Time problems of recorded data in artificial source ocean bottom seismometer exploration and cause analyses
-
摘要: 简要概括了国产主动源海底地震仪(OBS)数据处理中常见的时间异常现象,以OBS2020-1测线的实际处理为主并结合了OBS处理中对数据异常校正取得的部分进展为实例,通过检查数据记录格式、计算相邻数据文件间的时间差、对比不同处理方法所得剖面、分析初始时间和采样时间是否异常、使用数据重采样等手段,对OBS时间异常问题进行了分类处理和校正。分析显示,国产OBS在数据记录中普遍存在的时间问题大部分均能解决,通过本文提供的方法可以避免处理不当所导致的OBS地震剖面出现同相轴“断阶”、“倾斜”,甚至“缺失”等现象,确保了有效震相的完整性,有效解决了OBS数据时间异常问题,提高了数据的质量和利用率,为后续开展走时层析成像奠定了良好的基础,并为今后主动源OBS数据处理流程和方法提供了借鉴。
-
关键词:
- 海底地震仪(OBS) /
- 时间异常 /
- 震相 /
- 采样间隔 /
- 数据处理
Abstract: Artificial source seismic exploration based on ocean bottom seismometer (OBS) is one of the most effective methods to study the structure of crust and mantle, the seismogenic structure and the submarine mineral resources. In modeling velocity structure, the precise time measurements of recorded data by OBS are the key to ensure the reliability of velocity structure. However, in practical work, OBS placed at the seafloor directly, which is unable to acquire accurate time with the satellite navigation system in time, leads to time error of the recorded data, and its oscillation frequency of the quartz is easily affected by temperature, pressure, instrument properties, etc. Therefore, it is necessary to analyze the reasons of clock errors in the process of data processing to obtain the exact time. The common time errors in Chinese artificial source OBSs data processing were briefly summarized in this study, focusing on the processing of profile OBS2020-1 and combining the other previous correction examples. OBS time problems were classified and corrected through checking the data record format, calculating the time error between the adjacent data files, comparing the difference of profiles obtained by different processing methods, analyzing whether the initial time and sampling time are abnormal, using resample and other methods. The analysis shows that most of the time errors commonly existing in the data records of Chinese OBS can be solved, and the method provided in this paper can avoid “stair” , “incline” , even “missing” of the events in OBS seismic profiles caused by improper handling. It ensures the integrity of the effective seismic phase, and effectively solves the problem of time error of OBS data to improve the quality and utilization of data. This study establishes a good foundation for traveltime tomography, and provides a reference for the processing process and methods of artificial source OBS in the future.-
Keywords:
- ocean bottom seismometer (OBS) /
- time error /
- seismic phase /
- sampling interval /
- data processing
-
引言
随着城镇化建设的发展,土地资源日渐紧缺,对地下空间的开发和利用不断深化。然而,地下结构的建设破坏了土体的局部整体性,改变了原场地的动力特性,因而对附近地上和地下工程结构的抗震安全造成了影响。因此,系统深入地分析由于地下结构的存在而引起的沿线地震动随深度的变化规律,对地下结构沿线的结构抗震设计具有十分重要的意义。
地下结构对附近场地地震动影响的实质是地下结构对地震波的散射。Mow和Pao (1973)最早运用波函数展开法研究了无限空间中的隧道在弹性波入射下的动应力集中问题;随之,Lee和Trifunac (1979)运用该方法分析了半空间中衬砌隧道对SH波的动力响应。Lee和Karl (1992,1993)通过理论分析给出了半空间中单个无衬砌隧道对P波和SV波散射问题的解析解。基于单个衬砌隧道的研究,Liang等(2003)得到了半空间中双衬砌隧道对P波和SV波散射问题的解析解。Liu等(2016)分析了弹性半空间中平面波作用下双垂直衬砌隧道的动力相互作用。Xu等(2011)采用傅里叶-贝塞尔级数展开方法计算了半空间中圆形衬砌隧道对P波入射的动力响应。考虑不同种类弹性波的入射情形,梁建文等(2005a,b)研究了地下圆形隧道对地表运动幅值的影响。Liu等(2013)考察了弹性半空间中隧道处于浅埋时平面 P-SV 波和瑞雷波的动力响应。Luco和de Barros (2010)以及de Barros和Luco (2010)计算了水平层状半空间中埋置隧道在入射体波下的三维动力响应。对于平面SV波和P波垂直入射的情形,Oliaei和Alitalesh (2015)分析了由于地下圆形和椭圆形隧道的存在而引起的地面位移被放大的现象。利用四阶有限差分方法,Narayan等(2015)探讨了瑞雷波入射下地下无衬砌隧道和有衬砌隧道对其周围应变和黏弹性地基地表位移的影响。Alielahi和Adampira (2016)应用边界元法给出了P波和SV波入射时双平行隧道对其周围垂直平面内地震动响应的影响。Liu和Liu (2015)利用间接边界元法讨论了弹性楔形空间中隧道在SH波入射下对附近表面地震动的影响。Parvanova等(2014)利用数值模拟方法探讨了局部地形对隧道动力响应的影响。
目前,大部分研究成果仅针对SH波入射情况下地下隧道对地表面地震动的影响(Liang et al,2012,2013;付佳等,2016),而且对考虑地下隧道周围土体在一定深度范围内的动力响应研究也较少。为此,本文拟以含有圆形衬砌隧道的弹性半空间为研究对象,分析地下圆形隧道对场地动力响应的影响,重点研究隧道埋深、衬砌刚度、入射角度以及入射频率对地下隧道周围土体位移振动幅值随深度的变化规律,以期为定量评估地下隧道对既有地下建筑物地震安全性提供理论依据。
1. 地下位移幅值的求解
This page contains the following errors:
error on line 1 at column 1: Start tag expected, '<' not foundBelow is a rendering of the page up to the first error.
