An adjustment method for the characteristic period of site acceleration response spectra with soft layers
-
摘要:
在分析场地条件对地震震害影响及国内外关于软弱土层对场地地震反应影响的基础上,采用实际含淤泥质土层场地资料,建立了12个含软弱土层的场地模型,在不同输入地震动水平下进行了场地地震反应一维等效线性化分析,讨论了软弱土层厚度和埋深对场地地震反应的影响。结果表明:随着软弱土层的埋深或厚度的增加,反应谱特征周期逐渐增大;输入地震动峰值增加,反应谱特征周期亦增大。继而依据软弱土层厚度、埋深及输入地震动强度对场地加速度反应谱特征周期的影响特征,提出了含软弱土层场地地震动加速度反应谱特征周期调整方法。
Abstract:In recent years, the impact of soft soil on the seismic response of soil layers in sites has attracted attention. Some scholars have conducted in-depth analysis from different perspectives, and the research results show that soft soil increases the dominant period and response spectrum characteristic period of the site to a certain extent. As the position of the soft interlayer deepens, the amplification effect of the site decreases, and the dominant period and response spectrum characteristic period of the site increase. Compared with the Code for Seismic Design of Buildings (GB 50011−2010) in China, the characteristic period of the seismic acceleration response spectrum for sites containing weak soil layers after regulation is much larger than the value specified in the code. At present, although there is an analysis of the impact of weak soil layers on site seismic response, there is little research on the adjustment methods of characteristic periods of site response spectra containing weak soil layers.Based on the analysis for the effect of site conditions on earthquake damage and the influence of soft layers on site seismic response at home and abroad, 12 site models are established, by means of drilling data from sites containing soft layers. The one-dimensional equivalent linearization site seismic response analysis is carried out under different input acceleration peak, and the influence of soft layer thickness, buried depth and input peak acceleration on site seismic response is discussed. The results show that under the same input acceleration peak, as the burial depth and thickness of soft layer increase, the characteristic period of the site acceleration response spectra gradually increases and the peak ground acceleration decreases. As the input peak acceleration increases, while the thickness and burial depth of the soft layer remain unchanged, the characteristic period of the site acceleration response spectra and the peak ground acceleration increases. Finally an adjustment method for the characteristic period of site acceleration response spectra with soft layers was proposed.
-
根据中国地震台网中心测定,北京时间2021年5月22日02时04分,中国青海省果洛州玛多县发生了震级达到M7.4的地震,震中位于(98.34°E,34.59°N),震源深度为17 km。美国地质调查局(United States Geological Survey,缩写为USGS)国家地震信息中心(National Earthquake Information Centre,缩写为NEIC)也给出了相应的结果,其标定的发震时间为北京时间2021年5月22日02时04分13秒(协调世界时:2021年5月21日18时04分13秒),震中位于(98.254 8°E,34.586 4°N),震源深度为10 km。震后16小时内在震中100 km范围内共发生M>4.3的余震10次。这是自2008年汶川大地震以来我国境内发生的震级最高的一次事件,也是自2017年九寨沟MS7.0地震后时隔1 382天发生的又一次震级大于M7.0的事件。美国地质调查局(USGS,2021)和全球矩心矩张量组(GCMT,2021)在震后数小时发布了本次事件的矩心矩张量解(表1)和最佳双力偶解(表2)。
