Temporal convolution neural network model for simulation of site seismic effect
-
摘要:
场地地震效应模拟作为岩土地震工程学的热点与难点,多基于数学物理方法或观测记录开展研究,需面对动力方程求解、建模不确定性、数据稀疏、泛化能力等问题。针对以上问题,本文构建了物理嵌入的时序卷积神经网络(Phy-TCN)模型,并验证了其与纯数据驱动的时序卷积网络(TCN)的性能差异。针对KiK-net数据库中场地井上/井下强震记录,采用Phy-TCN模型开展了场地地震效应模拟。结果表明:Phy-TCN 模型可有效模拟时序型数据;在KiK-net观测记录等含噪信号模拟中,以选取站点的地震事件特定周期点反应谱值为基准,Phy-TCN模型和等效线性化方法所得数据与实测记录的平均相对误差分别为0.067和0.379。基于上述结果认为,Phy-TCN模型可应用于土层剖面信息模糊条件的场地地震效应模拟。
Abstract:The simulation of site seismic effects is a critical and challenging research area in earthquake engineering, providing a scientific basis for seismic safety evaluations of engineering sites, seismic fortification of buildings, and code revisions. Four primary research paradigms are typically employed: the empirical research paradigm, which relies on earthquake damage data; the theoretical research paradigm, which uses model experiments and mathematical tools to describe experimental phenomena; the computational research paradigm, which employs numerical methods to solve complex physical problems; and the data-driven paradigm, which utilizes machine learning tools to identify patterns in large datasets. Despite these approaches, challenges such as sparse data samples, weak generalization of results, and insufficient understanding of underlying laws persist. In this study, we introduce a fifth research paradigm, artificial intelligence for science, represented by physics-embedded deep learning. We investigate site seismic effects using strong motion records from the Japanese KiK-net array on-site/borehole stations.
In this study, we primarily employ temporal convolution neural network (TCN) as the deep learning framework. Compared with traditional recurrent neural networks (RNNs, LSTMs, GRUs), TCN offers stronger parallelism and more flexible receptive fields. TCN uses a one-dimensional fully convolutional network architecture, with dilated causal convolutions to exponentially increase the receptive field, thus avoiding the loss of historical information when processing long sequences. Additionally, TCN uses residual blocks to prevent gradient vanishing issues. We detail how to impose physical constraints on the loss function of deep learning neural networks and develop a physics-embedded temporal convolution neural network (Phy-TCN) model. To validate the effectiveness of the Phy-TCN model, we generated a simple sparse sample dataset. Specifically, we used 30 sets of random white noise sequences with length
1000 as excitations for a single degree of freedom system to generate the sparse sample dataset, with 15 sets each for training and testing. Under sparse data conditions, we compared the performance of the Phy-TCN with a purely data-driven TCN and explored the limitations of the TCN. The results show that embedding physical information provides more information for the training process, constraining the simulation results within feasible spaces.Then, to further demonstrate the performance of the Phy-TCN in predicting soil layer seismic responses, we generated 30 sets of numerical simulation data, randomly dividing 20 sets for training and 10 sets for testing. These numerical simulation data were generated using a one-dimensional time-domain nonlinear site seismic response analysis method based on constructed site soil layer information. The seismic acceleration records input into the soil layer model were selected from the strong motion network database of the National Research Institute for Earth Science and Disaster Resilience in Japan, and the constitutive model used to describe the nonlinear behavior of the soil was a hybrid hyperbolic nonlinear soil model. The results show that the Phy-TCN can effectively simulate site seismic effects under seismic excitation. Comparing the predicted results with reference records, the coefficient of determination (R2) is generally greater than 0.97.