1.1 入射波场
This page contains the following errors:
error on line 1 at column 1: Start tag expected, '<' not foundBelow is a rendering of the page up to the first error.
$ w_1^i({r_1}{\text{,}} {\theta _1}) {\text{=}} \sum\limits_{m {\text{=}} 0}^{ {\text{+}} \infty } {{\varepsilon _m}} {({\text{-}}{\rm{i}})^m}{{\rm J}_m}(k{r_1})(\cos m\gamma \cos m{\theta _1} {\text{+}} \sin m\gamma \sin m{\theta _1}){\text{,}} $
(1) This page contains the following errors:
error on line 1 at column 1: Start tag expected, '<' not foundBelow is a rendering of the page up to the first error.
$ w_2^i({r_2}{\text{,}} {\theta _2}) {\text{=}} \sum\limits_{m {\text{=}} 0}^{ {\text{+}} \infty } {{\varepsilon _m}} {({\text{-}} {\rm{i}})^m}{{\rm J}_m}(k{r_2})(\cos m\gamma \cos m{\theta _2} {\text{+}} \sin m\gamma \sin m{\theta _2}){\text{.}} $
(2) 1.2 散射波场
This page contains the following errors:
error on line 1 at column 1: Start tag expected, '<' not foundBelow is a rendering of the page up to the first error.
$ w_1^r\left({{r_1}{\text{,}} {\theta _1}} \right) {\text{=}} \sum\limits_{m {\text{=}} 0}^{ {\text{+}} \infty } {{\rm H}_m^{\left(2 \right)}} \left({k{r_1}} \right)\left({{A_m}\cos m{\theta _1} {\text{+}} {B_m}\sin m{\theta _1}} \right){\text{,}} $
(3) $ w_2^r\left({{r_2}{\text{,}} {\theta _2}} \right) {\text{=}} \sum\limits_{n {\text{=}} 0}^{ {\text{+}} \infty } {{\rm H}_n^{\left(2 \right)}} \left({k{r_2}} \right)\left({{A_n}\cos n{\theta _2} {\text{+}}{B_n}\sin n{\theta _2}} \right){\text{,}} $
(4) This page contains the following errors:
error on line 1 at column 1: Start tag expected, '<' not foundBelow is a rendering of the page up to the first error.
This page contains the following errors:
error on line 1 at column 1: Start tag expected, '<' not foundBelow is a rendering of the page up to the first error.
$ w_1^f\left({{r_1}{\text{,}} {\theta _1}} \right) {\text{=}} \sum\limits_{m {\text{=}} 0}^{ {\text{+}} \infty } {{\rm H}_m^{\left(2 \right)}} \left({{k_1}{r_1}} \right)\left({C_m^{(2)}\cos m{\theta _1} {\text{+}} D_m^{(2)}\sin m{\theta _1}} \right){\text{,}} $
(5) $ w_2^f\left({{r_1} {\text{,}} {\theta _1}} \right) {\text{=}}\sum\limits_{m {\text{=}} 0}^{ {\text{+}} \infty } {{\rm H}_m^{\left(1 \right)}} \left({{k_1}{r_1}} \right)\left({C_m^{(1)}\cos m{\theta _1} {\text{+}} D_m^{(1)}\sin m{\theta _1}} \right) {\text{,}} $
(6) This page contains the following errors:
error on line 1 at column 1: Start tag expected, '<' not foundBelow is a rendering of the page up to the first error.
因此,在SH波入射的情形下,半空间中波的势函数为
$ {w^d} {\text{=}} w_1^i {\text{+}} w_2^i {\text{+}} w_1^r {\text{+}} w_2^r{\text{,}} $
(7) 衬砌介质中波的势函数为
$ {w^f} {\text{=}} w_1^f {\text{+}} w_2^f{\text{.}} $
(8) 1.3 引入边界条件求解问题
引入衬砌隧道的边界条件:
$ {\sigma _{rz}} {\text{=}} {\mu _1}\frac{{\partial {w^f}}}{{\partial {r_1}}} {\text{=}} 0 {\text{,}}{r_1} {\text{=}} b {\text{,}} $
(9) $ {w^d}{\text{=}} {w^f} {\text{,}} {r_1} {\text{=}} a {\text{,}} $
(10) $ {\mu _0}\frac{{\partial {w^d}}}{{\partial {r_1}}} {\text{=}} {\mu _1}\frac{{\partial {w^f}}}{{\partial {r_1}}}{\text{,}} {r_1}{\text{=}} a{\text{,}} $
(11) 即可求得式(3)—(6)中所有待定系数,从而确定式(7)中半空间介质内波的势函数。在SH波作用下,沿深度方向的位移可通过求解以上边界条件得出,从而求得隧道周围沿深度方向的位移幅值,具体求解过程不再赘述。
1.4 解的验证
This page contains the following errors:
error on line 1 at column 1: Start tag expected, '<' not foundBelow is a rendering of the page up to the first error.
