台湾地区强震活动特征分析

卢显, 刘杰, 薛艳, 晏锐, 姜祥华, 李祖宁, 邓世广, 苑争一

卢显,刘杰,薛艳,晏锐,姜祥华,李祖宁,邓世广,苑争一. 2023. 台湾地区强震活动特征分析. 地震学报,45(6):996−1010. DOI: 10.11939/jass.20220221
引用本文: 卢显,刘杰,薛艳,晏锐,姜祥华,李祖宁,邓世广,苑争一. 2023. 台湾地区强震活动特征分析. 地震学报,45(6):996−1010. DOI: 10.11939/jass.20220221
Lu X,Liu J,Xue Y,Yan R,Jiang X H,Li Z N,Deng S G,Yuan Z Y. 2023. Analysis of strong earthquake activity characteristics in Taiwan. Acta Seismologica Sinica45(6):996−1010. DOI: 10.11939/jass.20220221
Citation: Lu X,Liu J,Xue Y,Yan R,Jiang X H,Li Z N,Deng S G,Yuan Z Y. 2023. Analysis of strong earthquake activity characteristics in Taiwan. Acta Seismologica Sinica45(6):996−1010. DOI: 10.11939/jass.20220221

台湾地区强震活动特征分析

基金项目: 国家自然科学基金(41704062)和中国地震局震情跟踪项目(2023010122,223020504)联合资助
详细信息
    作者简介:

    卢显,博士,高级工程师,主要从事地震预测和地震遥感应用方面的研究,e-mail:luxian2010@seis.ac.cn

    通讯作者:

    刘杰,博士,研究员,主要从事地震预测和地震监测方面的研究,e-mail:liujie@seis.ac.cn

  • 中图分类号: P315.5

Analysis of strong earthquake activity characteristics in Taiwan

  • 摘要:

    基于定性分析和Morlet小波分析方法,研究了我国台湾地区的主要构造带和强震分布特征。1900年以来台湾地区MS≥7.0地震存在三个活跃时段:第一个活跃时段为1902—1925年,长达近23年;第二个活跃时段为1935—1978年,约43年;第三个活跃时段为1986—2006年,时长20年。台湾自2006年12月26日恒春海域发生MS7.2地震之后,MS≥7.0地震平静已近16年,为历史最长平静时段,存在开始新的活跃时段的可能。从区域分布看,台东地震带MS≥6.9地震具有六个活动周期,大部分活动周期平均约为16年,每个活动周期均包含活跃和平静时段,所有MS≥6.9地震均发生在活跃时段,统计显示台东地震带的活动强度自2002年进入第六个活动周期后逐渐减弱,直到2022年9月份台湾东带才再次发生MS6.9地震,可能进入了新一轮活跃时段。台湾西带MS≥6.0地震存在92年左右和14年左右的周期,1901—1993年为一个活跃-平静大周期(92年左右),1994年开始新一轮的大周期活动,同时,大周期又包含平均周期为14年左右的小周期。临近预报(nowcasting)方法计算的小震积累水平显示,台湾东带MS≥7.0地震和台湾西带MS≥6.0地震具有较高的发震背景概率,台湾地区强震在年尺度上与华南地区中强地震具有一定的对应关系。

    Abstract:

    Based on qualitative analysis and Morlet wavelet method, the distribution characteristics of the main tectonic zones and strong earthquakes in Taiwan, China are studied. The Taiwan, China can be divided into the Taidong seismic zone and the Taixi seismic zone, bounded by the Central Mountains. The former is mainly composed of the Huadong longitudinal valley fault, the coastal mountains and the sea area to the east of the coastal mountains. It is the region with the strongest seismic activity in Taiwan. The latter seismic zone mainly includes the western foothills and the western coastal plain. In addition, due to the influence of the Philippine Sea Plate pushing the Eurasian Plate towards the northwest, most earthquakes in Taiwan and surrounding waters are thrust-type earthquakes.   There have been three active periods of MS≥7.0 earthquakes in Taiwan since 1900. The first active period was from 1902 to 1925, which lasted nearly 23 years; the second was from 1935 to 1978, about 43 years; the third was from 1986 to 2006, lasting 20 years. Since the Hengchun sea area MS7.2 earthquake in Taiwan on December 26, 2006, Taiwan earthquakes above MS7.0 have been quiet for nearly 16 years, which is the longest quiet time in history, and there is a possibility of a new active period.   From the regional distribution perspective, MS≥6.9 earthquakes in the eastern Taiwan had six active cycles, most of which lasted about 16 years on average. Each active cycle included active and quiet periods, and all MS≥6.9 earthquakes occurred in active periods. Statistics show that the activity intensity of the eastern Taiwan had gradually weakened since 2002, when it entered the sixth active cycle. A new active period may have started since the Hualian MS6.9 earthquake occurred in the eastern Taiwan on September of 2022. At the same time, the Morlet wavelet method was used to calculate the period spectrum of seismic activity of the Taidong seismic zone and the significance testing. The results showed that the 3-year and 16-year periods in the region passed the 80% confidence testing, and the 16-year period could better reflect the average duration of most seismic periodic activities in the Taidong seismic zone. The 3-year period was consistent with the average occurrence interval of MS≥7.0 earthquakes with every three years in the Taidong seismic belt from 1900 to 2006. As for the western Taiwan, MS≥6.0 earthquakes have cycles of about 92 years and 14 years which passed the 80% confidence testing. 1901−1993 was a large active-quiet cycle (about 92 years) and a new round of large cycle activity began from 1994. At the same time, the large cycle also included some small cycles with an average period of 14 years. At present, the Taixi seismic belt is in the quiet period of the small cycle of 2010 to 2022. Based on the average duration of the small cycle of about 14 years, the Taixi seismic belt maybe enter a new round of the small cycle activity of MS≥6.0 earthquake in the future.   From the perspective of focal depth, the focal depth of earthquakes in Taiwan has the characteristic of gradually deepening from west to east. Among them, earthquakes in the northeast of Taiwan and nearby waters are mainly of medium to deep source earthquakes, while earthquakes in the waters of the central Taiwan are mostly distributed within the range of 20−40 kilometers, mainly located in the waters near Hualien. The distribution characteristics of source depth are consistent with the eastward dipping characteristic of the Huadong longitudinal valley fault in the region. The accumulation level of small earthquakes calculated by the Nowcasting method also shows that the MS≥7.0 earthquakes in the eastern zone of Taiwan and MS≥6.0 earthquakes in the western zone of Taiwan have a high background probability of earthquake occurrence, and the strong earthquakes in Taiwan have a certain corresponding relationship with the moderate-strong earthquakes in South China on an annual scale.