Finally, in order to verify the application of the Phy-TCN model in practical engineering, we selected 50 seismic events with surface peak accelerations greater than or equal to 0.3 m/s2 from the KiK-net database at the IBRH11 and IBRH12 stations, randomly dividing 40 events for training and 10 events for testing, and conducted site seismic effect simulations using the Phy-TCN model. To illustrate the superiority of the Phy-TCN model, we used the equivalent linearization method, commonly used in engineering, to calculate the test set and compared the results with the Phy-TCN simulations. The results show that in the simulation of noisy signals such as KiK-net observation records, based on the response spectrum values of specific periodic points of seismic events at selected sites, the average relative errors of the Phy-TCN and the equivalent linearization method compared with the measured records are 0.067 and 0.379, respectively. As the intensity of seismic motion continues to increase, the measured surface peak acceleration gradually exceeds the surface peak acceleration simulated by the equivalent linearization method, while the surface peak acceleration simulated by the Phy-TCN method remains stable within a deviation range of ±20%. The simulation capability of the Phy-TCN remains strong, with the coefficient of determination (R2) generally remaining above 0.8. Under conditions of high uncertainty in shear wave velocity and soil dynamic parameters, or in the absence of suitable soil profile information, the simulation accuracy of the Phy-TCN model is higher than that of the equivalent linearization method.
-
引言
水氡观测是最为广泛的前兆测项之一(刘耀炜等,2015)。连续观测地下氡含量变化,可捕捉到地震孕育与发生的信息(姚玉霞等,2014;张磊等,2016)。氡的常规测量通常采用静电计电离法、硫化锌闪烁室法等,我国地震监测台网常用的测氡仪器有:FD-125型室内氡钍分析仪、FD-105K型静电计测氡仪器,JDZ-1型自动测氡仪、SD-1型双道自动测氡仪等。国内自主生产的闪烁室法测氡仪在地震系统中长期使用,为地震监测预报提供了有用信息(周红艳等,2015),并积累了大量的观测资料。然而,闪烁室法测氡仪自身存在难以克服的缺点,如:观测环节繁琐、氡长期积累导致降本底耗时、固体源活度失准、仪器校准不准确、计算过程复杂等,这些缺陷已经严重影响到观测资料的内在质量(任宏微等,2016)。
近年来,随着电子技术和计算机的飞速发展,用于粒子探测的核仪器性能也得到迅速提升,国内外成立了多家专业仪器生产厂(杨明太,2011)。诸多学者对新型仪器进行了测试研究,期望通过引入新仪器来代替传统测氡仪,以提供高质量的地震观测数据。DDL-1气氡仪是郑州晶微科技有限公司生产的自动化、网络化、数字化的测氡仪,其原理是利用电离法对氡气含量进行检测。该仪器性能稳定、一致性好,能够正确反映地下水中氡含量的真实变化(起卫罗等,2017,2019)。
