含软弱土层场地地震动加速度反应谱特征周期调整方法

陈珍, 郝冰, 李远东, 周正华, 卞祝, 韩轶

陈珍,郝冰,李远东,周正华,卞祝,韩轶. 2024. 含软弱土层场地地震动加速度反应谱特征周期调整方法. 地震学报,46(4):734−750. DOI: 10.11939/jass.20220213
引用本文: 陈珍,郝冰,李远东,周正华,卞祝,韩轶. 2024. 含软弱土层场地地震动加速度反应谱特征周期调整方法. 地震学报,46(4):734−750. DOI: 10.11939/jass.20220213
Chen Z,Hao B,Li Y D,Zhou Z H,Bian Z,Han Y. 2024. An adjustment method for the characteristic period of site acceleration response spectra with soft layers. Acta Seismologica Sinica46(4):734−750. DOI: 10.11939/jass.20220213
Citation: Chen Z,Hao B,Li Y D,Zhou Z H,Bian Z,Han Y. 2024. An adjustment method for the characteristic period of site acceleration response spectra with soft layers. Acta Seismologica Sinica46(4):734−750. DOI: 10.11939/jass.20220213

含软弱土层场地地震动加速度反应谱特征周期调整方法

基金项目: 国家自然科学基金(U2039208,U1839202)资助
详细信息
    作者简介:

    陈珍,在读硕士研究生,主要从事场地效应方面研究,e-mail:948259861@qq.com

    通讯作者:

    周正华,博士,研究员,主要从事岩土工程、工程地震等方面的研究,e-mail:bjsmoc@163.com

  • 中图分类号: P315.4

An adjustment method for the characteristic period of site acceleration response spectra with soft layers

  • 摘要:

    在分析场地条件对地震震害影响及国内外关于软弱土层对场地地震反应影响的基础上,采用实际含淤泥质土层场地资料,建立了12个含软弱土层的场地模型,在不同输入地震动水平下进行了场地地震反应一维等效线性化分析,讨论了软弱土层厚度和埋深对场地地震反应的影响。结果表明:随着软弱土层的埋深或厚度的增加,反应谱特征周期逐渐增大;输入地震动峰值增加,反应谱特征周期亦增大。继而依据软弱土层厚度、埋深及输入地震动强度对场地加速度反应谱特征周期的影响特征,提出了含软弱土层场地地震动加速度反应谱特征周期调整方法。

    Abstract:

    In recent years, the impact of soft soil on the seismic response of soil layers in sites has attracted attention. Some scholars have conducted in-depth analysis from different perspectives, and the research results show that soft soil increases the dominant period and response spectrum characteristic period of the site to a certain extent. As the position of the soft interlayer deepens, the amplification effect of the site decreases, and the dominant period and response spectrum characteristic period of the site increase. Compared with the Code for Seismic Design of BuildingsGB 50011−2010) in China, the characteristic period of the seismic acceleration response spectrum for sites containing weak soil layers after regulation is much larger than the value specified in the code. At present, although there is an analysis of the impact of weak soil layers on site seismic response, there is little research on the adjustment methods of characteristic periods of site response spectra containing weak soil layers.Based on the analysis for the effect of site conditions on earthquake damage and the influence of soft layers on site seismic response at home and abroad, 12 site models are established, by means of drilling data from sites containing soft layers. The one-dimensional equivalent linearization site seismic response analysis is carried out under different input acceleration peak, and the influence of soft layer thickness, buried depth and input peak acceleration on site seismic response is discussed. The results show that under the same input acceleration peak, as the burial depth and thickness of soft layer increase, the characteristic period of the site acceleration response spectra gradually increases and the peak ground acceleration decreases. As the input peak acceleration increases, while the thickness and burial depth of the soft layer remain unchanged, the characteristic period of the site acceleration response spectra and the peak ground acceleration increases. Finally an adjustment method for the characteristic period of site acceleration response spectra with soft layers was proposed.