This page contains the following errors:
error on line 1 at column 1: Start tag expected, '<' not foundBelow is a rendering of the page up to the first error.
2. 算例与分析
This page contains the following errors:
error on line 1 at column 1: Start tag expected, '<' not foundBelow is a rendering of the page up to the first error.
This page contains the following errors:
error on line 1 at column 1: Start tag expected, '<' not foundBelow is a rendering of the page up to the first error.
表 1 距地表6a深度范围内隧道左右两侧最大地下位移幅值Table 1. The maximum amplitude of underground displacement on both sides of tunnel within a depth of 6a from surface入射角/° 地下位移幅值 x/a=−3.0 x/a=−1.5 x/a=1.5 x/a=3.0 0 2.66 2.79 2.79 2.66 30 2.90 2.83 2.31 2.45 60 3.30 2.37 2.64 2.61 90 3.31 3.94 3.37 3.01 This page contains the following errors:
error on line 1 at column 1: Start tag expected, '<' not foundBelow is a rendering of the page up to the first error.
This page contains the following errors:
error on line 1 at column 1: Start tag expected, '<' not foundBelow is a rendering of the page up to the first error.
This page contains the following errors:
error on line 1 at column 1: Start tag expected, '<' not foundBelow is a rendering of the page up to the first error.
3. 讨论与结论
本文应用波函数展开法和镜像法,得到了平面SH波作用下含圆形衬砌隧道的弹性半空间中散射波场的级数解答。通过数值算例分析,研究了平面SH的入射角度、入射频率和隧道埋深、衬砌刚度对沿线地下地震动的影响。结果表明,地下隧道的存在对其周围地震动具有显著的影响,并具有如下规律:
This page contains the following errors:
error on line 1 at column 1: Start tag expected, '<' not foundBelow is a rendering of the page up to the first error.
2) 随着入射频率的增加,隧道周围土体的位移幅值有逐渐增大的趋势,但是在隧道左侧近处存在异常区,该区随着频率的增加地下位移振幅逐渐减小。
3) 在隧道周围近距离处,衬砌刚度的变化对地下位移幅值的影响显著,而在隧道远距离处,衬砌刚度对地下位移幅值的影响较弱。
-
图 1 OBS2020-1地震测线分布及区域位置图
红线为放炮测线,绿色圆圈为成功回收且数据质量好的OBS站点,灰色圆圈为丢失或无数据的OBS站点
Figure 1. OBS2020-1 seismic line distribution and studied area
The red line is the shooting line,green circles are OBS stations that are successful recovery and have good data quality, and gray circles are OBS stations with lost or without data
图 2 OBS27台站使用错误采样率造成异常现象的前后对比
(a) OBS27台站参考配置文件使用错误采样率导致的异常单台地震剖面(垂直分量),折合速度为6.0 km/s;(b) OBS27台站更改为仪器固定采样率得到的正常地震记录剖面(垂直分量),折合速度为6.0 km/s
Figure 2. Comparison of anomalies caused by incorrect sampling rate used by OBS27
(a) Abnormal seismic profile (vertical component) caused by incorrect sampling rate in OBS27 reference configuration file,reduced velocity is 6.0 km/s;(b) The normal seismic profile (vertical component) obtained by fixed sampling rate in OBS27,reduced velocity is 6.0 km/s
图 3 OBS25(正常)与OBS27(异常)的SAC波形数据对比
(a) OBS25台站正确的放炮时间间隔(90 s);(b) OBS27使用错误采样率导致的异常放炮时间间隔(225 s)
Figure 3. Comparison of waveforms between OBS25 (normal) and OBS27 (abnormal) in SAC format
(a) The correct shooting time interval (90 s) of OBS25;(b) Abnormal shooting time interval (225 s) of OBS27 caused by using wrong sampling rate
图 4 OBS20 (正常)与OBS18 (异常)时间异常对比
Δt为观测到时与放炮时间的差值;TPw为计算得到的直达水波理论到时;橙色实线表示SAC格式数据中的直达水波实际到时;橙色箭头表示此信号的气枪放炮时间;橙色虚线表示OBS18台站的直达水波理论到时(a) OBS20近偏移距SAC数据波形;(b) OBS18近偏移距SAC数据波形
Figure 4. Abnormal time comparison between the OBS20 (normal) and OBS18 (abnormal)