从1984年至今,嘉峪关台一直使用FD-125闪烁室法测氡仪观测断层气氡,曾成功预报了2002年12月14日玉门MS5.9地震,2003年10月25日山丹、民乐MS6.1和MS5.8地震,为地震监测提供了宝贵资料。但随着仪器老化,观测数据波动增大,其映震效能逐渐下降。鉴于嘉峪关断层气氡观测点的实际需求,本文引进DDL-1气氡仪,对仪器性能、仪器校准、观测数据稳定性及连续观测等方面进行试验研究,对其替代传统测氡仪的可行性进行讨论。
1. 测氡仪工作原理
1) FD-125氡钍分析仪基于闪烁法原理进行测量。当氡气进入闪烁室,其衰变过程中释放的α粒子与ZnS (Ag)晶体发生碰撞,激发ZnS (Ag)原子释放出光子。这些光子被光电倍增管捕获,进而产生光电子,完成光电转换过程。闪烁室内α粒子的数量与氡气浓度之间存在正比关系,即氡气浓度与闪光频率成正比。因此,通过记录光电倍增管输出的脉冲频率,可以计算出闪烁室内的氡浓度(姚玉霞等,2017)。
2) DDL-1测氡仪基于电离法原理进行测量。利用氡气的放射性能电离周围介质的特性。当氡气进入气氡仪的电离室,由氡衰变产生的α粒子和RaA气子体引起电流的累积。氡气持续从进气口流入电离室,在特定正电场的作用下,产生的杂散离子形成向中心流动的电离离子流。这些定向的离子流在电离室中心的接收极上累积,其数量与电离室内氡气的浓度成正比。浓度越高,接收极上累积的离子流就越多,而电离室内的氡气浓度与观测井或断层中的氡气浓度直接相关。累积的离子流经过放大和模数转换后,输出至主机进行测值显示、存储和传输,实现氡气含量检测的目的。
测氡仪的主要技术指标和参数能反映该仪器的性能质量,FD-125氡钍分析仪和DDL-1气氡仪的主要技术参数对比列于表1,两套仪器出厂时的各项技术指标均执行中国地震局地震水文地球化学观测技术规范要求(中国地震局,2014)。由表可以看出,相较于FD-125氡钍分析仪,DDL-1气氡仪的采样率和灵敏度均更高。
表 1 FD-125氡钍分析仪和DDL-1气氡仪主要技术指标及参数Table 1. Main technical specifications and parameters of FD-125 radon-thoron analyzer and DDL-1 gas radon meter仪器型号 检测对象 灵敏度 稳定度 采样率 环境温度/℃ 环境湿度 电源 FD-125氡钍
分析仪气体样品 ≥2.0 cpm/pCi/L ≥90% 1次/10分钟 0—45 ≤80% AC 200 V—240 V (50 Hz) DDL-1气氡仪 气体样品 0.1 Bq/L ≥90% 1次/分钟 0—40 <80% AC 200 V—240 V (50 Hz);
DC 10 V—15 V2. 监测点概况
监测点位于嘉峪关市西北方向6 km处的嘉峪关断层中段。嘉峪关断层总体走向为北偏西35°—40°,倾向西南,倾角介于73°—85°之间,属右旋走滑逆冲型断层。该监测点是嘉峪关断层气固定监测点,自1987年8月起被选定并投入运行,每日在采样点进行样本采集,并将样本带回观测室测量氡气浓度。采样井的建造方法如下:先向下挖掘深1.2 m,直径10 cm的孔洞,随后使用炸药爆破形成一个深约1.8 m、直径30 cm的柱形坑作为气体收集坑。将直径为30 cm的玻璃漏斗倒扣在集气口上,漏斗颈部布设两个通气导管,其中一根穿过漏斗颈延伸至坑底,用于深孔观测,另一根导管则刚好穿过漏斗颈,用于浅孔观测。结构示意如图1所示。此外,导气管外部包裹铜质套管以提供保护,并进行密封处理。导气管直径为2—3 mm,通过转换接头与乳胶管相连后引出地面。整个系统与大气相通,深孔观测深度为3 m,浅孔观测深度为1.2 m。
自1987年至今,嘉峪关监测点使用FD-125氡钍分析仪观测的气氡浓度年变动态表现为典型的夏高冬低型。通常情况下,1月或2月氡浓度位于谷值,少数情况下谷值会出现在3月,峰值则通常出现在7月或8月。氡浓度曲线的趋势性转折和突跳异常对祁连山地区M>6.0地震有较高的预报效能,可作为衡量该地区地震活动性的重要指标。
3. 实验过程与分析
3.1 标定校准
根据氡观测技术规范要求(中国地震局,2014),观测仪器在使用中必须定期校准。本实验按照规范要求在同一时间用FD-
3024 固体源对DDL-1和FD-125进行校准,得到FD-125氡钍分析仪的K值为0.008 43 Bq/(脉冲·min−1),DDL-1气氡仪的K值为0.445 3 Bq/L,校准结果列于表2。对比整个校准过程,两套仪器均需要连续标定3次,取平均值得到仪器K值。但FD-125标定过程较繁琐,闪烁室降本底耗时,需要三天才能完成标定。而DDL-1过程简单且费时较少,可连续标定,自动计算平均K值,只需5小时就可以完成标定。本次校准结果,满足本次实验的要求。表 2 FD-125和DDL-1的 校准结果Table 2. Calibration results of the FD-125 and DDL-1仪器名称 标定次数 温度