  • 图  1   输入地震动加速度时程 (a,b,c) 及反应谱 (d)

    Figure  1.   Acceleration time histories of input ground motion (a,b,c) and conresponding response spectrum (d)

    图  2   地表峰值加速度随软弱土层埋深的变化特征

    Figure  2.   Variation characteristics of peak ground acceleration with buried depths of soft soil layers

    图  3   地表峰值加速度动力放大系数随软弱土层埋深的变化特征

    Figure  3.   Variation characteristics of peak acceleration dynamic amplification coefficient with buried depths of soft soil layer

    图  4   不同输入地震动下含一层(a)和含两层(b)淤泥的各分析模型场地相关加速度反应谱

    Figure  4.   Site-related acceleration response spectra of each analysis model with one-layer (a) and two-layers (b) of silt under different input ground motions

    图  5   输入不同地震动下含一层淤泥(a)和含两层淤泥(b)的各计算模型场地相关归一化反应谱

    Figure  5.   Site-related normalized acceleration spectrum of each calculation model with one-layer (a) and two-layers (b) of silt under different input ground motions

    图  6   输入不同峰值加速度时含一层淤泥(a)和含两层淤泥(b)的各分析模型场地加速度反应谱

    Figure  6.   Site acceleration response spectrum of each analysis model with one-layer of silt (a) and two-layers of silt (b) under different input ground motion with peak ground acceleration

    图  9   不同输入地震动下补充模型1、2与分析模型2场地相关加速度反应谱

    (a) 输入PGA=25 cm/s2;(b) 输入PGA=50 cm/s2;(c) 输入PGA=100 cm/s2

    Figure  9.   The site-related acceleration response spectra of supplementary model 1,2 and analysis model 2 under different input ground motions

    (a) Input PGA=25 cm/s2;(b) Input PGA=50 cm/s2;(c) Input PGA=100 cm/s2

    图  7   不同地震动输入水平下各模型的场地相关加速度反应谱

    Figure  7.   Site-related acceleration response spectrum of model 1 under different input ground motion

    图  8   弹簧−质量单自由度体系分析示意图

    图中hvρ分别表示土层厚度、剪切波速、密度;下标su,s,sd分别表示上覆土层、软弱夹层、下伏土层

    Figure  8.   Schematic diagram of spring mass single degree of freedom system analysis

    In the figure,hv and ρ respectively represent soil layer thickness,shear wave velocity, and density;subscriptsu,s and sd represent the overlying soil layer,weak interlayer,and underlying soil layer respectively

    图  10   不同输入地震动下含一层 (a) 和含两层 (b) 淤泥的各分析模型场地反应谱特征周期随软弱土层厚度及埋深的变化关系

    Figure  10.   Variation of the characteristic period of the site response spectrum with the thickness and burial depth of the weak soil layer for the analysis models with one-layer (a) and two-layer (b) silt under different input ground motions

    图  11   不同输入地震动水平下场地反应谱特征周期随软弱土层厚度及埋深的变化

    Figure  11.   Variation of characteristic period of site response spectrum with thickness and buried depth of soft soil layer under different input ground motions

    表  1   分析模型1和模型7的剖面和力学特性参数

    Table  1   Profile and mechanical characteristic parameters of Analysis model 1

    模型 土层
    序号
    岩土名称 土类号 层底深度
    /m
    层厚
    /m
    剪切波速
    /(m·s−1
    密度
    /(kg·m−3
    模型1 1 淤泥 1 5.0 5.0 112 1580
    2 粉质黏土 3 9.5 4.5 160 1860
    3 粉质黏土 4 13.0 3.5 165 1870
    4 粉质黏土 5 17.0 4.0 199 1880
    5 粉质黏土 6 21.0 4.0 212 1960
    6 粉质黏土 7 24.0 3.0 242 1980
    7 圆砾 8 27.0 3.0 258 2200
    8 全风化安山岩 8 30.0 3.0 393 2250
    9 计算基底 9 516 2650
    模型7 1 淤泥 1 5.0 5.0 112 1580
    2 淤泥 2 10.0 5.0 112 1660
    3 粉质黏土 3 14.5 4.5 160 1860
    4 粉质黏土 4 18.0 3.5 165 1870
    5 粉质黏土 5 22.0 4.0 199 1880
    6 粉质黏土 6 26.0 4.0 212 1960
    7 粉质黏土 7 29.0 3.0 242 1980
    8 圆砾 8 32.0 3.0 258 2200
    9 全风化安山岩 8 35.0 3.0 393 2250
    10 计算基底 9 516 2650
    下载: 导出CSV