Δt is the difference between the observation time and the shooting time;TPw is the calculated theoretical arrival time of the direct water wave. The orange solid line represents the actual arrival time of the direct water wave in SAC format data;the orange arrow indicates the shooting time of the air gun for this signal;the orange dashed line indicates the theoretical arrival time of the direct water wave of OBS18 station (a) SAC format waveform of the OBS20 near offset;(b) SAC format waveform of the OBS18 near offset
图 5 OBS数据记录文件中相邻文件间的时间差
黑色与灰色线段分别代表预设采样率为100 sps和250 sps时相邻文件间的时间差,红色线段代表非内部时间漂移的时间间隙,上部双斜线表示不连续的时间
Figure 5. Time error between adjacent files in OBSs
The black and gray lines represent a preset sampling frequency of 100 sps and 250 sps,respectively;the red line represents the time gap without internal time drift,and the top double diagonal line represents the discontinuous time
图 6 不同拼接方法获得的OBS18单台地震剖面
(a,b) 未进行初始时间校正拼接获得的单台地震剖面;(c) 初始时间校正后再拼接获得的正常的单台地震剖面。红色实线标注了数据文件拼接处;红色虚线框表示处理不当可能导致震相“缺失”
Figure 6. Seismic profile of OBS18 obtained by different splicing methods
(a,b) Seismic profiles obtained by splicing without initial time correction;(c) Normal seismic profile obtained by splicing after initial time correction. The red solid line indicates the splice of data files;the dashed red box indicates that the phase may be “missing” due to improper handling
图 8 OBS07台站单台地震剖面中的同相轴“断阶”
(a) OBS07台站单台地震剖面,图中红色实线表示数据文件拼接处,红框表示图b,c和d的放大;(b) 图a中可辨识出的同相轴“断阶”部分(红色虚线指示了明显的“断阶”);(c) 图b经校正后同相轴“断阶”现象消失;(d) 图a中难以分辨出的内部时间漂移。红色椭圆标注了文件拼接处即存在“断阶”的位置
Figure 8. The "stair" of the event in the seismic profile of OBS07
(a) Seismic profile of OBS07. The red solid line indicates the splice of data files,and the red box indicates the enlargement of figs. b,c and d;(b) The recognizable “stair” in fig. a,the red dotted line is an obvious “stair”;(c) The “stair” phenomenon shown in fig. b disappears after correction;(d) Internal time drift that is difficult to distinguish in fig. a. The red ellipse marks the position where the document is abnormal,the position where there is a “stair”
图 10 OBS12台站单台地震剖面(垂直分量,折合速度为6.0 km/s)
(a) 减去停止记录后重采样拼接的单台地震剖面,剖面正常清晰;(b) 将SAC格式文件以对钟的头文件为起始时间拼接得到的单台地震剖面(拼接法①),左侧部分震相丢失;(c) 将SAC格式文件以每个文件的初始时间拼接得到的单台地震剖面(拼接法②),剖面正常清晰;(d) 经过时间间隙重采样拼接的单台地震剖面(拼接法③),剖面异常倾斜。红色实线表示数据记录文件的拼接处
Figure 10. Seismic profile of OBS12 (vertical component,reduced velocity is 6.0 km/s)
(a) The seismic profiles spliced by resampling after stopping the recording are normal and clear;(b) The seismic profile (splicing method ①) obtained by splicing SAC format files with the header file of clock as the starting time,and some seismic phases on the left side are lost;(c) The seismic profile obtained by splicing SAC format files with the initial time of each file (splicing method ②) is normal and clear;(d) The seismic profile (splicing method ③) after time gap resampling splicing,the profile is abnormally inclined. The solid red line indicates the splice of the data record file
表 1 OBS2020-1测线主动源海底地震仪仪器参数及数据记录异常分类表
Table 1 Classification of artificial source OBS instrument parameters and data record anomalies for Line OBS2020-1
台站 球号 异常类型
(均包含采样时间异常)相邻文件间的
时间异常范围/s现象 OBS13 A37 固定采样率(250 sps) −0.020—−0.021 使用错误采样率造成,
无法显示有效震相
(例如图2)OBS20 B29 固定采样率(250 sps) 0.017—0.019 OBS27 B40 固定采样率(250 sps) −0.020—−0.021 OBS11 A35 固定采样率(250 sps) −0.019 授时异常 提前0.731 处理不当造成震相
“缺失”或异常“倾斜”
(例如图4和图6)OBS18 K82 授时异常 0.038—0.042