/℃湿度 气压
/hPa本底
/(Bq·L−1)测值
/(Bq·L−1)各次校准
K值新K值 各次校准
相对误差新-旧K值
相对误差FD-125
氡钍分析仪第一次 19.0 37% 829.7 3.804 9 21 952 0.008 44 0.008 43 0.1% 1.3% 第二次 18.0 38% 829.1 4.227 7 22 353 0.008 30 −1.5% 第三次 18.0 38% 829.1 5.073 2 21 683 0.008 56 1.5% DDL-1
气氡仪第一次 19.5 37% 826.8 2.437 7 40.527 2 0.455 5 0.445 3 2.3% 1.5% 第二次 19.5 37% 826.8 2.526 7 40.743 4 0.453 1 2.3% 第三次 19.5 37% 826.8 3.945 9 43.185 4 0.427 5 4.0% 注:表中 FD-125 氡钍分析仪的K值单位为Bq/(脉冲·min−1),DDL-1 气氡仪的K值单位为Bq/L. 3.2 降本底对比
由于FD-125氡钍分析仪已使用多年,闪烁室内氡长期积累,降本底较困难。FD-125氡钍分析仪2021年全年的本底曲线如图2a所示,由图可以看出,本底曲线呈冬高夏低的形态,夏季气温较高时降本底费时较少,冬季气温低时降本底耗时多,且很难降到4 Bq/L以下。DDL-1气氡仪本底曲线如图2b所示,由图可以看出,DDL-1气氡仪在气温较低时降本底容易,甚至可以降到0 Bq/L,但在夏季温度较高时降本底困难。
3.3 数据可靠性实验
嘉峪关断层气氡日常观测,是在取样点用扩散瓶取样后带回观测室,按照定时、定点、定量的方式进行观测。2021年5月11日至9月30日期间,对DDL-1气氡仪和FD-125氡钍分析仪采用上述相同进样方式,静置一小时读取测值,共积累143天的数据。
两套仪器的观测值如图3所示,由图可见两套仪器测值同步性差,呈现出负相关,相关系数为−0.507 4。其原因可能是DDL-1气氡仪的传感器体积较大,为0.7 L,进气、排气管道较长,而气样较少,气样在传感器及管道内分布不均,以致测值误差偏大。
为减小误差,从10月1日开始改变DDL-1气氡仪进样方式,从取样点取回两扩散瓶气样,一瓶用于FD-125观测,另一瓶通过DDL-1配套的循环泵进行循环进样观测,用止血钳夹住传感器的进气口,循环泵抽气使传感器和橡胶管道呈负压状态,然后把装有气样的扩散瓶接入循环装置,取开止血钳,形成闭合的循环回路,连接方式如图4所示。连续观测一小时后读取测值,采用循环进样方法后,共累积了71天数据。将DDL-1气氡仪与FD-125氡钍分析仪测值进行对比,结果如图5所示。由图可见,改为循环进样后,DDL-1气氡仪的观测数据质量有明显提高,两套仪器观测值同步性较好,相关系数为0.868,测值变化较平缓。但FD-125的部分转折变化尚未同步,表明该部分变化可能为人工进样引起的误差。通过对比表明,DDL-1气氡仪的观测资料更为可靠,且仪器稳定性高。
3.4 连续观测试验
将DDL-1气氡仪架设到取样点,依次以取气口—干燥管—传感器—循环泵进行连接,循环泵排气口接通外界空气。2021年12月11日9时开始观测,初期测值较平稳约22 Bq/L,19时30分左右,测值持续下降至1 Bq/L左右,经检查地下井内导气管(直径2—3 mm)内结冰,堵塞导气管。13日取样后重新接通观测,晚间再次结冰。由于当地冬季气温最低可达−20 ℃,观测点在野外,无法采用保温措施使温度达0 ℃以上。为此,我们等待气温回升后再次进行试验。于2022年3月30日再次在取样点进行,试验结果如图6所示,可以看出仪器架设初期测值较高,随后开始下降,至28 Bq/L后趋于平稳,但数小时后测值持续下降。同时FD-125的测值由50 Bq/L下降到10 Bq/L左右,浅孔测值同步降低,严重影响到正常观测,试验停止。考虑到在降低采样率的情况下,仪器配套的真空泵仍然持续抽气,无法控制定时开关,因此没有再降低采样率进行试验。
试验结果表明:使用循环泵连续抽气观测,导致地下井内气体密度减小,并从周围断层裂隙中抽取气体,在地下结构无变化的情况下,从裂隙中排出的气量较小,导致测值持续降低;该测点深孔和浅孔观测在同一个井中,由导气管的深度不同区分深孔和浅孔,深孔在连续抽气时会导致测值降低,同时致使浅孔测值也同步降低。
4. 讨论与结论
本文对 DDL-1 气氡仪和 FD-125 测氡仪在仪器工作原理、主要技术参数、校准流程及观测数据稳定性等方面深入对比,探讨其性能表现及适用性。