表 1 GCMT,USGS与本研究所得青海玛多MW7.5地震的矩心矩张量解Table 1. The centroid moment tensor solutions of the MW7.5 Maduo,Qinghai,earthquake from GCMT,USGS and this study机构 矩张量/(1020 N·m) 矩心参数 Mrr Mtt Mpp Mrt Mrp Mtp τc/s 北纬/° 东经/° 深度/km GCMT (2021) −0.220 0.840 −0.620 0.186 −0.224 1.510 15.4 34.65 98.46 12 USGS (2021) −0.598 0.648 −0.050 −0.589 0.402 0.898 12.9 34.59 98.25 23.5 本文 −0.160 0.804 −0.643 −0.058 −0.063 1.745 23.0 34.59 98.55 18 表 2 GCMT,USGS与本研究所得青海玛多MW7.5地震的最佳双力偶解Table 2. The best double-couple solutions of the MW7.5 Maduo,Qinghai, earthquake from GCMT,USGS and this study机构 标量地震矩
/(1020 N·m)双力偶成分
占比节面I 节面II 走向/° 倾角/° 滑动角/° 走向/° 倾角/° 滑动角/° GCMT (2021) 1.710 95% 282 83 −9 13 81 −173 USGS (2021) 1.306 99% 92 67 −40 200 53 −151 本文 1.896 96% 281 88 1 191 89 178 本研究收集震中距处于30°—90°范围内的全球地震台网(Global Seismograph Network,缩写为GSN)和宽频带数字台网联盟(International Federation of Digital Seismograph Network,缩写为FDSN)共435道长周期多分量数据作为初始观测资料,经多次迭代筛选,最终选取震中距处于31.58°— 89.51°范围内的77道数据作为反演资料,利用AK135模型计算相应的格林函数(Wang,1999)。根据震级与半持续时间特征选用频带范围为0.006 7—0.033 0 Hz的长周期P波。为满足速报需求,这里采用我们惯用的网格搜索方法(张喆等,2020;张喆,许力生,2021)在震后短时间内实现了快速反演,得到了相关参数,如图1所示。
图 1 矩心矩张量解反演过程(a) 矩心时间τc的搜索;(b) 矩心水平空间的搜索,黄色圆圈表示矩心水平坐标;(c) 矩心深度hc的搜索;(d) 矩心相对震中位置,红色沙滩球表示矩心矩张量解,红色星形表示震中Figure 1. Inversion process of the centroid moment tensor(a) Search for centroid time τc;(b) Search for the horizontal location of the centroid;(c) Search for centroid depth hc;(d) The centroid location (beach-ball) with respect to the instrumental epicenter (red hexagon)根据矩心矩张量反演结果(图2),最优矩心时间为23 s,矩心的水平坐标为(34.59°N,98.55°E),矩心深度为18 km,双力偶成分占比为96%,最佳双力偶解共轭节面分别为: 节面 Ⅰ :走向281°,倾角88°,滑动角1°;节面 Ⅱ :走向191°,倾角89°,滑动角178°,标量地震矩为1.896×1020 N·m,对应的矩震级约MW7.5,观测数据与合成数据之间的相关度为0.88 (图3),二次误差为5.973×10−8。
对比可见:本研究结果与USGS给出的震源机制解、矩心位置差异较大(表1,图4),USGS给出的矩心位置与预设震中(Preliminary Determination Epicenter,缩写为PDE)重合,而本研究给出的矩心位置处于震中东侧,该结果与GCMT发布的震源机制解非常接近,但矩心位置位于GCMT标定的矩心位置东南约11 km处(图4)。另外,矩心深度明显不同,本研究的结果(18 km)介于USGS的结果(23.5 km)与GCMT的结果(12 km)之间,经过修改模型(如:CRUST1.0模型)并多次重复试验仍未消除这种差异,造成这种深度不确定性的原因是多方面的,除因多数矩心矩张量反演所用的频带较低导致垂直分辨率较弱以外,青藏高原本身地下结构与反演所用的AK135模型(或CRUST1.0模型)存在偏差也会影响矩心深度的定位。本研究反演得到的标量地震矩略高于GCMT和USGS的结果,矩心时间(23 s)也明显滞后(表1)。根据余震展布的总体趋势估计断层面走向约为284°,这与本研究反演得到的281°的节面非常吻合,表明这是发生在走向为281°且近乎直立的断层面上的一次走滑事件。
附录: 本文结果与USGS于2021年5月25日17:53:33 (UTC)更新反演结果的对比
1 GCMT,USGS与本研究所得青海玛多MW7.5地震矩心矩张量解1. The centroid moment tensor solutions of the MW7.5 Maduo,Qinghai,earthquake from GCMT,USGS and this study机构 矩张量/(1020 N·m) 矩心参数 Mrr Mtt Mpp Mrt Mrp Mtp τc/s 北纬/° 东经/° 深度/km GCMT (2021) −0.220 0.840 −0.620 0.186 −0.224 1.510 15.4 34.65 98.46 12 USGS (2021)(W震相) −0.598 0.648 −0.050 −0.589 0.402 0.898 12.9 34.59 98.25 23.5 USGS (2021)(矩心解) −0.454 0.963 −0.509 −1.252 0.718 1.618 15.79 34.81 98.25 26 本文 −0.160 0.804 −0.643 −0.058 −0.063 1.745 23.0 34.59 98.55 18 2 GCMT,USGS与本研究所得青海玛多MW7.5地震最佳双力偶解2. The best double-couple solutions of the MW7.5 Maduo,Qinghai,earthquake from GCMT,USGS and this study机构 MW 标量地震矩