  • 中国地震台网(2022)测定2022年9月5日12时52分四川泸定县(29.59°N, 102.08°E)发生MS6.8地震,震源深度为16 km。本次地震震中位于鲜水河断裂带(徐泰然等,2022),该断裂带北起甘孜东谷附近,向南经过炉霍、道孚、康定一线,至石棉县安顺场一带逐渐消失,全长约350 km,总体走向320°—330°,呈略向北凸出的弧形,与甘孜—玉树断裂共同构成川滇地块的北边界和巴颜喀拉地块的西南边界。鲜水河断裂带作为中国西南山区现今活动强烈的大型左旋走滑断裂带,具有规模大、活动强、地震频度高等特点(陈桂华等,2008)。自1700年以来,该断裂带发生过8次(泸定地震不计算在内)M≥7地震(图1中的红色圆点所示)。泸定地震则位于鲜水河断裂带南东段附近,与1786年发生的M7.8地震位置接近。快速测定这次地震的震源机制和地震辐射能量对研究该地震的发震构造和破坏能力有重要意义。

    图  1  2022年泸定MS6.8地震的矩张量
    红色圆点为1 700年以来的8次M≥7.0地震,蓝色三角形为本文测定震源机制所使用的台站
    Figure  1.  Moment tensor of the 2022 Luding MS6.8 earthquake
    Red dots are the location of eight M≥7.0 earthquakes in the past 1 700 years,blue triangles are the location of the stations used in the determination of focal mechanism in this paper

    本文利用近震全波形反演方法(Chiang et al,2016)求取矩心矩张量解,该方法基于点源模型,在时间域上利用广义最小二乘法(Minson,Dreger,2008)对三分量完整波形进行反演,继而利用能流密度法(Newman,Okal,1998)测定地震辐射能量ER

    泸定地震震级较大,考虑到震中距较小的台站存在限幅情况、震中距较大的台站存在数据质量问题,我们选取国家测震台网数据备份中心(郑秀芬等,2009)提供的震中距处于158—327 km内13个高质量台站(图1蓝色三角形所示)的记录进行反演。数据预处理时滤波频段选取为0.02—0.05 Hz,震源深度的搜索范围为6—13 km,步长为1 km。本文使用频率-波数法计算1 Hz理论格林函数(Wang,Herrmann,1980Herrmann,Wang,1985Herrmann,2013),使用Xin等(2019)提供的中国大陆一维地壳速度模型(图2)。拟合度最大值对应的深度为矩心深度,矩心深度对应的结果即为本文最终测定的震源机制解。图3是拟合度与矩心深度的关系,由该图可以确定矩心深度为9 km,拟合度达70%以上。该深度所对应的震源机制解节面Ⅰ的走向为77°,倾角为83°,滑动角为178°;节面Ⅱ的走向为347°,倾角为88°,滑动角为−7°;地震矩为1.3×1019 N·m,折合为矩震级MW6.7。图4为矩心深度为9 km时实际波形与理论波形的对比图,可见所有台站的平均拟合度为71%,拟合程度较高,可被看作可靠的结果。

    图  2  泸定MS6.8地震震源区的一维速度模型(数据来自于Xin et al,2019
    Figure  2.  One-dimensional velocity model of source area of Luding MS6.8 earthquake (data from Xin et al,2019
    图  3  泸定MS6.8地震震源矩心深度拟合结果
    红色圆点为拟合度值,蓝色圆点为矩震级MW
    Figure  3.  The fitting result of focal centroid depth of Luding MS6.8 earthquake
    The red dot is the fitting degree,and the blue dot is MW
    图  4  泸定MS6.8地震最佳拟合矩心深度为9.0 km时的波形拟合
    Δ为震中距,θ为方位角,TS为时延+20 s,VR为理论波形(红色)与实际波形(黑色)的拟合度
    Figure  4.  Waveform fitting with the best fitting centroid depth of 9.0 km for the Luding MS6.8 earthquake
    Δ is the epicentral distance,θ is the azimuth,TS is the time delay plus 20 s,and VR is a parameter describing the fitting degree of the theoretical waveform (red) and the actual waveform (black)