    表  2   各土层不同剪应变水平下的动力剪切非线性参数

    Table  2   Nonlinear parameters of dynamic shear of all soils under different shear strain levels

    土类号土层名称参数剪应变/(10−4
    0.050.10.5151050100
    1淤泥模量比G/Gmax0.990 20.9808 60.910 50.835 80.504 50.337 40.092 30.048 3
    阻尼比ζ0.017 30.024 40.052 50.071 10.123 60.142 90.167 20.171 2
    2淤泥模量比G/Gmax0.991 30.982 70.918 90.850 00.531 30.361 70.101 80.053 6
    阻尼比ζ0.008 80.013 50.035 60.052 50.107 30.130 30.161 50.166 9
    3粉质黏土模量比G/Gmax0.991 80.983 80.924 10.858 80.548 90.378 30.108 50.057 3
    阻尼比ζ0.013 80.019 90.045 90.064 10.120 10.142 80.173 50.178 8
    4粉质黏土模量比G/Gmax0.992 50.985 10.929 60.868 40.568 90.397 50.116 60.061 9
    阻尼比ζ0.012 30.017 60.040 20.056 10.105 30.125 80.154 20.159 2
    5粉质黏土模量比G/Gmax0.993 90.987 80.941 90.890 30.618 70.447 90.139 60.075 0
    阻尼比ζ0.015 70.021 80.046 10.062 60.113 60.135 60.167 70.173 6
    6粉质黏土模量比G/Gmax0.994 30.988 70.946 00.897 50.636 50.466 80.149 00.080 5
    阻尼比ζ0.018 10.024 90.051 20.068 80.123 40.147 30.182 70.189 4
    7粉质黏土模量比G/Gmax0.995 00.990 10.952 40.909 20.666 90.500 30.166 80.091 0
    阻尼比ζ0.010 60.015 20.034 20.047 80.093 60.115 40.150 40.157 0
    8圆砾及卵石模量比G/Gmax0.9900.9700.9000.8500.7000.5500.3200.200
    阻尼比ζ0.0040.0060.0190.0300.0750.0900.1100.120
    9基岩模量比G/Gmax1.0001.0001.0001.0001.0001.0001.0001.000
    阻尼比ζ0.0040.0080.0100.0150.0210.0300.0360.046
    下载: 导出CSV

    表  3   各分析模型地表峰值加速度和地震反应动力放大系数

    Table  3   The peak acceleration and dynamic amplification coefficient for surface seismic response of each analysis model

    模型
    输入不同峰值加速度的地表水平向峰值加速度/(cm·s−2 模型 输入不同峰值加速度的地表水平向地震反应动力放大系数
    PGA=25 cm/s2 PGA=50 cm/s2 PGA=100 cm/s2 PGA=25 cm/s2 PGA=50 cm/s2 PGA=100 cm/s2
    模型1 53.1 97.1 193.2 模型1 2.124 1.942 1.932
    模型2 43.8 86.5 152.3 模型2 1.752 1.73 1.523
    模型3 41.2 72.4 118.7 模型3 1.648 1.448 1.187
    模型4 38.7 58.2 109.9 模型4 1.548 1.164 1.099
    模型5 36.4 52.6 100.6 模型5 1.456 1.052 1.006
    模型6 30.6 45 87.4 模型6 1.224 0.900 0.874
    模型7 48.9 96 174.2 模型7 1.956 1.92 1.742
    模型8 38.7 62.6 110.1 模型8 1.548 1.252 1.101
    模型9 33.7 55.2 102.8 模型9 1.348 1.104 1.028
    模型10 31.1 53.9 83.9 模型10 1.244 1.078 0.839
    模型11 30.4 48.2 69.4 模型11 1.216 0.964 0.694
    模型12 29.6 46.4 64.6 模型12 1.184 0.928 0.646
    下载: 导出CSV

    表  4   分析模型的场地参数及场地类别

    Table  4   Site parameters and categories of analysis models

    分析
    模型
    覆盖层
    厚度/m
    等效剪切
    波速/m·s−1
    场地
    类别
    分析
    模型
    覆盖层
    厚度/m
    等效剪切
    波速/m·s−1
    场地
    类别
    模型1 30 156.0 模型7 35 134.5
    模型2 30 156.0 模型8 35 134.5
    模型3 30 156.0 模型9 35 134.5
    模型4 30 156.0 模型10 35 142.0
    模型5 30 161.3 模型11 35 161.3
    模型6 30 182.4 模型12 35 182.4
    下载: 导出CSV