/(1020 N·m)双力偶
成分占比节面I 节面II 走向
/°倾角
/°滑动角
/°走向
/°倾角
/°滑动角
/°GCMT (2021) 7.42 1.710 95% 282 83 −9 13 81 −173 USGS (2021)(W震相) 7.34 1.306 99% 92 67 −40 200 53 −151 USGS (2021)(矩心解) 7.51 2.323 82% 99 79 −38 197 53 −166 本文 7.45 1.896 96% 281 88 1 191 89 178 -
图 9 不同输入地震动下补充模型1、2与分析模型2场地相关加速度反应谱
(a) 输入PGA=25 cm/s2;(b) 输入PGA=50 cm/s2;(c) 输入PGA=100 cm/s2
Figure 9. The site-related acceleration response spectra of supplementary model 1,2 and analysis model 2 under different input ground motions
(a) Input PGA=25 cm/s2;(b) Input PGA=50 cm/s2;(c) Input PGA=100 cm/s2
图 8 弹簧−质量单自由度体系分析示意图
图中h,v和ρ分别表示土层厚度、剪切波速、密度;下标su,s,sd分别表示上覆土层、软弱夹层、下伏土层
Figure 8. Schematic diagram of spring mass single degree of freedom system analysis
In the figure,h,v and ρ respectively represent soil layer thickness,shear wave velocity, and density;subscriptsu,s and sd represent the overlying soil layer,weak interlayer,and underlying soil layer respectively
图 10 不同输入地震动下含一层 (a) 和含两层 (b) 淤泥的各分析模型场地反应谱特征周期随软弱土层厚度及埋深的变化关系
Figure 10. Variation of the characteristic period of the site response spectrum with the thickness and burial depth of the weak soil layer for the analysis models with one-layer (a) and two-layer (b) silt under different input ground motions
表 1 分析模型1和模型7的剖面和力学特性参数
Table 1 Profile and mechanical characteristic parameters of Analysis model 1
模型 土层
序号岩土名称 土类号 层底深度
/m层厚
/m剪切波速
/(m·s−1)密度
/(kg·m−3)模型1 1 淤泥 1 5.0 5.0 112 1580 2 粉质黏土 3 9.5 4.5 160 1860 3 粉质黏土 4 13.0 3.5 165 1870 4 粉质黏土 5 17.0 4.0 199 1880 5 粉质黏土 6 21.0 4.0 212 1960 6 粉质黏土 7 24.0 3.0 242 1980 7 圆砾 8 27.0 3.0 258 2200 8 全风化安山岩 8 30.0 3.0 393 2250 9 计算基底 9 516 2650 模型7 1 淤泥 1 5.0 5.0 112 1580 2 淤泥 2 10.0 5.0 112 1660 3 粉质黏土 3 14.5 4.5 160 1860 4 粉质黏土 4 18.0 3.5 165 1870 5 粉质黏土 5 22.0 4.0 199 1880 6 粉质黏土 6 26.0 4.0 212 1960 7 粉质黏土 7 29.0 3.0 242 1980 8 圆砾 8 32.0 3.0 258 2200 9 全风化安山岩 8 35.0 3.0 393 2250 10 计算基底 9 516 2650 表 2 各土层不同剪应变水平下的动力剪切非线性参数
Table 2 Nonlinear parameters of dynamic shear of all soils under different shear strain levels
土类号 土层名称 参数 剪应变/(10−4) 0.05 0.1 0.5 1 5 10 50 100 1 淤泥 模量比G/Gmax 0.990 2 0.9808 60.910 5 0.835 8 0.504 5 0.337 4 0.092 3 0.048 3 阻尼比ζ 0.017 3 0.024 4 0.052 5 0.071 1 0.123 6 0.142 9 0.167 2 0.171 2 2 淤泥 模量比G/Gmax 0.991 3 0.982 7 0.918 9 0.850 0 0.531 3 0.361 7 0.101 8 0.053 6 阻尼比ζ 0.008 8 0.013 5 0.035 6 0.052 5 0.107 3 0.130 3 0.161 5 0.166 9 3 粉质黏土 模量比G/Gmax 0.991 8 0.983 8 0.924 1 0.858 8 0.548 9 0.378 3 0.108 5 0.057 3 阻尼比ζ 0.013 8 0.019 9 0.045 9 0.064 1 0.120 1 0.142 8 0.173 5 0.178 8 4 粉质黏土 模量比G/Gmax 0.992 5 0.985 1 0.929 6 0.868 4 0.568 9 0.397 5 0.116 6 0.061 9 阻尼比ζ 0.012 3 0.017 6 0.040 2 0.056 1 0.105 3 0.125 8 0.154 2 0.159 2 5 粉质黏土 模量比G/Gmax 0.993 9 0.987 8 0.941 9 0.890 3 0.618 7 0.447 9 0.139 6 0.075 0 阻尼比ζ 0.015 7 0.021 8 0.046 1 0.062 6 0.113 6 0.135 6 0.167 7 0.173 6 6 粉质黏土 模量比G/Gmax 0.994 3 