    表1给出了国内外不同机构和作者关于泸定地震的震源机制解结果(防灾科技学院河北省地震动力学重点实验室Seismology小组,2022),以及本文结果与这些震源机制解的最小空间旋转角,在此基础上本文给出了泸定地震的震源机制解(图5)。表1显示,本文结果与其它结果的最小空间旋转角为4.5°,最大空间旋转角为24.2°,且基本集中在20°以下。Kagan (1991)指出最小空间旋转角小于20°时可以认为是相同的震源机制,因此结合表1图5可知本文结果与其他机构或者作者的结果较一致。

    表  1  不同机构和作者给出的泸定地震震源机制解
    Table  1.  Focal mechanism solutions of Luding earthquake given by different organizations and authors
    序号机构或作者震源机制解本文结果与相应结果的
    最小空间旋转角/°
    走向/°倾角/°滑动角/°
    1USGS15982−414.5
    2GCMT163 80 89.2
    3GFZ164 85 64.5
    4IPGP163 71 −319.8
    5四川地震台172 74 2724.2
    6中国地震台网中心343 79 921.3
    7王卫民166 75 014.7
    8郭祥云335 74 −1522.6
    9韩立波和蒋长胜343 89 −3417.8
    注:USGS:美国地质调查局;GCMT:美国哥伦比亚大学全球矩心矩张量解中心;GFZ:亥姆霍兹波茨坦中心;IPGP:法国巴黎地
    球物理学院。表中震源机制数据引自防灾科技学院河北省地震动力学重点实验室Seismology小组(2022)。
    下载: 导出CSV 
    | 显示表格
    图  5  泸定地震震源机制解
    Figure  5.  Focal mechanism solution of Luding earthquake

    根据本次地震震源附近的地质构造,结合本次地震破裂面较深的特点,可知泸定地震是巴颜喀拉地块在向东挤压受到四川盆地阻挡后向南侧挤压的物理过程中产生的高倾角左旋走滑型地震。

    从地震学合作研究协会(Incorporated Research Institutions for Seismology,缩写为IRIS)网站下载25个台站(图6a)的宽频带波形数据,这些地震台的震中距范围为11°—58°。使用之前得到的震源机制对地震辐射能量测定结果进行修正,将修正后所有台站的地震辐射能量平均值作为该事件的辐射能量,依此得到本次地震的辐射能量ER为4.1×1014 J,高频(0.5—2 Hz)辐射能量ERH为5.45×1013 J,能量震级Me约为6.8,标准差为0.34。图6b为单台能量震级的偏差统计图,可知每个台站的能量震级稳定分布在6.2—7.4之间。由于地震以地震波形式辐射的能量主要集中在震源谱的拐角频率附近,高频(0.5—2 Hz)辐射能量ERH对于分析一个地震的破坏能力很有价值,经由本次地震与2013年4月20日芦山MS7.0地震的对比得以证明。

    图  6  单台能量震级及其平均值偏差(a)和残差分布(b)
    Figure  6.  Single station energy magnitude and its average deviation (a) and residual distribution (b)

    2013年4月20日的芦山MS7.0地震破坏严重,与本次地震仅相距116 km。中国地震局(2013)和应急管理部(2022)通过地震现场工作队实地调查,并充分参考震区断裂构造、仪器烈度、余震分布、震源机制、无人机遥感等科技支撑成果,结合强震动观测记录,分别确定了这两次地震的烈度分布。芦山地震的最高烈度为Ⅸ度,Ⅸ度烈度区的长半轴为11.5 km,短半轴为5.5 km,面积为208 km2,Ⅵ度及以上烈度区的总面积为18 682 km2;泸定地震的最高烈度为Ⅸ度,面积为280 km2,等震线长轴呈NW走向,Ⅵ度及以上烈度区面积为19 089 km2。泸定地震的Ⅸ度区的面积较芦山地震大72 km2,Ⅵ度及以上烈度区面积大407 km2,所造成的灾害更为严重。而从表2所示的两次地震的面波震级MS、矩震级MW、地震辐射能量ER和高频地震辐射能量ERH的对比来看,芦山地震的面波震级MS比泸定地震大0.2,矩震级MW和地震辐射能量ER十分接近,这几个参数均无法解释泸定地震产生的破坏更为严重,但从高频地震辐射能量ERH来看,泸定地震明显大于芦山地震,这与泸定地震面波震级低受灾情况却更为严重的情况相符。因此,地震辐射能量ER能够反映震源动态特征,与地震震源的动力学特性(如地震波频率、地震波速度等)密切相关,更适合表征地震的破坏能力,因此高频地震辐射能量ERH可作为量化地震破坏能力的参数。

    表  2  2013年4月20日芦山MS7.0地震与2022年9月5日泸定MS6.8地震的地震参数对比
    Table  2.  Comparison of seismic parameters between the Lushan MS7.0 earthquake on April 20,2013 and the Luding MS6.8 earthquake on September 5,2022
    发震时间发震地点MSMW地震辐射能量ER/(1014 J)高频地震辐射能量ERH/(1014 J)
    2013-04-20四川芦山7.06.64.34.8
    2022-09-05四川泸定6.86.74.15.5
    下载: 导出CSV 
    | 显示表格