    表  5   各分析模型场地规准反应谱特征周期Tg

    Table  5   The characteristic periodic values of site standard response spectrum of each analysis model

    模型 输入不同峰值加速度各模型的反应谱特征周期 模型 输入不同峰值加速度各模型的反应谱特征周期
    PGA=25 cm/s2 PGA=50 cm/s2 PGA=100 cm/s2 PGA=25 cm/s PGA=50 cm/s2 PGA=100 cm/s2
    模型1 0.5 0.55 0.6 模型7 0.7 0.75 0.95
    模型2 0.6 0.65 0.8 模型8 0.9 0.95 1.2
    模型3 0.7 0.75 0.85 模型9 1 1.05 1.35
    模型4 0.75 0.8 1.05 模型10 1.1 1.2 1.45
    模型5 0.8 0.9 1.1 模型11 1.15 1.3 1.5
    模型6 0.85 0.95 1.2 模型12 1.25 1.35 1.65
    下载: 导出CSV

    表  6   输入不同地震动水平下模型1—6的反应谱特征周期Tg

    Table  6   Characteristic periods Tg of model 1−6 under different input ground motion

    分析模型 不同地震动输入水平下的反应谱特征周期
    PGA=25 cm/s2 PGA=50 cm/s2 PGA=100 cm/s2 PGA=150 cm/s2 PGA=200 cm/s2 PGA=300 cm/s2
    模型1 0.50 0.55 0.60 0.65 0.70 0.75
    模型2 0.60 0.65 0.70 0.75 0.80 0.90
    模型3 0.70 0.75 0.80 0.85 0.90 0.95
    模型4 0.75 0.80 0.85 0.90 0.95 1.00
    模型5 0.80 0.85 0.90 0.95 1.00 1.05
    模型6 0.85 0.90 0.95 1.00 1.05 1.20
    注:输入峰值加速度25 cm/s2的各模型特征周期来自于表5
    下载: 导出CSV

    表  7   原分析模型剖面和力学特性参数

    Table  7   The original analysis model

    序号 土层名称 土类号 层底深度
    /m
    层厚
    /m
    剪切波速
    /(m·s−1
    密度
    /(kg·m−3
    1 粉质黏土 3 4.5 4.5 160 1860
    2 淤泥 1 9.5 5.0 112 1580
    3 粉质黏土 4 13.0 3.5 165 1870
    4 粉质黏土 5 17.0 4.0 199 1880
    5 粉质黏土 6 21.0 4.0 212 1960
    6 粉质黏土 7 24.0 3.0 242 1980
    7 圆砾 8 27.0 3.0 258 2200
    8 全风化安山岩 8 30.0 3.0 393 2250
    9 计算基底 9 516 2650
    下载: 导出CSV

    表  8   补充分析模型1

    Table  8   The supplementary analysis model 1

    土层序号 土层名称 土类号 层底深度
    /m
    层厚
    /m
    剪切波速
    /(m·s−1
    密度
    /(kg·m−3
    1 粉质黏土 3 4.5 4.5 160 1860
    2 粉质黏土 3 9.5 5.0 160 1860
    3 粉质黏土 4 13.0 3.5 165 1870
    4 粉质黏土 5 17.0 4.0 199 1880
    5 粉质黏土 6 21.0 4.0 212 1960
    6 粉质黏土 7 24.0 3.0 242 1980
    7 圆砾 8 27.0 3.0 258 2200
    8 全风化安山岩 8 30.0 3.0 393 2250
    9 计算基底 9 516 2650
    下载: 导出CSV

    表  9   补充分析模型2

    Table  9   The supplementary analysis model 2

    土层序号 土层名称 土类号 层底深度
    /m
    层厚
    /m
    剪切波速
    /(m·s−1
    密度
    /(kg·m−3
    1 粉质黏土 3 4.5 4.5 160 1860
    2 粉质黏土 4 9.5 5.0 165 1870
    3 粉质黏土 4 13.0 3.5 165 1870
    4 粉质黏土 5 17.0 4.0 199 1880
    5 粉质黏土 6 21.0 4.0 212 1960
    6 粉质黏土 7 24.0 3.0 242 1980
    7 圆砾 8 27.0 3.0 258 2200
    8 全风化安山岩 8 30.0 3.0 393 2250
    9 计算基底 9 516 2650
    下载: 导出CSV