0.988 7 0.946 0 0.897 5 0.636 5 0.466 8 0.149 0 0.080 5 阻尼比ζ 0.018 1 0.024 9 0.051 2 0.068 8 0.123 4 0.147 3 0.182 7 0.189 4 7 粉质黏土 模量比G/Gmax 0.995 0 0.990 1 0.952 4 0.909 2 0.666 9 0.500 3 0.166 8 0.091 0 阻尼比ζ 0.010 6 0.015 2 0.034 2 0.047 8 0.093 6 0.115 4 0.150 4 0.157 0 8 圆砾及卵石 模量比G/Gmax 0.990 0.970 0.900 0.850 0.700 0.550 0.320 0.200 阻尼比ζ 0.004 0.006 0.019 0.030 0.075 0.090 0.110 0.120 9 基岩 模量比G/Gmax 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 阻尼比ζ 0.004 0.008 0.010 0.015 0.021 0.030 0.036 0.046 表 3 各分析模型地表峰值加速度和地震反应动力放大系数
Table 3 The peak acceleration and dynamic amplification coefficient for surface seismic response of each analysis model
模型 输入不同峰值加速度的地表水平向峰值加速度/(cm·s−2) 模型 输入不同峰值加速度的地表水平向地震反应动力放大系数 PGA=25 cm/s2 PGA=50 cm/s2 PGA=100 cm/s2 PGA=25 cm/s2 PGA=50 cm/s2 PGA=100 cm/s2 模型1 53.1 97.1 193.2 模型1 2.124 1.942 1.932 模型2 43.8 86.5 152.3 模型2 1.752 1.73 1.523 模型3 41.2 72.4 118.7 模型3 1.648 1.448 1.187 模型4 38.7 58.2 109.9 模型4 1.548 1.164 1.099 模型5 36.4 52.6 100.6 模型5 1.456 1.052 1.006 模型6 30.6 45 87.4 模型6 1.224 0.900 0.874 模型7 48.9 96 174.2 模型7 1.956 1.92 1.742 模型8 38.7 62.6 110.1 模型8 1.548 1.252 1.101 模型9 33.7 55.2 102.8 模型9 1.348 1.104 1.028 模型10 31.1 53.9 83.9 模型10 1.244 1.078 0.839 模型11 30.4 48.2 69.4 模型11 1.216 0.964 0.694 模型12 29.6 46.4 64.6 模型12 1.184 0.928 0.646 表 4 分析模型的场地参数及场地类别
Table 4 Site parameters and categories of analysis models
分析
模型覆盖层
厚度/m等效剪切
波速/m·s−1场地
类别分析
模型覆盖层
厚度/m等效剪切
波速/m·s−1场地
类别模型1 30 156.0 Ⅱ 模型7 35 134.5 Ⅲ 模型2 30 156.0 Ⅱ 模型8 35 134.5 Ⅲ 模型3 30 156.0 Ⅱ 模型9 35 134.5 Ⅲ 模型4 30 156.0 Ⅱ 模型10 35 142.0 Ⅲ 模型5 30 161.3 Ⅱ 模型11 35 161.3 Ⅱ 模型6 30 182.4 Ⅱ 模型12 35 182.4 Ⅱ 表 5 各分析模型场地规准反应谱特征周期Tg
Table 5 The characteristic periodic values of site standard response spectrum of each analysis model
模型 输入不同峰值加速度各模型的反应谱特征周期 模型 输入不同峰值加速度各模型的反应谱特征周期 PGA=25 cm/s2 PGA=50 cm/s2 PGA=100 cm/s2 PGA=25 cm/s PGA=50 cm/s2 PGA=100 cm/s2 模型1 0.5 0.55 0.6 模型7 0.7 0.75 0.95 模型2 0.6 0.65 0.8 模型8 0.9 0.95 1.2 模型3 0.7 0.75 0.85 模型9 1 1.05 1.35 模型4 0.75 0.8 1.05 模型10 1.1 1.2 1.45 模型5 0.8 0.9 1.1 模型11 1.15 1.3 1.5 模型6 0.85 0.95 1.2 模型12 1.25 1.35 1.65 表 6 输入不同地震动水平下模型1—6的反应谱特征周期Tg
Table 6 Characteristic periods Tg of model 1−6 under different input ground motion
分析模型 不同地震动输入水平下的反应谱特征周期 PGA=25 cm/s2 PGA=50 cm/s2 PGA=100 cm/s2 PGA=150 cm/s2 PGA=200 cm/s2 PGA=300 cm/s2 模型1 0.50 0.55 0.60 0.65 0.70 0.75 模型2 0.60 0.65 0.70 0.75 0.80 0.90 模型3 0.70 0.75 0.80 0.85 0.90 0.95 模型4 0.75 0.80 0.85 0.90 0.95 1.00 模型5 0.80 0.85 0.90 0.95 1.00 1.05 模型6 0.85 0.90 0.95 1.00 1.05 1.20 注:输入峰值加速度25 cm/s2的各模型特征周期来自于表5 表 7 原分析模型剖面和力学特性参数
Table 7 The original analysis model
序号 土层名称 土类号 层底深度
/m层厚
/m剪切波速
/(m·s−1)密度
/(kg·m−3)1 粉质黏土 3 4.5 4.5 160 1860 2 淤泥 1 9.5 5.0 112 1580 3 粉质黏土 4 13.0 3.5 165 1870 4 粉质黏土 5 17.0 4.0 199 1880 5 粉质黏土 6 21.0 4.0 212 1960 6 粉质黏土 7 24.0 3.0 242 1980 7 圆砾 8 27.0 3.0 258 2200 8 全风化安山岩 8 30.0 3.0 393 2250 9 计算基底 9 516 2650 表 8 补充分析模型1
Table 8 The supplementary analysis model 1
