. 2017. Microseisms generated by super typhoon Megi in the Western Pacific Ocean[J]. J Geophys Res:Oceans,122(12):9518–9529. doi: 10.1002/2017JC013310
Lin J M,Wang Y T,Wang W T,Li X F,Fang S K,Chen C,Zheng H. 2018a. Seismic remote sensing of super typhoon Lupit (2009) with seismological array observation in NE China[J]. Remote Sens,10(2):235. doi: 10.3390/rs10020235
Lin J M,Fang S K,Li X F,Wu R H,Zheng H. 2018b. Seismological observations of ocean swells induced by typhoon Megi using dispersive microseisms recorded in coastal areas[J]. Remote Sens,10(9):1437. doi: 10.3390/rs10091437
Lin J Y,Lee T C,Hsieh H S,Chen Y F,Lin Y C,Lee H H,Wen Y Y. 2014. A study of microseisms induced by typhoon Nanmadol using ocean-bottom seismometers[J]. Bull Seismol Soc Am,104(5):2412–2421. doi: 10.1785/0120130237
Liu Q X,Koper K D,Burlacu R,Ni S D,Wang F Y,Zou C Q,Wei Y H,Gal M,Reading A M. 2016. Source locations of teleseismic P,SV,and SH waves observed in microseisms recorded by a large aperture seismic array in China[J]. Earth Planet Sci Lett,449:39–47. doi: 10.1016/j.jpgl.2016.05.035
Longuet-Higgins M S. 1950. A theory of the origin of microseisms[J]. Philos Trans Roy Soc A Math Phys Sci,243(857):1–35.
Maurya S,Taira T,Romanowicz B. 2019. Location of seismic “Hum” sources following storms in the North Pacific Ocean[J]. Geochem Geophys Geosyst,20(3):1454–1467. doi: 10.1029/2018GC008112
Munk W H. 1950. Origin and generation of waves[J]. Coast Eng Proc,1(1):1.
Neale J,Harmon N,Srokosz M. 2017. Monitoring remote ocean waves using P-wave microseisms[J]. J Geophys Res:Oceans,122(1):470–483.
Nishida K. 2013. Earth’s background free oscillations[J]. Annu Rev Earth Planet Sci,41(1):719–740. doi: 10.1146/annurev-earth-050212-124020
Nishida K,Takagi R. 2016. Teleseismic S wave microseisms[J]. Science,353(6302):919–921. doi: 10.1126/science.aaf7573
Nishida K. 2017. Ambient seismic wave field[J]. Proc Jpn Acad,93(7):423–448.
Pyle M L,Koper K D,Euler G G,Burlacu R. 2015. Location of high-frequency P wave microseismic noise in the Pacific Ocean using multiple small aperture arrays[J]. Geophys Res Lett,42(8):2700–2708. doi: 10.1002/2015GL063530
Reading A M,Koper K D,Gal M,Graham L S,Tkalčić H,Hemer M A. 2014. Dominant seismic noise sources in the Southern Ocean and West Pacific,2000−2012,recorded at the Warramunga Seismic Array,Australia[J]. Geophys Res Lett,41(10):3455–3463. doi: 10.1002/2014GL060073
Retailleau L,Gualtieri L. 2019. Toward high-resolution period-dependent seismic monitoring of tropical cyclones[J]. Geophys Res Lett,46(3):1329–1337. doi: 10.1029/2018GL080785
Retailleau L,Gualtieri L. 2021. Multi-phase seismic source imprint of tropical cyclones[J]. Nat Commun,12(1):2064. doi: 10.1038/s41467-021-22231-y
Rhie J,Romanowicz B. 2004. Excitation of Earth’s continuous free oscillations by atmosphere-ocean-seafloor coupling[J]. Nature,431(7008):552–556. doi: 10.1038/nature02942
Rhie J,Romanowicz B. 2006. A study of the relation between ocean storms and the Earth’s hum[J]. Geochem Geophys Geosyst,7(10):Q10004.
Rost S,Thomas C. 2002. Array seismology:Methods and applications[J]. Rev Geophys,40(3):1008.
Roux P,Sabra K G,Gerstoft P,Kuperman W A,Fehler M C. 2005. P-waves from cross-correlation of seismic noise[J]. Geophys Res Lett,32(19):L19303.
Schimmel M,Stutzmann E,Ardhuin F,Gallart J. 2011. Polarized Earth’s ambient microseismic noise[J]. Geochem Geophys Geosyst,12(7):Q07014.
Schweitzer J, Fyen J, Mykkeltveit S, Gibbons S J, Pirli M, Kühn M, Kværna T. 2012. Seismic arrays[G]//New Manual of Seismological Observatory Practice 2 (NMSOP-2). Potsdam: Deutsches GeoForschungsZentrum: 1–80.