    使用Convers和Newman (2013)的方法计算破裂持续时间T,选取所有台站的中位数可得这次地震的破裂持续时间为16 s。依据Bormann和Saul (2009)关于矩震级MW与平均破裂持续时间Tavg的经验关系lgTavg=0.6MW-2.8将本次地震的矩震级MW6.7代入得到该震级对应的平均破裂持续时间为17 s,即泸定地震的破裂持续时间短于平均破裂持续时间。

    能矩比(地震辐射能量与地震矩的比值ER/M0,也称为折合能量)是衡量震源释放地震波能力的重要参数。使用本文结果计算的泸定地震能矩比约为3.1×10−5,与全球走滑型地震平均能矩比3.6×10−5Convers,Newman,2011)相比,泸定地震的能矩比并不突出,但是走滑型地震的能量释放能力本身就比较突出,因此泸定地震具有的破坏能力在同震级的地震中仍应当属于比较强的。

    视应力可以反映地震断层释放累积能量的水平,使用本文结果得到泸定地震的视应力为0.95 MPa,高于吴忠良等(2002)利用美国国家地震信息中心宽频带辐射能量目录和全球矩心矩张量项目目录给出的中国大陆西部地区视应力的平均值0.8 MPa,说明此次地震的地震断层释放出了较强的能量。

    Baltay等(2011)对日本M1.8—6.9地震序列进行了基于经验格林函数的尾波分析,得到了布龙应力降$\Delta \sigma $与视应力$\sigma_{\rm{app}} $的经验关系$\Delta\sigma/\sigma_{\rm{app}}=4.3 $ (Singh,Ordaz,1994)适用于拐角频率较低的中强震(MW≥5.0),本文根据视应力σapp结果得出泸定地震的布龙应力降约为4.09 MPa。

    Ye等(2018)计算了全球MW>7.0地震的辐射能量增强因子REEF值,得到了区域性的统计规律,这些地震的REEF值范围在5—150之间。本次测定泸定地震的REEF值为49,属于正常范围。大量测定中国大陆中强震的REEF值,并结合地震的实际情况进行综合分析,可能会得到一些有意义的统计规律,这还有待使用更多震例进行研究。

    本文使用宽频带波形数据对2022年9月5日泸定MS6.8地震的震源辐射能量和震源机制进行测定,并计算了一些衍生的参数,对结果进行分析和讨论后,得到以下结论:

    1) 使用区域波形数据,采用近震时域全波形反演方法得到泸定地震的地震矩为1.3×1019 N·m,转化为矩震级为MW6.7,矩心深度约为9 km,震源机制解节面Ⅰ的走向为77°、倾角为83°、滑动角为178°,节面Ⅱ的走向为347°、倾角为88°、滑动角为−7°。

    2) 基于全球地震台网提供的波形资料,使用能流密度法测定泸定地震的辐射能量为4.1×1014 J,其中的高频部分(0.5—2 Hz)为5.5×1013 J,地震辐射能量转化成能量震级为6.8,震源破裂时间为16 s。与2013年4月20日的芦山MS7.0地震的对比说明:对于地震灾害和风险评估,测定地震辐射能量及其在频谱上的分布、破裂持续时间等动态震源参数是十分必要的。根据上面的分析,可认为本次地震短时间内释放出了大量的地震能量,是破坏能力较强的地震。

    3) 计算得出本次地震的能矩比为3.1×10−5,视应力为0.95 MPa,布龙应力降约为4.09 MPa,可以认为本次地震的能量释放效率较高。结合静态震源参数地震矩M0、动态地震参数地震辐射能量ER和破裂持续时间T以及震源附近的介质属性参数如密度ρ和S波速度得出描述震源破裂复杂程度的辐射能量增强因子REEF为49。

    地震矩等静态震源参数主要与地震波的低频成分有关,在构造动力学研究中具有重要意义;地震辐射能量等动态震源参数主要与地震波的高频成分有关,在工程地震学研究中具有重要意义。联合测定地震矩和地震辐射能量,对于研究区域构造、快速评估地震灾害、开展地震应急响应工作都具有重要意义。

  • 图  3   台东地震带1900年以来的周期谱分析

    (a) MS≥6.0地震小波功率谱;(b) MS≥6.0地震显著周期谱,红色虚线为90%置信度检验曲线,绿色虚线为80%置信度检验曲线;(c) MS≥6.9地震应变曲线

    Figure  3.   Periodic spectrum analysis of eastern Taiwan from 1900

    (a) Wavelet power spectrum of MS≥6.0 earthquakes;(b) Significant periodic spectrum of MS≥6.0 earthquakes,the red dotted line represents for confidence test curve with 90 percent and the green dotted line for 80 percent;(c) Benioff strain curve of MS≥6.9 earthquakes

    图  1   1976年以来台湾MW≥6.0地震震源机制解(a)及台湾中部剖面图(b)(引自Teng,1990王彦斌等,2000王辉等,2003张培震等,2003张国民等,2004

    Figure  1.   Focal mechanism solutions of MW≥6.0 earthquakes in Taiwan since 1976 (a) and profile of Central Taiwan (b)(after Teng,1990Wang et al,2000Wang et al,2003Zhang et al,2003Zhang et al,2004