土层序号 土层名称 土类号 层底深度
/m层厚
/m剪切波速
/(m·s−1)密度
/(kg·m−3)1 粉质黏土 3 4.5 4.5 160 1860 2 粉质黏土 3 9.5 5.0 160 1860 3 粉质黏土 4 13.0 3.5 165 1870 4 粉质黏土 5 17.0 4.0 199 1880 5 粉质黏土 6 21.0 4.0 212 1960 6 粉质黏土 7 24.0 3.0 242 1980 7 圆砾 8 27.0 3.0 258 2200 8 全风化安山岩 8 30.0 3.0 393 2250 9 计算基底 9 516 2650 表 9 补充分析模型2
Table 9 The supplementary analysis model 2
土层序号 土层名称 土类号 层底深度
/m层厚
/m剪切波速
/(m·s−1)密度
/(kg·m−3)1 粉质黏土 3 4.5 4.5 160 1860 2 粉质黏土 4 9.5 5.0 165 1870 3 粉质黏土 4 13.0 3.5 165 1870 4 粉质黏土 5 17.0 4.0 199 1880 5 粉质黏土 6 21.0 4.0 212 1960 6 粉质黏土 7 24.0 3.0 242 1980 7 圆砾 8 27.0 3.0 258 2200 8 全风化安山岩 8 30.0 3.0 393 2250 9 计算基底 9 516 2650 表 10 不同输入地震动水平下场地反应谱特征周期拟合结果
Table 10 Fitting results of characteristic period of site response spectrum under different input ground motions
输入地震动/(cm·s−2) 模型1—6 输入地震动/(cm·s−2) 模型7—12 a b R2 a b R2 25 0.838 −0.066 0.999 80 25 0.972 −0.297 0.999 12 50 0.941 −0.166 0.999 05 50 1.050 −0.410 0.999 64 100 1.231 −0.270 0.999 72 100 1.246 −0.223 0.999 38 表 11 不同输入水平下模型1−模型6的反应谱特征周期拟合结果
Table 11 Fitting results of characteristic periods of model 1−6 at different input ground motions
分析模型 α β R2 模型1 0.501 5 0.000 9 0.962 4 模型2 0.588 4 0.001 0 0.993 7 模型3 0.701 5 0.000 9 0.962 4 模型4 0.751 5 0.000 9 0.962 4 模型5 0.801 5 0.000 9 0.962 4 模型6 0.825 4 0.001 2 0.995 3 -
薄景山,李琪,齐文浩,王玉婷,赵鑫龙,张毅毅. 2021. 场地条件对地震动和震害影响的研究进展与建议[J]. 吉林大学学报(地球科学版),51(5):1295–1305. Bo J S,Li Q,Qi W H,Wang Y T,Zhao X L,Zhang Y Y. 2021. Research progress and discussion of site condition effect on ground motion and earthquake damage[J]. Journal of Jilin University (Earth Science Edition),51(5):1295–1305 (in Chinese).
曹志翔. 2006. 土层性质对SH波场地放大效应的影响[J]. 沈阳理工大学学报,25(3):88–91. doi: 10.3969/j.issn.1003-1251.2006.03.024 Cao Z X. 2006. Influence of properties of soil layer on site amplification effect for SH waves[J]. Transactions of Shenyang Ligong University,25(3):88–91 (in Chinese).
迟明杰,李小军,陈学良,马笙杰. 2021. 场地划分中存在的问题及建议[J]. 地震学报,43(6):787–803. doi: 10.11939/jass.20200177 Chi M J,Li X J,Chen X L,Ma S J. 2021. Problems and suggestions on site classification[J]. Acta Seismologica Sinica,43(6):787–803 (in Chinese).
高秋英,王丽丽,王荣忠. 2021. 最小二乘法曲线拟合及优化算法研究[J]. 工业控制计算机,34(11):100–101. doi: 10.3969/j.issn.1001-182X.2021.11.040 Gao Q Y,Wang L L,Wang R Z. 2021. Research on least square curve fitting and optimization algorithm[J]. Industrial Control Computer,34(11):100–101 (in Chinese).
高武平,高孟潭,陈学良. 2012. 天津滨海软土场地的大震远场作用[J]. 地震学报,34(2):235–243. doi: 10.3969/j.issn.0253-3782.2012.02.010 Gao W P,Gao M T,Chen X L. 2012. Far-field strong earthquake effect in Tianjin coastal soft site[J]. Acta Seismologica Sinica,34(2):235–243 (in Chinese).
李美娟,夏雄. 2017. 软土夹层厚度对场地地震反应特征影响研究[J]. 工程抗震与加固改造,39(5):149–153. Li M J,Xia X. 2017. Research on the effect of soft clay interlayer thickness on ground seismic response characteristics[J]. Earthquake Resistant Engineering and Retrofitting,39(5):149–153 (in Chinese).