提前0.899OBS01 L94 0.017—0.023 震相清晰连续处的
近偏移距可观察到
小“断阶”(例如
图7和图8)OBS03 L26 0.017—0.023 OBS04 L16 0.023—0.030 OBS06 L96 0.038—0.040 OBS07 N2001 0.083—0.090 OBS08 H56 0.035—0.040 OBS09 L45 0.014—0.019 OBS10 L85-1 0.013—0.018 OBS14 B20-04 0—−0.006 OBS15 L31 0.012—0.019 OBS16 S11new 0.031—0.037 OBS17 L99 0.012—0.018 OBS19 L70 0.043—0.050 OBS21 L85 0.022—0.027 OBS22 L37 0.001—0.007 OBS24 L23 −0.006—−0.011 OBS25 B20-01 0.052—0.057 OBS28 S13 0.063—0.068 OBS29 L98 0.021—0.027 OBS30 L95 0.027—0.032 OBS12 MIC002 采集器暂停工作 0.024—0.028
暂停8.984处理不当造成震相
“缺失”或异常“倾斜”
(例如图9和图10)OBS26 L27 - 故障,仅一个文件 - 表 2 OBS数据记录异常现象对比
Table 2 Comparison of OBS data anomalies
异常类型 异常现象 异常原因 鉴别方法 处理方法 记录格式异常 无法识别有效震相 实际采样率与预设
采样率的信息不符对比配置文件中的
采样率与实际采样率采样率更正为
实际采样率初始
时间
异常授时异常 震相时间异常明显,实际走时与理论
走时相差较大GPS授时误差 对比直达水波理论
到时与实际到时根据直达水波
理论到时校正文件名转换异常 同上 文件名写入错误 同上 同上 时钟晶振异常 时钟出现线性漂移,误差随时间而增大 OBS内部时钟
晶振频率影响投放回收时两次
GPS对钟线性分配 采样时间异常 震相清晰连续的近偏移距处可观察到同相轴“断阶”现象 实际采样间隔
非整数毫秒计算相邻文件间的
时间间隙,间隔
稳定在90 ms内将采样间隔更正为
实际值,再重采样
处理采集器
工作
异常采样器
暂停工作处理不当则出现同相轴“断阶”,甚至异常“倾斜”现象 采集器在换文件时暂停工作 计算相邻文件间的
时间间隙,时间
间隙突变若要重采样处理需
先减去采集器停止
工作的时间采样间隔
不稳定无法识别有效震相 时钟晶振频率不稳定,随机异常变化 放炮时间间隔不规律,
与实际等间隔放炮
时间不符无法统一处理 -
范朝焰. 2019. 南海东北部地壳结构及其对陆缘张裂前后的构造启示[D]. 北京: 中国科学院大学: 32–38. Fan C Y. 2019. Crustal Structure of the Northeastern South China Sea and Its Tectonic Implication for the Pre-Rifting and Post-Rifting Stages of Continental Margin[D]. Beijing: University of Chinese Academy of Sciences: 32–38 (in Chinese).
郝天珧, 游庆瑜. 2011. 国产海底地震仪研制现状及其在海底结构探测中的应用[J]. 地球物理学报, 54(12): 3352-3361. doi: 10.3969/j.issn.0001-5733.2011.12.033 Hao T Y, You Q Y. 2011. Progress of homemade OBS and its application on ocean bottom structure survey[J]. Chinese Journal of Geophysics, 54(12): 3352-3361 (in Chinese).
郝小柱, 伍忠良, 王巍伟, 胡家赋. 2013. 海底地震仪精密计时器的研制与应用[J]. 气象水文海洋仪器, 30(2): 9-13. doi: 10.3969/j.issn.1006-009X.2013.02.003 Hao X Z, Wu Z L, Wang W W, Hu J B. 2013. Research and application on OBS accurate timer[J]. Meteorological, Hydrological and Marine Instruments, 30(2): 9-13 (in Chinese).
郝小柱, 伍忠良, 王伟巍. 2015. 高频海底地震仪性能检测[J]. 热带海洋学报, 34(4): 54-58. doi: 10.3969/j.issn.1009-5470.2015.04.007 Hao X Z, Wu Z L, Wang W W. 2015. Performance test of high-frequency ocean bottom seismometer[J]. Journal of Tropical Oceanography, 34(4): 54-58 (in Chinese).
金震, 郭晓然, 陈方颖. 2020. 国产OBS的时间矫正方法: 以2019年台湾海峡地壳结构海陆探测实验为例[J]. 热带海洋学报, 39(3): 42-48. Jin C, Guo X R, Chen F Y. Correction of made-in-China OBS raw data based on 2019 Fujian and Taiwan Straits crustal structures in sea-land exploration experiments[J]. Journal of Tropical Oceanography, 39(3): 42-48 (in Chinese).
李江, 庄灿涛, 薛兵, 朱小毅, 陈阳, 朱杰, 彭朝勇, 叶鹏, 梁鸿森, 刘明辉, 杨桂存, 周银兴, 林湛, 李建飞. 2010. 宽频带海底地震仪的研制[J]. 地震学报, 32(5): 610-618. doi: 10.3969/j.issn.0253-3782.2010.05.010 Li J, Zhuang C T, Xue B, Zhu X Y, Chen Y, Zhu J, Peng C Y, Ye P, Liang H S, Liu M H, Yang G C, Zhou Y X, Lin Z, Li J F. 2010. Development of broadband ocean bottom seismograph (OBS)[J]. Acta Seismologica Sinica, 32(5): 610-618 (in Chinese).
李军, 金星, 李强, 游秀珍, 胡淑芳, 黄艳丹. 2020. 福建金钟水库OBS记录时钟校正分析[J]. 自然灾害学报, 29(5): 56-63. doi: 10.13577/j.jnd.2020.0506 Li J, Jin X, Li Q, You X Z, Hu S F, Huang Y D. 2020. Clock correction of OBS recorded in Jinzhong reservoir in Fujian province[J]. Journal of Natural Disasters, 29(5): 56-63 (in Chinese).