    表  10   不同输入地震动水平下场地反应谱特征周期拟合结果

    Table  10   Fitting results of characteristic period of site response spectrum under different input ground motions

    输入地震动/(cm·s−2 模型1—6 输入地震动/(cm·s−2 模型7—12
    a b R2 a b R2
    25 0.838 −0.066 0.999 80 25 0.972 −0.297 0.999 12
    50 0.941 −0.166 0.999 05 50 1.050 −0.410 0.999 64
    100 1.231 −0.270 0.999 72 100 1.246 −0.223 0.999 38
    下载: 导出CSV

    表  11   不同输入水平下模型1−模型6的反应谱特征周期拟合结果

    Table  11   Fitting results of characteristic periods of model 1−6 at different input ground motions

    分析模型 α β R2
    模型1 0.501 5 0.000 9 0.962 4
    模型2 0.588 4 0.001 0 0.993 7
    模型3 0.701 5 0.000 9 0.962 4
    模型4 0.751 5 0.000 9 0.962 4
    模型5 0.801 5 0.000 9 0.962 4
    模型6 0.825 4 0.001 2 0.995 3
    下载: 导出CSV
  • 薄景山,李琪,齐文浩,王玉婷,赵鑫龙,张毅毅. 2021. 场地条件对地震动和震害影响的研究进展与建议[J]. 吉林大学学报(地球科学版),51(5):1295–1305.

    Bo J S,Li Q,Qi W H,Wang Y T,Zhao X L,Zhang Y Y. 2021. Research progress and discussion of site condition effect on ground motion and earthquake damage[J]. Journal of Jilin University (Earth Science Edition),51(5):1295–1305 (in Chinese).

    曹志翔. 2006. 土层性质对SH波场地放大效应的影响[J]. 沈阳理工大学学报,25(3):88–91. doi: 10.3969/j.issn.1003-1251.2006.03.024

    Cao Z X. 2006. Influence of properties of soil layer on site amplification effect for SH waves[J]. Transactions of Shenyang Ligong University,25(3):88–91 (in Chinese).

    迟明杰,李小军,陈学良,马笙杰. 2021. 场地划分中存在的问题及建议[J]. 地震学报,43(6):787–803. doi: 10.11939/jass.20200177

    Chi M J,Li X J,Chen X L,Ma S J. 2021. Problems and suggestions on site classification[J]. Acta Seismologica Sinica,43(6):787–803 (in Chinese).

    高秋英,王丽丽,王荣忠. 2021. 最小二乘法曲线拟合及优化算法研究[J]. 工业控制计算机,34(11):100–101. doi: 10.3969/j.issn.1001-182X.2021.11.040

    Gao Q Y,Wang L L,Wang R Z. 2021. Research on least square curve fitting and optimization algorithm[J]. Industrial Control Computer,34(11):100–101 (in Chinese).

    高武平,高孟潭,陈学良. 2012. 天津滨海软土场地的大震远场作用[J]. 地震学报,34(2):235–243. doi: 10.3969/j.issn.0253-3782.2012.02.010

    Gao W P,Gao M T,Chen X L. 2012. Far-field strong earthquake effect in Tianjin coastal soft site[J]. Acta Seismologica Sinica,34(2):235–243 (in Chinese).

    李美娟,夏雄. 2017. 软土夹层厚度对场地地震反应特征影响研究[J]. 工程抗震与加固改造,39(5):149–153.

    Li M J,Xia X. 2017. Research on the effect of soft clay interlayer thickness on ground seismic response characteristics[J]. Earthquake Resistant Engineering and Retrofitting,39(5):149–153 (in Chinese).

    李平,薄景山,肖瑞杰,张宇东. 2018. 地震动河谷场地效应研究[J]. 震灾防御技术,13(2):331–341. doi: 10.11899/zzfy20180208

    Li P,Bo J S,Xiao R J,Zhang Y D. 2018. The study of effect by the valley site on ground motion[J]. Technology for Earthquake Disaster Prevention,13(2):331–341 (in Chinese).