李平,薄景山,肖瑞杰,张宇东. 2018. 地震动河谷场地效应研究[J]. 震灾防御技术,13(2):331–341. doi: 10.11899/zzfy20180208 Li P,Bo J S,Xiao R J,Zhang Y D. 2018. The study of effect by the valley site on ground motion[J]. Technology for Earthquake Disaster Prevention,13(2):331–341 (in Chinese).
李平,薄景山,齐文浩,刘德东,肖瑞杰. 2012. 土层结构对汉源烈度异常的影响[J]. 地震学报,34(6):851–857. doi: 10.3969/j.issn.0253-3782.2012.06.011 Li P,Bo J S,Qi W H,Liu D D,Xiao R J. 2012. Effects of soil structure on abnormal intensity in Hanyuan old town[J]. Acta Seismologica Sinica,34(6):851–857 (in Chinese).
李伟华,赵成刚. 2015. 地下水位变化对地震地面运动的影响[J]. 地震学报,37(3):482–492. doi: 10.11939/jass.2015.03.011 Li W H,Zhao C G. 2015. Effects of the groundwater level variation on earthquake ground motions[J]. Acta Seismologica Sinica,37(3):482–492 (in Chinese).
刘帅,潘超,周志光. 2018. 对人造地震动反应谱求解及拟合的几个相关问题探讨[J]. 地震学报,40(4):519–530. Liu S,Pan C,Zhou Z G. 2018. Discussions on the response spectral solution and fitting of spectrum-compatible artificial seismic waves[J]. Acta Seismologica Sinica,40(4):519–530 (in Chinese).
荣棉水,李小军,卢滔,黄雅虹,吕悦军. 2013. 对含厚软表层海域工程场地设计地震动参数确定的一点建议[J]. 地震学报,35(2):262–271. doi: 10.3969/j.issn.0253-3782.2013.02.012 Rong M S,Li X J,Lu T,Huang Y H,Lü Y J. 2013. Suggestion on determination of design ground motion parameters for offshore engineering sites with deep soft surface layers[J]. Acta Seismologica Sinica,35(2):262–271 (in Chinese).
田守岐. 2013. 软弱土层对场地地震反应的影响分析[J]. 中国科技信息,(16):39. doi: 10.3969/j.issn.1001-8972.2013.16.006 Tian S Q. 2013. Analysis of influence of soft soil layer on seismic response of site[J]. China Science and Technology Information,(16):39 (in Chinese).
王海云. 2011. 渭河盆地中土层场地对地震动的放大作用[J]. 地球物理学报,54(1):137–150. doi: 10.3969/j.issn.0001-5733.2011.01.015 Wang H Y. 2011. Amplification effects of soil sites on ground motion in the Weihe basin[J]. Chinese Journal of Geophysics,54(1):137–150 (in Chinese).
王竞,王世元,潘勇杰,宴金旭. 2022. 基于理想场地模型的不同位置软夹层对场地地震反应的影响研究[J]. 防灾科技学院学报,24(1):33–41. doi: 10.3969/j.issn.1673-8047.2022.01.004 Wang J,Wang S Y,Pan Y J,Yan J X. 2022. Influence of soft interlayer at different depth on seismic site response based on ideal site model[J]. Journal of Institute of Disaster Prevention,24(1):33–41 (in Chinese).
王伟,刘必灯,刘培玄,王振宇,刘欣. 2016. 基于台阵记录的局部场地条件地震动效应分析[J]. 地震学报,38(2):307–317. doi: 10.11939/jass.2016.02.014 Wang W,Liu B D,Liu P X,Wang Z Y,Liu X. 2016. Analyses on the effect of the local site conditions on the strong motion based on the array records[J]. Acta Seismologica Sinica,38(2):307–317 (in Chinese).
王亚红,孙点峰,魏东星. 2019. 软夹层埋深对地表地震动参数的影响[J]. 甘肃科技,35(9):65–67. doi: 10.3969/j.issn.1000-0952.2019.09.024 Wang Y H,Sun D F,Wei D X. 2019. Influence of buried depth of soft interlayer on ground motion parameters[J]. Gansu Science and Technology,35(9):65–67 (in Chinese).
徐国栋,史培军,周锡元. 2010. 基于目标功率谱和包线的地震动合成[J]. 地震工程与工程振动,30(2):1–9. Xu G D,Shi P J,Zhou X Y. 2010. Artificial ground motion based on target power spectra and envelope[J]. Journal of Earthquake Engineering and Engineering Vibration,30(2):1–9 (in Chinese).
许建聪,简文彬,尚岳全. 2005. 深厚软土地层地震破坏的作用机理研究[J]. 岩石力学与工程学报,24(2):313–320. doi: 10.3321/j.issn:1000-6915.2005.02.022 Xu J C,Jian W B,Shang Y Q. 2005. Study on the seismic failure mechanism of the thick soft soil foundation[J]. Chinese Journal of Rock Mechanics and Engineering,24(2):313–320 (in Chinese).