    图  2   台湾MS≥7.0 (a)、台东地震带MS≥6.9 (b)及台西地震带MS≥6.0 (c)地震M-t图(图b,c中红色横线段为地震活动周期)

    Figure  2.   M-t plots of earthquakes with MS≥7.0 in Taiwan (a),and with MS≥6.9 in the eastern Taiwan (b) as well as with MS≥6.0 in the western Taiwan (c)(The red lines are periods of seismic activity)

    图  4   台西地震带1900年以来MS≥5.0地震周期谱分析

    (a) 小波功率谱;(b) 显著周期谱

    Figure  4.   Periodic spectrum analysis of MS≥5.0 earthquakes of western Taiwan since 1900

    (a) Wavelet power spectrum;(b) Significant periodic spectrum

    图  5   台湾地区1970年1月至2022年1月ML≥6.0地震震中及分区剖面上震源深度分布

    (a) 台湾地区地震分布及分区剖面位置;(b) 沿剖面AA′ 地震震源分布;(c) 沿剖面BB′ 地震震源分布;(d) 沿剖面CC′ 地震震源分布

    Figure  5.   Epicenters and cross sections of ML≥6.0 earthquakes in different areas of Taiwan from January 1970 to January 2022

    (a) Earthquake distribution in Taiwan and location of the profiles;(b) Focal depth distribution along AA′ profile;(c) Focal depth distribution along BB′ profile;(d) Focal depth distribution along CC′ profile

    图  6   1970年以来台湾ML≥4.0地震震级频次统计(a)和G-R关系(b)

    Figure  6.   Statistics of magnitude frequency of earthquakes with ML≥4.0 in Taiwan (a) and G-R relationship (b) since 1970

    图  7   台东地震带MS≥7.0地震(a)和台西地震带MS≥6.0地震(b)的EPS评分结果

    绿线为相邻两次大震间小震数量,黑线为相应的经验累积分布函数,红色圆点对应上次大震以来的小震数

    Figure  7.   EPS score results of MS≥7.0 earthquake in eastern Taiwan (a) and of MS≥6.0 earthquake in western Taiwan (b)

    The green line is the number of small earthquakes between two adjacent large earthquakes,the black line represents the corresponding empirical cumulative distribution function,the red dot corresponds to the number of small earthquakes since the last large earthquake

    图  8   不同计算窗长的预报效能R值曲线

    Figure  8.   R-value curve with different calculation window lengths

    表  1   台湾地区MS≥7.0地震活动特征统计

    Table  1   Statistics of active periods of MS≥7.0 earthquakes in Taiwan

    活跃时段 起止
    时间
    持续
    时间/a
    MS≥7.0
    地震频次
    MS≥7.0地震
    平均年频次
    最大地震
    震级MS
    活跃时段Ⅰ 1 902—1 925 23 8 0.35 8.0
    活跃时段Ⅱ 1 935—1 978 43 19 0.44 8.0
    活跃时段Ⅲ 1 986—2 006 20 9 0.45 7.6
    下载: 导出CSV

    表  2   台东地震带MS≥6.9地震活动特征

    Table  2   Statistics of active periods of MS≥6.9 earthquakes in eastern Taiwan

    周期
    序号
    起止时间 持续时间/a 统计特征 起止时间 持续时间/a MS≥6.9
    地震频次
    MS≥6.9地震
    平均年频次
    最大地震
    震级MS
    1 1 909—1 935 26 活跃 1 909—1 922 13 9 0.35 8.0
    平静 1 922—1 935 13 0
    2 1 935—1 943 8 活跃 1 935—1 938 3 5 0.63 7.2
    平静 1 938—1 943 5 0
    3 1 943—1 957 14 活跃 1 943—1 951 8 7 0.50 7.5
    平静 1 951—1 957 6 0
    4 1 957—1 972 15 活跃 1 957—1 966 9 5 0.33 7.8
    平静 1 966—1 972 6 0
    5 1 972—2 002 30 活跃 1 972—1 996 24 12 0.40 8.0
    平静 1 996—2 002 6 0
    6 2 002—2 022 20 活跃 2 002—2 006 4 3 0.15 7.5
    平静 2 006—2 022 16 0
    下载: 导出CSV

    表  3   台西地震带MS≥6.0地震活动特征

    Table  3   Statistics of active periods of MS≥6.0 earthquakes in western Taiwan

    大周期小周期起止时间持续时间/a统计特征起止时间持续时间/aMS≥6.0地震频次
    大周期Ⅰ
    活跃时段
    小周期1 1901—1916 15 活跃 1901—1909 8 9
    平静 1909—1916 7 0
    小周期2 1916—1927 11 活跃 1916—1922 6 8
    平静 1922—1927 5 0
    小周期3 1927—1941 14 活跃 1927—1935 8 8
    平静 1935—1941 6 0
    小周期4 1941—1955 14 活跃 1941—1950 9 6
    平静 1950—1955 5 0
    大周期Ⅱ
    活跃时段
    小周期1 1994—2010 16 活跃 1994—2000 6 17
    平静 2000—2010 10 0
    小周期2 2010—2022 12 活跃 2010—2016 6 4
    平静 2016—2022 6 0
    下载: 导出CSV