刘晨光, 华清峰, 裴彦良, 杨挺, 夏少红, 薛梅, 黎伯孟, 霍达, 刘芳, 黄海波. 2014. 南海海底天然地震台阵观测实验及其数据质量分析[J]. 科学通报, 59(16): 1542-1552. Liu C G, Hua Q F, Pei Y L, Yang T, Xia S H, Xue M, Li B M, Huo D, Liu F, Huang H B. 2014. Passive-source ocean bottom seismograph (OBS) array experiment in South China Sea and data quality analyses[J]. Chinese Science Bulletin, 59(33): 4524-4535. doi: 10.1007/s11434-014-0369-4
刘丽华, 吕川川, 郝天珧, 游庆瑜, 郑彦鹏, 支鹏遥, 潘军, 刘少华. 2012. 海底地震仪数据处理方法及其在海洋油气资源探测中的发展趋势[J]. 地球物理学进展, 27(6): 2673-2684. doi: 10.6038/j.issn.1004-2903.2012.06.047 Liu L H, Lü C C, Hao T Y, You Q Y, Zheng Y P, Zhi P Y, Pan J, Liu S H. 2012. Data processing methods of OBS and its development tendency in detection of offshore oil and gas resources[J]. Progress in Geophysics, 27(6): 2673-2684 (in Chinese).
牛雄伟, 阮爱国, 吴振利, 张洁. 2014. 海底地震仪实用技术探讨[J]. 地球物理学进展, 29(3): 1418-1425 doi: 10.6038/pg20140358 Niu X W, Ruan A G, Wu Z L, Zhang J. 2014. Progress on practical skills of Ocean Bottom Seismometer (OBS) experiment[J]. Progress in Geophysics, 29(3): 1418-1425 (in Chinese). doi: 10.6038/pg20140358
丘学林, 赵明辉, 徐辉龙, 李家彪, 阮爱国, 郝天珧, 游庆瑜. 2012. 南海深地震探测的重要科学进程: 回顾和展望[J]. 热带海洋学报, 31(3): 1-9. Qiu X L, Zhao M H, Xu H L, Li J B, Ruan A G, Hao T Y, You Q Y. 2012. Important processes of deep seismic surveys in the South China Sea: Retrospection and expectation[J]. Journal of Tropical Oceanography, 31(3): 1-9 (in Chinese).
阮爱国, 李家彪, 冯占英, 吴振利. 2004. 海底地震仪及其国内外发展现状[J]. 东海海洋, 22(2): 19-27 Ruan A G, Li J B, Feng Z Y, Wu Z L. 2004. Ocean bottom seismometer and its development in the world[J]. Donghai Marine Science, 22(2): 19-27 (in Chinese).
阮爱国, 丘学林, 李家彪, 郝天珧. 2009. 中国海洋深地震探测与研究进展[J]. 华南地震, 29(2): 10-18. doi: 10.3969/j.issn.1001-8662.2009.02.002 Ruan A G, Qiu X L, Li J B, Hao T Y. 2009. Wide aperture seismic sounding in the Margin Seas of China[J]. South China Journal of Seismology, 29(2): 10-18 (in Chinese).
阮爱国, 李家彪, 陈永顺, 丘学林, 吴振利, 赵明辉, 牛雄伟, 王春龙, 王显光. 2010. 国产I-4C型OBS在西南印度洋中脊的试验[J]. 地球物理学报, 53(4): 1015-1018. doi: 10.3969/j.issn.0001-5733.2010.04.026 Ruan A G, Li J B, Chen Y S, Qiu X L, Wu Z L, Zhao M H, Niu X W, Wang C L, Wang X G. 2010. The experiment of broad band I-4C type OBS in the Southwest India ridge[J]. Chinese Journal of Geophysics, 53(4): 1015-1018 (in Chinese).
邵安民, 张玉云, 赵风文. 2003. 海底地震数据记录器[J]. 地球物理学报, 46(2): 224-228. doi: 10.3321/j.issn:0001-5733.2003.02.015 Shao A M, Zhang Y Y, Zhao F W. 2003. An ocean bottom seismic data recorder[J]. Chinese Journal of Geophysics, 46(2): 224-228 (in Chinese).
王强, 丘学林, 赵明辉, 黄海波, 敖威. 2016. 南海海底地震仪异常数据的分析和处理[J]. 地球物理学报, 59(3): 1102-1112. doi: 10.6038/cjg20160330 Wang Q, Qiu X L, Zhao M H, Huang H B, Ao W. 2016. Analysis and processing on abnormal OBS data in the South China Sea[J]. Chinese Journal of Geophysics, 59(3): 1102-1112 (in Chinese).
王伟巍, 朱世华, 袁修贵, 罗跃逸, 赵庆献. 2013. 海底地震仪的时间同步技术[J]. 海洋信息, (2): 9-12. Wang W W, Zhu S H, Yuan X G, Luo Y Y, Zhao Q X. Time synchronization technology of submarine seismograph[J]. Marine Information, (2): 9–12 (in Chinese).