    李平,薄景山,齐文浩,刘德东,肖瑞杰. 2012. 土层结构对汉源烈度异常的影响[J]. 地震学报,34(6):851–857. doi: 10.3969/j.issn.0253-3782.2012.06.011

    Li P,Bo J S,Qi W H,Liu D D,Xiao R J. 2012. Effects of soil structure on abnormal intensity in Hanyuan old town[J]. Acta Seismologica Sinica,34(6):851–857 (in Chinese).

    李伟华,赵成刚. 2015. 地下水位变化对地震地面运动的影响[J]. 地震学报,37(3):482–492. doi: 10.11939/jass.2015.03.011

    Li W H,Zhao C G. 2015. Effects of the groundwater level variation on earthquake ground motions[J]. Acta Seismologica Sinica,37(3):482–492 (in Chinese).

    刘帅,潘超,周志光. 2018. 对人造地震动反应谱求解及拟合的几个相关问题探讨[J]. 地震学报,40(4):519–530.

    Liu S,Pan C,Zhou Z G. 2018. Discussions on the response spectral solution and fitting of spectrum-compatible artificial seismic waves[J]. Acta Seismologica Sinica,40(4):519–530 (in Chinese).

    荣棉水,李小军,卢滔,黄雅虹,吕悦军. 2013. 对含厚软表层海域工程场地设计地震动参数确定的一点建议[J]. 地震学报,35(2):262–271. doi: 10.3969/j.issn.0253-3782.2013.02.012

    Rong M S,Li X J,Lu T,Huang Y H,Lü Y J. 2013. Suggestion on determination of design ground motion parameters for offshore engineering sites with deep soft surface layers[J]. Acta Seismologica Sinica,35(2):262–271 (in Chinese).

    田守岐. 2013. 软弱土层对场地地震反应的影响分析[J]. 中国科技信息,(16):39. doi: 10.3969/j.issn.1001-8972.2013.16.006

    Tian S Q. 2013. Analysis of influence of soft soil layer on seismic response of site[J]. China Science and Technology Information,(16):39 (in Chinese).

    王海云. 2011. 渭河盆地中土层场地对地震动的放大作用[J]. 地球物理学报,54(1):137–150. doi: 10.3969/j.issn.0001-5733.2011.01.015

    Wang H Y. 2011. Amplification effects of soil sites on ground motion in the Weihe basin[J]. Chinese Journal of Geophysics,54(1):137–150 (in Chinese).

    王竞,王世元,潘勇杰,宴金旭. 2022. 基于理想场地模型的不同位置软夹层对场地地震反应的影响研究[J]. 防灾科技学院学报,24(1):33–41. doi: 10.3969/j.issn.1673-8047.2022.01.004

    Wang J,Wang S Y,Pan Y J,Yan J X. 2022. Influence of soft interlayer at different depth on seismic site response based on ideal site model[J]. Journal of Institute of Disaster Prevention,24(1):33–41 (in Chinese).

    王伟,刘必灯,刘培玄,王振宇,刘欣. 2016. 基于台阵记录的局部场地条件地震动效应分析[J]. 地震学报,38(2):307–317. doi: 10.11939/jass.2016.02.014

    Wang W,Liu B D,Liu P X,Wang Z Y,Liu X. 2016. Analyses on the effect of the local site conditions on the strong motion based on the array records[J]. Acta Seismologica Sinica,38(2):307–317 (in Chinese).

    王亚红,孙点峰,魏东星. 2019. 软夹层埋深对地表地震动参数的影响[J]. 甘肃科技,35(9):65–67. doi: 10.3969/j.issn.1000-0952.2019.09.024

    Wang Y H,Sun D F,Wei D X. 2019. Influence of buried depth of soft interlayer on ground motion parameters[J]. Gansu Science and Technology,35(9):65–67 (in Chinese).

    徐国栋,史培军,周锡元. 2010. 基于目标功率谱和包线的地震动合成[J]. 地震工程与工程振动,30(2):1–9.

    Xu G D,Shi P J,Zhou X Y. 2010. Artificial ground motion based on target power spectra and envelope[J]. Journal of Earthquake Engineering and Engineering Vibration,30(2):1–9 (in Chinese).