张海,李克强,尤红兵,周泽辉. 2016. 硬夹层埋深对场地地震动参数的影响[J]. 地震工程学报,38(6):935–941. Zhang H,Li K Q,You H B,Zhou Z H. 2016. Influence of the buried depth of hard interlayer on ground-motion parameters[J]. China Earthquake Engineering Journal,38(6):935–941 (in Chinese).
中国建筑科学研究院. 2016. GB 50011—2010 建筑抗震设计规范[S]. 北京:中国建筑工业出版社:1−249 . China Academy of Building Research. 2016. GB 50011−2010 Code for Seismic Design of Buildings[S]. Beijing:China Architecture & Building Press:1−249 (in Chinese).
周正华,张艳梅,孙平善,杨柏坡. 2003. 断层对震害影响的研究[J]. 自然灾害学报,12(4):20–24. doi: 10.3969/j.issn.1004-4574.2003.04.004 Zhou Z H,Zhang Y M,Sun P S,Yang B P. 2003. Study on effect of fault on seismic damage[J]. Journal of Natural Disasters,12(4):20–24 (in Chinese).
周正华,李玉萍,周游,李小军,陈柳,苏杰,董青,王亚飞. 2019. 硬夹层厚度对场地地震反应的影响[J]. 地震地质,41(5):1254–1265. doi: 10.3969/j.issn.0253-4967.2019.05.012 Zhou Z H,Li Y P,Zhou Y,Li X J,Chen L,Su J,Dong Q,Wang Y F. 2019. The effect of hard interlayer thickness on the site seismic response[J]. Seismology and Geology,41(5):1254–1265 (in Chinese).
周正华,陈柳,周游,李小军,苏杰,董青,钟康明,李玉萍. 2020. 地表硬盖层厚度对场地地震反应的影响分析[J]. 应用基础与工程科学学报,28(2):321–330. Zhou Z H,Chen L,Zhou Y,Li X J,Su J,Dong Q,Zhong K M,Li Y P. 2020. The effect of surface hard cover on the site earthquake response[J]. Journal of Basic Science and Engineering,28(2):321–330 (in Chinese).
闫孔明,刘飞成,朱崇浩,王志佳,张建经. 2017. 地震作用下含倾斜软弱夹层斜坡场地的动力响应特性研究[J]. 岩石力学与工程学报,36(11):2686–2698. Yan K M,Liu F C,Zhu C H,Wang Z J,Zhang J J. 2017. Dynamic responses of slopes with intercalated soft layers under seismic excitations[J]. Chinese Journal of Rock Mechanics and Engineering,36(11):2686–2698 (in Chinese).
Su J,Zhou Z H,Zhou Y,Li X J,Dong Q,Wang Y F,Li Y P,Chen L. 2020. The characteristics of seismic response on hard interlayer sites[J]. Adv Civil Eng:1425969.
Thráinsson H,Kiremidjian A S. 2002. Simulation of digital earthquake accelerograms using the inverse discrete Fourier transform[J]. Earthq Eng Struct Dyn,31(12):2023–2048. doi: 10.1002/eqe.198
Yao E L,Li W C,Miao Y,Ye L,Yang Z W. 2022. Study on the influence of a soft soil interlayer on spatially varying ground motions[J]. Appl Sci,12(3):1322. doi: 10.3390/app12031322
-
期刊类型引用(28)
1. 沈千贺,万永革. 采用2021年青海玛多地震序列震源机制节面聚类确定发震断裂几何形态. 地震工程学报. 2024(01): 241-250 . 百度学术
2. 李佺洪,万永革. 采用模糊聚类算法确定2021年玛多地震序列的断层结构. 地球科学. 2024(09): 3363-3376 . 百度学术