王彦林, 阎贫, 郑红波, 吕修亚. 2007. OBS记录的时间和定位误差校正[J]. 热带海洋学报, 26(5): 40-46. doi: 10.3969/j.issn.1009-5470.2007.05.007 Wang Y L, Yan P, Zheng H B, Lü X Y. 2007. Timing and positioning corrections of ocean bottom seismograph data[J]. Journal of Tropical Oceanography, 26(5): 40-46 (in Chinese).
夏常亮. 2009. OBS地震数据关键处理环节研究[D]. 北京: 中国地质大学(北京): 8−12. Xia C L. 2009. A Study on Pivotal Data Processing Procedure of Ocean Bottom Seismograph[D]. Beijing: China University of Geosciences (Beijing): 8−12 (in Chinese).
夏少红, 丘学林, 赵明辉, 叶春明, 陈营华, 徐辉龙, 王平. 2007. 香港与珠三角地区海陆联合地震探测的数据处理[J]. 热带海洋学报, 26(1): 35-38. doi: 10.3969/j.issn.1009-5470.2007.01.006 Xia S H, Qiu X L, Zhao M H, Ye C M, Chen Y H, Xu H L, Wang P. 2007. Data processing of onshore-offshore seismic experiment in Hongkong and Zhujiang River Delta region[J]. Journal of Tropical Oceanography, 26(1): 35-38 (in Chinese).
夏少红, 敖威, 赵明辉, 丘学林, 徐辉龙. 2011. 海洋广角地震数据校正方法探讨[J]. 海洋通报, 30(5): 487-491. doi: 10.3969/j.issn.1001-6392.2011.05.002 Xia S H, Ao W, Zhao M H, Qiu X L, Xu H L. 2011. Corrections and analysis of wide angle seismic data from the sea[J]. Marine Science Bulletin, 30(5): 487-491 (in Chinese).
夏少红, 曹敬贺, 万奎元, 范朝焰, 孙金龙. 2016. OBS广角地震探测在海洋沉积盆地研究中的作用[J]. 地球科学进展, 31(11): 1111-1124. doi: 10.11867/j.issn.1001-8166.2016.11.1111 Xia S H, Cao J H, Wan K Y, Fan C Y, Sun J L. 2016. Role of the wide-angle OBS seismic exploration in the research of marine sedimentary basin[J]. Advances in Earth Science, 31(11): 1111-1124 (in Chinese).
薛彬, 阮爱国, 李湘云, 吴振利. 2008. SEDIS IV型短周期自浮式海底地震仪数据校正方法[J]. 海洋学研究, 26(2): 98-102. doi: 10.3969/j.issn.1001-909X.2008.02.014 Xue B, Ruan A G, Li X Y, Wu Z L. 2008. The seismic data corrections of short period auto-floating ocean bottom seismometer[J]. Journal of Marine Sciences, 26(2): 98-102 (in Chinese).
游庆瑜, 刘福田, 冉崇荣, 王广福. 2003. 高频微功耗海底地震仪研制[J]. 地球物理学进展, 18(1): 173-176. doi: 10.3969/j.issn.1004-2903.2003.01.030 You Q Y, Liu F T, Ran C R, Wang G F. 2003. High frequency micro-power ocean bottom seismograph[J]. Progress in Geophysics, 18(1): 173-176 (in Chinese).
张光学, 徐华宁, 刘学伟, 张明, 伍忠良, 梁金强, 王宏斌, 沙志彬. 2014. 三维地震与OBS联合勘探揭示的神狐海域含水合物地层声波速度特征[J]. 地球物理学报, 57(4): 1169-1176. doi: 10.6038/cjg20140414 Zhang G X, Xu H N, Liu X W, Zhang M, Wu Z L, Liang J Q, Wang H B, Sha Z B. 2014. The acoustic velocity characteristics of sediment with gas hydrate revealed by integrated exploration of 3D seismic and OBS data in Shenhu area[J]. Chinese Journal of Geophysics, 57(4): 1169-1176 (in Chinese).
张浩宇, 丘学林, 张佳政, 贺恩远, 游庆瑜. 2019. 国产海底地震仪的时间记录与原始数据精细校正[J]. 地球物理学报, 62(1): 172-182. doi: 10.6038/cjg2019L0715 Zhang H Y, Qiu X L, Zhang J Z, He E Y, You Q Y. 2019. Time record and accurate correction of Chinese OBS raw data[J]. Chinese Journal of Geophysics, 62(1): 172-182 (in Chinese).
张佳政, 丘学林, 赵明辉, 游庆瑜, 贺恩远, 王强. 2018. 南海巴士海峡三维OBS探测的异常数据恢复[J]. 地球物理学报, 61(4): 1529-1538. doi: 10.6038/cjg2018L0268 Zhang J Z, Qiu X L, Zhao M H, You Q Y, He E Y, Wang Q. 2018. Abnormal data retrieval of three-dimensional OBS survey at the Bashi Channel area of the South China Sea[J]. Chinese Journal of Geophysics, 61(4): 1529-1538 (in Chinese).