    表  4   台湾地区MS≥7.0地震发生一年内所对应的华南地区MS≥5.0地震情况

    Table  4   Earthquakes with MS≥5.0 in South China after MS≥7.0 earthquakes in Taiwan occurred within one year

    序号显著地震时间MS对应地震间隔时间/d
    1 1 902-11-21 7.3
    2 1 909-04-15 7.3
    3 1 909-11-21 7.3
    4 1 910-04-12 7.8 1 911-02-05 广西灵山东北MS5.3 299
    5 1 915-01-06 7.3
    6 1 917-07-04 7.0 1 918-02-13 广东南澳东南MS7.3 224
    7 1 919-12-21 7.0
    8 1 920-06-05 8.0 1 921-03-19 广东南澳西北MS6.3 287
    9 1 922-09-02 7.6
    10 1 922-09-15 7.2
    11 1 925-04-17 7.1
    12 1 935-04-21 7.1 1 936-04-01 广西灵山东北MS6.8 346
    13 1 935-09-04 7.2 1 936-04-01 广西灵山东北MS6.8 210
    1 936-04-23 广东中山MS5.0 232
    14 1 936-08-22 7.2
    15 1 937-12-08 7.0
    16 1 938-09-07 7.0
    17 1 938-12-07 7.0
    18 1 941-12-17 7.0
    1 9 1 947-09-27 7.4
    2 0 1 951-10-22 7.3
    21 1 951-10-22 7.1
    22 1 951-10-22 7.1
    23 1 951-11-25 7.5
    24 1 951-11-25 7.3
    25 1 957-02-24 7.2
    26 1 959-04-27 7.5
    27 1 959-08-15 7.0
    28 1 963-02-13 7.0
    29 1 964-01-18 7.0 1 964-09-23 广东河源MS5.1 248
    30 1 966-03-13 7.8
    31 1 972-01-04 7.2
    32 1 972-01-25 8.0
    33 1 972-01-25 7.6
    34 1 972-04-24 7.3
    35 1 975-03-23 7.0
    36 1 978-07-23 7.3
    37 1 978-12-23 7.0
    38 1 986-11-15 7.3 1 987-08-02 江西寻乌西MS5.4 260
    39 1 990-12-14 7.0
    40 1 994-05-24 7.0 1 994-12-31 北部湾MS6.1 221
    1 995-01-10 北部湾MS6.2 231
    1 995-02-25 福建晋江MS5.3 277
    1 995-03-23 北部湾MS5.1 303
    41 1 994-06-05 7.0 1 994-12-31 北部湾MS6.1 2 09
    1 995-01-10 北部湾MS6.2 219
    1 995-02-25 福建晋江MS5.3 265
    1 995-03-23 北部湾MS5.1 291
    42 1 996-09-06 7.1 1 997-05-31 福建永安MS5.2 267
    43 1 999-09-21 7.6
    44 1 999-09-21 7.0
    45 1 999-09-26 7.1
    46 2 002-03-31 7.5
    47 2 003-12-10 7.0
    48 2 006-12-26 7.2
    下载: 导出CSV

    表  5   台湾地区MS≥7.0地震对华南MS≥5.0地震影响的预报效能

    Table  5   Prediction effect of MS≥7.0 earthquakes in Taiwan on MS≥5.0 earthquakes in South China

    预测时间/d预报效能
    RR0
    2600.380.30
    3000.770.26
    3400.750.26
    3800.720.26
    下载: 导出CSV
  • 陈大庆,杨马陵. 2010. 台湾地震对称分区及与粤闽交界中强地震的对应关系[J]. 华南地震,30(增刊):69–75. doi: 10.13512/j.hndz.2010.s1.008

    Chen D Q,Yang M L. 2010. The symmetrical partition of Taiwan earthquake and it’s relation to moderate-strong earthquakes in adjacent area of Guangdong and Fujian Provinces[J]. South China Journal of Seismology,30(S1):69–75 (in Chinese).

    傅承义. 1972. 大陆漂移、海底扩张和板块构造[M]. 北京: 科学出版社: 35.

    Fu C Y. 1972. Continental Drift, Seafloor Spreading and Plate Tectonics[M]. Beijing: Science Press: 35 (in Chinese).

    顾瑾萍,吕培苓,彭美凤,康春丽,张凌空. 2004. 华南地区地震活动特征与台湾强震影响[J]. 地震,24(1):55–59.

    Gu J P,Lü P L,Peng M F,Kang C L,Zhang L K. 2004. Research on the seismic activity features and influence from Taiwan strong earthquake in South China[J]. Earthquake,24(1):55–59 (in Chinese).

    洪汉净. 2011. 近年来全球地震与火山活动分析[J]. 自然杂志,33(5):266–270.

    Hong H J. 2011. Analysis on global earthquake and volcano activity in recent years[J]. Chinese Journal of Nature,33(5):266–270 (in Chinese).

    刘超,许力生,陈运泰. 2010. 2009年12月19日台湾花莲地震快速矩张量解[J]. 地震学报,32(1):127–129. doi: 10.3969/j.issn.0253-3782.2010.01.016

    Liu C,Xu L S,Chen Y T. 2010. Quick moment tensor solution for the December 19,2009 Hualien earthquake[J]. Acta Seismologica Sinica,32(1):127–129 (in Chinese).