    许建聪,简文彬,尚岳全. 2005. 深厚软土地层地震破坏的作用机理研究[J]. 岩石力学与工程学报,24(2):313–320. doi: 10.3321/j.issn:1000-6915.2005.02.022

    Xu J C,Jian W B,Shang Y Q. 2005. Study on the seismic failure mechanism of the thick soft soil foundation[J]. Chinese Journal of Rock Mechanics and Engineering,24(2):313–320 (in Chinese).

    张海,李克强,尤红兵,周泽辉. 2016. 硬夹层埋深对场地地震动参数的影响[J]. 地震工程学报,38(6):935–941.

    Zhang H,Li K Q,You H B,Zhou Z H. 2016. Influence of the buried depth of hard interlayer on ground-motion parameters[J]. China Earthquake Engineering Journal,38(6):935–941 (in Chinese).

    中国建筑科学研究院. 2016. GB 50011—2010 建筑抗震设计规范[S]. 北京:中国建筑工业出版社:1−249 .

    China Academy of Building Research. 2016. GB 50011−2010 Code for Seismic Design of Buildings[S]. Beijing:China Architecture & Building Press:1−249 (in Chinese).

    周正华,张艳梅,孙平善,杨柏坡. 2003. 断层对震害影响的研究[J]. 自然灾害学报,12(4):20–24. doi: 10.3969/j.issn.1004-4574.2003.04.004

    Zhou Z H,Zhang Y M,Sun P S,Yang B P. 2003. Study on effect of fault on seismic damage[J]. Journal of Natural Disasters,12(4):20–24 (in Chinese).

    周正华,李玉萍,周游,李小军,陈柳,苏杰,董青,王亚飞. 2019. 硬夹层厚度对场地地震反应的影响[J]. 地震地质,41(5):1254–1265. doi: 10.3969/j.issn.0253-4967.2019.05.012

    Zhou Z H,Li Y P,Zhou Y,Li X J,Chen L,Su J,Dong Q,Wang Y F. 2019. The effect of hard interlayer thickness on the site seismic response[J]. Seismology and Geology,41(5):1254–1265 (in Chinese).

    周正华,陈柳,周游,李小军,苏杰,董青,钟康明,李玉萍. 2020. 地表硬盖层厚度对场地地震反应的影响分析[J]. 应用基础与工程科学学报,28(2):321–330.

    Zhou Z H,Chen L,Zhou Y,Li X J,Su J,Dong Q,Zhong K M,Li Y P. 2020. The effect of surface hard cover on the site earthquake response[J]. Journal of Basic Science and Engineering,28(2):321–330 (in Chinese).

    闫孔明,刘飞成,朱崇浩,王志佳,张建经. 2017. 地震作用下含倾斜软弱夹层斜坡场地的动力响应特性研究[J]. 岩石力学与工程学报,36(11):2686–2698.

    Yan K M,Liu F C,Zhu C H,Wang Z J,Zhang J J. 2017. Dynamic responses of slopes with intercalated soft layers under seismic excitations[J]. Chinese Journal of Rock Mechanics and Engineering,36(11):2686–2698 (in Chinese).

    Su J,Zhou Z H,Zhou Y,Li X J,Dong Q,Wang Y F,Li Y P,Chen L. 2020. The characteristics of seismic response on hard interlayer sites[J]. Adv Civil Eng:1425969.

    Thráinsson H,Kiremidjian A S. 2002. Simulation of digital earthquake accelerograms using the inverse discrete Fourier transform[J]. Earthq Eng Struct Dyn,31(12):2023–2048. doi: 10.1002/eqe.198

    Yao E L,Li W C,Miao Y,Ye L,Yang Z W. 2022. Study on the influence of a soft soil interlayer on spatially varying ground motions[J]. Appl Sci,12(3):1322. doi: 10.3390/app12031322

  • 期刊类型引用(1)

    1. 李祥秀,范世凯,李小军,刘爱文. 场地地震动特征周期对高层建筑结构工程材料用量和破坏状态影响的研究. 地震科学进展. 2024(08): 497-505 . 百度学术

    其他类型引用(0)

图(11)  /  表(11)
计量
  • 文章访问数:  181
  • HTML全文浏览量:  38
  • PDF下载量:  72
  • 被引次数: 1
出版历程
  • 收稿日期:  2022-11-22
  • 修回日期:  2023-02-06
  • 网络出版日期:  2023-10-26
  • 刊出日期:  2024-07-14

目录

    /

    返回文章
    返回