Shapiro N M,Campillo M,Stehly L,Ritzwoller M H. 2005. High-resolution surface-wave tomography from ambient seismic noise[J]. Science,307(5715):1615–1618. doi: 10.1126/science.1108339
Shen W S,Ritzwoller M H. 2016. Crustal and uppermost mantle structure beneath the United States[J]. J Geophys Res:Solid Earth,121(6):4306–4342. doi: 10.1002/2016JB012887
Simmons N A,Myers S C,Johannesson G,Matzel E. 2012. LLNL-G3Dv3:Global P wave tomography model for improved regional and teleseismic travel time prediction[J]. J Geophys Res:Solid Earth,117(B10):B10302.
Stehly L,Campillo M,Shapiro N M. 2006. A study of the seismic noise from its long-range correlation properties[J]. J Geophys Res:Solid Earth,111(B10):B10306. doi: 10.1029/2005JB004237
Sufri O,Koper K D,Burlacu R,De Foy B. 2014. Microseisms from superstorm sandy[J]. Earth Planet Sci Lett,402:324–336. doi: 10.1016/j.jpgl.2013.10.015
Sun T H Z,Xue M,Le K P,Zhang Y W,Xu H P. 2013. Signatures of ocean storms on seismic records in South China Sea and East China Sea[J]. Mar Geophys Res,34(3):431–448.
Tanimoto T,Ishimaru S,Alvizuri C. 2006. Seasonality in particle motion of microseisms[J]. Geophys J Int,166(1):253–266. doi: 10.1111/j.1365-246X.2006.02931.x
Tanimoto T,Hadziioannou C,Igel H,Wassermann J,Schreiber U,Gebauer A,Chow B. 2016. Seasonal variations in the Rayleigh-to-Love wave ratio in the secondary microseism from colocated ring laser and seismograph[J]. J Geophys Res: Solid Earth,121(4):2447–2459. doi: 10.1002/2016JB012885
Tian Y,Ritzwoller M H. 2015. Directionality of ambient noise on the Juan de Fuca plate:Implications for source locations of the primary and secondary microseisms[J]. Geophys J Int,201(1):429–443. doi: 10.1093/gji/ggv024
Traer J,Gerstoft P,Bromirski P D,Shearer P M. 2012. Microseisms and hum from ocean surface gravity waves[J]. J Geophys Res:Solid Earth,117(B11):B11307.
Ward Neale J,Harmon N,Srokosz M. 2018. Improving microseismic P wave source location with multiple seismic arrays[J]. J Geophys Res:Solid Earth,123(1):476–492. doi: 10.1002/2017JB015015
Webb S C. 1998. Broadband seismology and noise under the ocean[J]. Rev Geophys,36(1):105–142. doi: 10.1029/97RG02287
Webb S C. 2007. The Earth’s ‘hum’ is driven by ocean waves over the continental shelves[J]. Nature,445(7129):754–756. doi: 10.1038/nature05536
Wong W K,Tse S M,Chan P W. 2014. Impacts of reconnaissance flight data on numerical simulation of tropical cyclones over South China Sea[J]. Meteor Appl,21(4):831–847. doi: 10.1002/met.1412
Xiao H,Xue M,Yang T,Liu C G,Hua Q F,Xia S H,Huang H B,Le B M,Yu Y Q,Huo D,Pan M H,Li L,Gao J Y. 2018. The characteristics of microseisms in South China Sea:Results from a combined data set of OBSs,broadband land seismic stations,and a global wave height model[J]. J Geophys Res:Solid Earth,123(5):3923–3942. doi: 10.1029/2017JB015291
Xiao H,Tanimoto T,Xue M. 2021. Study of S-wave microseisms generated by storms in the Southeast Australia and North Atlantic[J]. Geophys Res Lett,48(15):e2021GL093728.
Xu Y,Koper K D,Burlacu R. 2017. Lakes as a source of short-period (0.5−2 s) microseisms[J]. J Geophys Res:Solid Earth,122(10):8241–8256. doi: 10.1002/2017JB014808
Yang Y J,Ritzwoller M H. 2008. Characteristics of ambient seismic noise as a source for surface wave tomography[J]. Geochem Geophys Geosyst,9(2):Q02008.
Ying Y Z,Bean C J,Bromirski P D. 2014. Propagation of microseisms from the deep ocean to land[J]. Geophys Res Lett,41(18):6374–6379. doi: 10.1002/2014GL060979
Zeng X F,Ni S D. 2010. A persistent localized microseismic source near the Kyushu Island,Japan[J]. Geophys Res Lett,37(24):L24307.
Zhang J,Gerstoft P,Shearer P M. 2009. High-frequency P-wave seismic noise driven by ocean winds[J]. Geophys Res Lett,36(9):L09302.
Zhang J,Gerstoft P,Shearer P M. 2010a. Resolving P-wave travel-time anomalies using seismic array observations of oceanic storms[J]. Earth Planet Sci Lett,292(3/4):419–427.
Zhang J,Gerstoft P,Bromirski P D. 2010b. Pelagic and coastal sources of P-wave microseisms:Generation under tropical cyclones[J]. Geophys Res Lett,37(15):L15301.
Ziane D,Hadziioannou C. 2019. The contribution of multiple scattering to Love wave generation in the secondary microseism[J]. Geophys J Int,217(2):1108–1122. doi: 10.1093/gji/ggz056