    刘特培,李健梅,万永芳. 2000. 1994年9月16日台湾海峡7.3级地震前的地震活动异常[J]. 华南地震,20(2):16–21. doi: 10.13512/j.hndz.2000.02.004

    Liu T P,Li J M,Wan Y F. 2000. Seismicity anomalies before the MS7.3 Taiwan strait earthquake on September 16,1994[J]. South China Journal of Seismology,20(2):16–21 (in Chinese).

    吕坚,高建华,胡翠娥. 2001. 台湾强震对赣粤闽交界及其沿海地区地震形势的影响[J]. 地震学刊,21(3):19–23.

    Lü J,Gao J H,Hu C E. 2001. The influence of strong earthquakes in Taiwan to the earthquake situation of the border area among Jiangxi,Guangdong and Fujian Provinces and their coastal area[J]. Journal of Seismology,21(3):19–23 (in Chinese).

    梅世蓉. 1960. 中国的地震活动性[J]. 地球物理学报,9(1):1–19.

    Mei S R. 1960. Seismic activity in China[J]. Chinese Journal of Geophysics,9(1):1–19 (in Chinese).

    彭美凤,周峥嵘. 2000. 1994年台湾海峡7.3级地震发震断层的地震学证据[J]. 华南地震,20(3):9–13. doi: 10.3969/j.issn.1001-8662.2000.03.002

    Peng M F,Zhou Z R. 2000. Seismological evidence of seismogenic fault of the M7.3 Taiwan strait earthquake[J]. South China Journal of Seismology,20(3):9–13 (in Chinese).

    史粦华,周峥嵘,鲍挺,倪晓寅. 2006. 福建及沿海地区地震活动力源探讨[J]. 地震,26(2):104–112.

    Shi L H,Zhou Z R,Bao T,Ni X Y. 2006. Discussion of force source of seismic activity in Fujian and its coastal area[J]. Earthquake,26(2):104–112 (in Chinese).

    王辉,张国民,吴云,马宏生. 2003. 中国大陆活动地块变形与地震活动的关系[J]. 中国地震,34(3):243–254.

    Wang H,Zhang G M,Wu Y,Ma H S. 2003. The deformation of active crustal-blocks on the Chinese mainland and its relation with seismic activity[J]. Earthquake Research in China,19(3):243–254 (in Chinese).

    王彦斌,王永,李建成,詹瑜璋. 2000. 1999年台湾集集大地震的地表断层破裂特征[J]. 地震地质,22(2):97–103. doi: 10.3969/j.issn.0253-4967.2000.02.001

    Wang Y B,Wang Y,Li J C,Zhan Y Z. 2000. Characteristics of ground ruptures caused by the 1999 M7.3 earthquake of Chi-Chi,Taiwan[J]. Seismology and Geology,22(2):97–103 (in Chinese).

    许绍燮. 1989. 地震预报方法实用化文集: 地震学专辑[M]. 北京: 学术期刊出版社: 586−590.

    Xu S X. 1989. Practical Collection of Earthquake Prediction Methods: Seismology Album[M]. Beijing: Academic Journal Press: 586−590 (in Chinese).

    薛艳,朱元清,尹继尧,宋治平,刘杰. 2012. 日本地震活动周期性研究[J]. 地震,32(3):67–77.

    Xue Y,Zhu Y Q,Yin J Y,Song Z P,Liu J. 2012. Analysis on seismicity periods of great earthquakes in Japan[J]. Earthquake,32(3):67–77 (in Chinese).

    薛艳,刘杰,姜祥华. 2021a. 全球及主要构造带大震活动状态研究[J]. 地球物理学报,64(12):4425–4436. doi: 10.6038/cjg2021P0036

    Xue Y,Liu J,Jiang X H. 2021a. Process and trend of great earthquakes in the globe and main zones[J]. Chinese Journal of Geophysics,64(12):4425–4436 (in Chinese).

    薛艳,宋治平,姜祥华,张小涛. 2021b. Morlet小波变换在2020年新疆于田6.4级地震预测中的应用研究[J]. 地震,41(2):102–112. doi: 10.12196/j.issn.1000-3274.2021.02.008

    Xue Y,Song Z P,Jiang X H,Zhang X T. 2021b. Application of Morlet wavelet transform in forecasting process of Yutian MS6.4 earthquake in 2020[J]. Earthquake,41(2):102–112 (in Chinese).

    杨马陵,廖桂金,叶东华. 2004. 台湾集集7.6级强震前粤东地区的重力中短期异常[J]. 防灾减灾工程学报,24(1):15–21. doi: 10.13409/j.cnki.jdpme.2004.01.003

    Yang M L,Liao G J,Ye D H. 2004. Gravity anomaly in eastern Guangdong before Chi-Chi M7.6 earthquake in 1999[J]. Journal of Disaster Prevention and Mitigation Engineering,24(1):15–21 (in Chinese).

    尹继尧,朱元清,宋治平,张国民,薛艳,刘杰. 2011. Morlet小波显著性检验和精度分析在地磁场和地震活动性周期分析中的应用[J]. 地震学报,33(5):663–671.

    Yin J Y,Zhu Y Q,Song Z P,Zhang G M,Xue Y,Liu J. 2011. Significance test and precision analysis of Morlet wavelet:Application to studying periodic variation of earthquake activity and geomagnetic field[J]. Acta Seismologica Sinica,33(5):663–671 (in Chinese).