赵明辉, 丘学林, 夏少红, 王平, 夏戡原. 2007. 南海东北部三分量海底地震仪记录中横波的识别和分析[J]. 自然科学进展, 17(11): 1516-1523. doi: 10.3321/j.issn:1002-008x.2007.11.008 Zhao M H, Qiu X L, Xia S H, Wang P, Xia K Y. 2007. Identification and analysis of shear waves recorded by three component seabed seismograph in the northeastern South China Sea[J]. Progress in Natural Science, 17(11): 1516-1523 (in Chinese).
赵明辉, 杜峰, 王强, 丘学林, 韩冰, 孙龙涛, 张洁, 夏少红, 范朝焰. 2018. 南海海底地震仪三维深地震探测的进展及挑战[J]. 地球科学, 43(10): 3749-3761. Zhao M H, Du F, Wang Q, Qiu X L, Han B, Sun L T, Zhang J, Xia S H, Fan C Y. 2018. Current status and challenges for three-dimensional deep seismic survey in the South China Sea[J]. Earth Science, 43(10): 3749-3761 (in Chinese).
Fan C Y, Xia S H, Zhao F, Sun J L, Cao J H, Xu H L, Wan K Y. 2017. New insights into the magmatism in the northern margin of the South China Sea: Spatial features and volume of intraplate seamounts[J]. Geochem Geophys Geosyst, 18(6): 2216-2239. doi: 10.1002/2016GC006792
Hannemann K, Krüger F, Dahm T. 2014. Measuring of clock drift rates and static time offsets of ocean bottom stations by means of ambient noise[J]. Geophys J Int, 196(2): 1034-1042. doi: 10.1093/gji/ggt434
Le B M, Yang T, Chen Y J, Yao H J. 2018. Correction of OBS clock errors using Scholte waves retrieved from cross-correlating hydrophone recordings[J]. Geophys J Int, 212(2): 891-899. doi: 10.1093/gji/ggx449
Lin J N, Xia S H, Wang X Y, Zhao D P, Wang D W. 2022. Seismogenic crustal structure affected by the Hainan mantle plume[J]. Gondwana Res, 103: 23-36. doi: 10.1016/j.gr.2021.10.029
Liu Y L, Liu C, Tao C H, Yao H J, Qiu L, Wang A, Ruan A G, Wang H C, Zhou J P, Li H M, Dong C W. 2018. Time correction of the ocean bottom seismometers deployed at the southwest Indian ridge using ambient noise cross-correlation[J]. Acta Oceanol Sin, 37(5): 39-46. doi: 10.1007/s13131-018-1209-1
Loviknes K, Jeddi Z, Ottemöller L, Barreyre T. 2020. When clocks are not working: OBS time correction[J]. Seismol Res Lett, 91(4): 2247-2258. doi: 10.1785/0220190342
Shariat-Panahi S, Alegria F C, Làzaro A M, del Rio J. 2009. Time drift of ocean bottom seismometers (OBS)[C]//XIX IMEKO World Congress Fundamental and Applied Metrology. Lisbon, Portugal: IMEKO: 2548–2553.
Tian J Y, Lin J, Zhang F, Xu M, Zhang Y Y, Guo L Y, Zeng X. 2021. Time correction of Ocean-Bottom Seismometers using improved ambient noise cross correlation of multicomponents and dual-frequency bands[J]. Seismol Res Lett, 92(3): 2004-2014. doi: 10.1785/0220200358
Wen G G, Wan K Y, Xia S H, Fan C Y, Cao J H, Xu H L. 2021. Crustal extension and magmatism along the northeastern margin of the South China Sea: Further insights from shear waves[J]. Tectonophysics, 817: 229073. doi: 10.1016/j.tecto.2021.229073
William C T, Joseph E T. 1991. SAC Seismic Analysis Code Users Manual[M]. Livermore, CA: Lawrence Livermore National Laboratory: 1–153.
Xia S H, Zhao F, Zhao D P, Fan C Y, Wu S G, Mi L J, Sun J L, Cao J H, Wan K Y. 2018. Crustal plumbing system of post-rift magmatism in the northern margin of South China Sea: New insights from integrated seismology[J]. Tectonophysics, 744: 227-238. doi: 10.1016/j.tecto.2018.07.002
Zhang C L, Xia S H, Fan C Y, Cao J H. 2023. Submarine volcanism in the southern margin of the South China Sea[J]. J Oceanol Limnol, 41(2): 612−629.
Zhao M H, Qiu X L, Xia S H. 2010. Seismic structure in the northeastern South China Sea: S-wave velocity and vP/vS ratios derived from three-component OBS data[J]. Tectonophysics, 480(1/2/3/4): 183-197.
-
期刊类型引用(2)
1. 王少坤,吕义清,陈燕. 近断层煤层开采的采空区地震动力响应及其对地表的影响. 矿业研究与开发. 2024(02): 96-102 . 百度学术
2. 许华南,张洋,黄清云,许美娟. 出平面波作用下地下复杂衬砌结构的地震动研究. 地震工程与工程振动. 2019(06): 154-159 . 百度学术
其他类型引用(6)