3. 郑雪刚,马学军,沙木哈尔·叶尔肯,赵鹏毕. 利用远震深度震相pP测定玛多M_S7.4地震震源深度. 内陆地震. 2024(04): 307-314 . 百度学术
4. 王博,崔凤珍,刘静,周永胜,徐胜,邵延秀. 玛多M_S7.4地震断层土壤气特征与地表破裂的相关性. 地震地质. 2023(03): 772-794 . 百度学术
5. 王龙,李小军,杨理臣,刘爱文,王郁,吴清,王宁,陈鲲,李祥秀. 青海玛多7.4级地震发震断裂特性及工程震害成因分析研究. 应用基础与工程科学学报. 2023(05): 1219-1228 . 百度学术
6. 张志朋,李君,冯兵,王文青,柴旭超. 2021年青海玛多M_S7.4地震序列精定位与震源机制研究. 地震工程学报. 2022(01): 218-226 . 百度学术
7. 郭慧丽,常利军,鲁来玉,吴萍萍,吕苗苗,丁志峰. 基于深度学习震相拾取和密集台阵数据构建青海玛多M_S7.4地震震源区高分辨率地震目录. 地球物理学报. 2022(05): 1628-1643 . 百度学术
8. 曹学来,常利军,鲁来玉,吴萍萍,郭慧丽,吕苗苗,丁志峰. 2021年青海玛多M_S7.4地震震源区横波分裂变化特征. 地球物理学报. 2022(05): 1644-1659 . 百度学术
9. 杨彦明,刘兴盛,任静,戴勇,张云,赵文舟. 基于H-C方法的地震断层面快速识别方法研究——以2021-05-22青海玛多M_S7.4地震为例. 大地测量与地球动力学. 2022(06): 551-558 . 百度学术
10. 李忠武,陈桂华. 基于无人机倾斜航空摄影三维点云测量同震倾滑变形研究——以2021年玛多M_S7.4地震地表破裂为例. 震灾防御技术. 2022(01): 46-55 . 百度学术
11. 苏维刚,刘磊,孙玺皓. 玛多7.4级地震和门源6.9级地震前佐署地下流体异常特征分析. 地震工程学报. 2022(03): 700-706+712 . 百度学术
12. 吴萍萍,常利军,鲁来玉,郭慧丽,吕苗苗,丁志峰. 2021年青海玛多M_S7.4地震震源区上地壳三维精细速度结构. 地球物理学报. 2022(06): 2006-2021 . 百度学术
13. 吕苗苗,常利军,鲁来玉,刘嘉栋,吴萍萍,郭慧丽,曹学来,丁志峰. 2021年青海玛多M_S7.4地震余震序列震源机制解及其发震构造特征. 地球物理学报. 2022(06): 1991-2005 . 百度学术
14. 江颖,刘子维,张晓彤,张丽娜,韦进. 2021年青海玛多Mw 7.4地震前后b值的变化特征研究. 武汉大学学报(信息科学版). 2022(06): 907-915 . 百度学术
15. 陈桂华,李忠武,徐锡伟,孙浩越,哈广浩,郭鹏,苏鹏,袁兆德,李涛. 2021年青海玛多M7.4地震发震断裂的典型同震地表变形与晚第四纪断错累积及其区域构造意义. 地球物理学报. 2022(08): 2984-3005 . 百度学术
16. 解滔,薛艳,卢军. 中国M_S≥7.0地震前视电阻率变化及其可能原因. 地球物理学报. 2022(08): 3064-3077 . 百度学术
17. 石磊,陈涛,李永华. 利用重力异常分析2021年青海玛多M_S7.4地震发震断层与结构特征. 地球物理学报. 2022(10): 3858-3870 . 百度学术
18. 孔韩东,刘瑞丰,边银菊,李赞,王子博,胡岩松. 地震辐射能量测定方法研究及其在汶川8.0级地震中的应用. 地球物理学报. 2022(12): 4775-4788 . 百度学术
19. 杜航,杨云,郑江蓉,王俊,张扬,宫杰. 青海玛多M_S7.4地震前b值时空变化特征. 震灾防御技术. 2022(04): 691-700 . 百度学术
20. 杨君妍,孙文科,洪顺英,苑争一,李瑜,陈伟,孟国杰. 2021年青海玛多7.4级地震的同震变形分析. 地球物理学报. 2021(08): 2671-2683 . 百度学术
21. 徐志国,梁姗姗,张广伟,梁建宏,邹立晔,李旭茂,陈彦含. 2021年5月22日青海玛多M_S7.4地震发震构造分析. 地球物理学报. 2021(08): 2657-2670 . 百度学术
22. 尹欣欣,王维欢,蔡润,邓津,马丽. 2021年青海玛多M_S7.4地震精定位和发震构造初探. 地震工程学报. 2021(04): 834-839 . 百度学术
23. 王维欢,王文才,尹欣欣,陈继锋,陈晓龙. 2021年青海玛多7.4级地震强震动记录及特征分析. 地震工程学报. 2021(04): 883-889+895 . 百度学术
24. 苏维刚,刘磊,袁伏全,赵玉红,孙玺皓. 2021年玛多M_S7.4地震前玉树地震台井水温异常特征. 地震学报. 2021(03): 392-396 . 本站查看
25. 韦进,郝洪涛,韩宇飞,胡敏章,江颖,刘子维. 基于连续重力台观测的玛多M_S7.4地震的同震重力变化特征. 地震地质. 2021(04): 984-998 . 百度学术
26. 宋向辉,王帅军,潘素珍,宋佳佳. 2021年玛多M_S7.4地震的深部构造背景. 地震地质. 2021(04): 757-770 . 百度学术
27. 曹泽林,陶夏新,陶正如. 2021年玛多7.4级地震近断裂三分量地震动场合成. 世界地震工程. 2021(04): 1-11 . 百度学术
28. 陈建兵,李金平,熊治华,李佳文,张会建. 玛多震害调研及其对寒区桥梁设计的影响. 水利与建筑工程学报. 2021(05): 99-104 . 百度学术
其他类型引用(7)