    章纯. 2007. 台湾地震对华南及华东地区应力场影响的数值模拟研究[J]. 地震,27(3):26–33. doi: 10.3969/j.issn.1000-3274.2007.03.004

    Zhang C. 2007. Numerical simulation study on the influence of Taiwan earthquake on stress field of South China and East China[J]. Earthquake,27(3):26–33 (in Chinese).

    张国民,马宏生,王辉,李丽. 2004. 中国大陆活动地块与强震活动关系[J]. 中国科学:D辑,34(7):591–599.

    Zhang G M,Ma H S,Wang H,Li L. 2004. Relationship between active blocks and strong earthquakes in Chinese mainland[J]. Science in China:Series D,34(7):591–599 (in Chinese).

    张年明. 2003. 台湾地区7级强地震前中强地震条带特征讨论[J]. 华南地震,23(4):18–23. doi: 10.3969/j.issn.1001-8662.2003.04.003

    Zhang N M. 2003. Discussion on the characters of medium-strong seismic belt before strong earthquake with magnitude 7 in Taiwan region[J]. South China Journal of Seismology,23(4):18–23 (in Chinese).

    张培震,邓起东,张国民,马瑾,甘卫军,闵伟,毛凤英,王琪. 2003. 中国大陆的强震活动与活动地块[J]. 中国科学:D辑,33(增刊):12–20.

    Zhang P Z,Deng Q D,Zhang G M,Ma J,Gan W J,Min W,Mao F Y,Wang Q. 2003. Strong earthquake activity and active blocks in Chinese Mainland[J]. Science in China:Series D,33(Z1):12–20 (in Chinese).

    GCMT. 2023. Global CMT web page[EB/OL]. [2023-02-02]. http://www.globalcmt.org.

    Gutenberg B,Richter C F. 1944. Frequency of earthquakes in California[J]. Bull Seismol Soc Am,34(4):185–188. doi: 10.1785/BSSA0340040185

    Holliday J R,Graves W R,Rundle J B,Turcotte D L. 2016. Computing earthquake probabilities on global scales[J]. Pure Appl Geophys,173(3):739–748. doi: 10.1007/s00024-014-0951-3

    Hsu Y J,Kao H,Bürgmann R,Lee Y T,Huang H H,Hsu Y F,Wu Y M,Zhuang J C. 2021. Synchronized and asynchronous modulation of seismicity by hydrological loading:A case study in Taiwan[J]. Sci Adv,7(16):eabf7282. doi: 10.1126/sciadv.abf7282

    Rundle J B,Turcotte D L,Donnellan A,Ludwig L G,Luginbuhl M,Gong G. 2016. Nowcasting earthquakes[J]. Earth Space Sci,3(11):480–486. doi: 10.1002/2016EA000185

    Rundle J B,Luginbuhl M,Giguere A,Turcotte D L. 2018. Natural time,nowcasting and the physics of earthquakes:Estimation of seismic risk to global megacities[J]. Pure Appl Geophys,175(2):647–660. doi: 10.1007/s00024-017-1720-x

    Rundle J B,Giguere A,Turcotte D L,Crutchfield J P,Donnellan A. 2019. Global seismic nowcasting with Shannon information entropy[J]. Earth Space Sci,6(1):191–197. doi: 10.1029/2018EA000464

    Rundle J B,Luginbuhl M,Khapikova P,Turcotte D L,Donnellan A,McKim G. 2020. Nowcasting great global earthquake and tsunami sources[J]. Pure Appl Geophys,177(1):359–368. doi: 10.1007/s00024-018-2039-y

    Teng L S. 1990. Geotectonic evolution of Late Cenozoic arc-continent collision in Taiwan[J]. Tectonophysics,183(1/2/3/4):57–76.

    Torrence C,Compo G P. 1998. A practical guide to wavelet analysis[J]. Bull Am Meteor Soc,79(1):61–78. doi: 10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2

    Varotsos P A,Sarlis N V,Skordas E S. 2002. Long-range correlations in the electric signals that precede rupture[J]. Phys Rev E,66(1):011902. doi: 10.1103/PhysRevE.66.011902

    Varotsos P A,Sarlis N V,Tanaka H K,Skordas E S. 2005. Some properties of the entropy in the natural time[J]. Phys Rev E,71:032102.

  • 期刊类型引用(2)

    1. 赵小艳,苏有锦,孟令媛,臧阳. 2024年新疆乌什7.1级地震和中国台湾花莲7.3级地震前的大震长期平静及中国大陆强震危险性研究. 地震研究. 2025(01): 32-40 . 百度学术
    2. 李其栋,谢卓娟,周懿国. 川西地区中强地震前后b值异常特征研究. 地震地磁观测与研究. 2024(06): 28-38 . 百度学术

    其他类型引用(0)

图(8)  /  表(5)
计量
  • 文章访问数:  413
  • HTML全文浏览量:  79
  • PDF下载量:  101
  • 被引次数: 2
出版历程
  • 收稿日期:  2022-12-18
  • 修回日期:  2023-03-14
  • 网络出版日期:  2023-08-06
  • 刊出日期:  2023-12-24

目录

    /

    返回文章
    返回