从仪器设计来看,DDL-1气氡仪各项技术指标和参数满足地下流体氡测量的基本要求,其优势明显,采样率较高,可实现连续观测,且支持远程传输与参数控制,为数字化观测提供便利。在仪器校准方面,操作简便,能迅速完成校准并自动计算K值,极大地提高了工作效率;稳定性方面,该仪器稳定性高,能够体现数据的真实变化。但在降本底方面存在严重缺陷,当气温升高时,本底降低的难度增大,随着采样率的提升,仪器的灵敏度下降,影响测量的精准度。
连续测量时,测值持续降低,分析原因,可能是DDL-1 气氡仪连续抽气会改变地下井内的气体密度,从周围断层裂隙抽取气体,在地下结构稳定的情况下,断层气排出量逐渐减少,致使测量值持续降低。鉴于此,建议厂家对 DDL-1 气氡仪进行升级优化,为其配备具有定时切换进气源功能的智能设备,在低采样率测量时,通过抽取空气冲洗传感器来降低本底,以保障数据的可靠性与稳定性,从而更好地满足不同观测场景的需求。
综上,认为DDL-1 气氡仪设计具有先进性,在校准与稳定性方面表现良好,但也存在降本底困难、高采样率下灵敏度会降低,并且在特定环境下连续观测受限等问题(冬季导气管易结冰,无法进行连续观测)。因此,该仪器还不适用于嘉峪关断层气氡的连续观测。
-
图 4 场地模拟结果与实测结果对比图
图(a)和图(b)分别为决定系数R2为0.983和0.992时所对应的加速度反应谱、加速度、速度及位移时程
Figure 4. Comparison of simulated results and measured results in simple site
Figs. (a) and (b) are the comparison results of acceleration response spectra,acceleration,velocity and displacement time histories when determination coefficient R2 are 0.983 and 0.992,respectively
图 8 Phy-TCN与等效线性法基于IBRH11场地(a)和IBRH12场地(b)的两个地震事件的加速度反应谱模拟结果与实测结果的对比
Figure 8. Comparison of simulated and measured results of acceleration response spectra for two earthquake events in different horizontal directions at the sites IBRH11 (a) and IBRH12 (b) calculated by Phy-TCN and equivalent linear method
表 1 时序卷积神经网络模型在各领域的应用
Table 1 Application of temporal convolutional neural network model in various fields
研究领域 应用场景 作者 能源燃料 可再生资源的超短期时空预测 Liang,Tang (2 022) 电力系统暂态稳定评估模型 刘聪等 (2 023) 电力系统短期负荷预测 Yin,Xie (2 021) 分布式能源概率多周期预测 Loschenbrand (2 021) 热负荷预测模型 Song等 (2 020) 西班牙国家电力需求与电动汽车充电站电力需求模型 Lara-Benítez等 (2 020) 声学 高质量头部相关传递函数(HRTF) Gebru等 (2 021) 一种高效的端到端的句子级唇读模型 Zhang等 (2 021b) 信息科技 通用日志序列异常检测框架 杨瑞朋等 (2 020) 社交物联网中情感识别 Xiao等 (2 021) 医学 一种用于识别胃旁路手术中手术阶段与手术步骤的模型 Ramesh等 (2 021) 一种用于自动诊断脓毒症的自动化工具 Kok等 (2 020) 机械工业 工业设备剩余寿命预测模型 刘丽等 (2 022) 金融 融合情感特征的股价预测模型 严冬梅等 (2 022) 地球科学 复杂地层波阻抗反演模型 王德涛,陈国雄 (2 022) 气象学 高分辨的中短期区域天气预报模型 Hewage等 (2 020) 表 2 土层力学参数及混合双曲模型相关参数
Table 2 Mechanics parameters in soil layer and related parameters of hybrid hyperbolic model
层号 土层厚度/m vS/(m·s−1) 密度/(kg·m−3) μ 转变应变γt h 抗剪强度
τf/kPa参考剪应变
γref最大剪切模量
Gmax/MPa1 4 120 1600 0.308 0.048% 0.938 31.170 0.034% 23.760 2 4 360 1800 0.073 0.011% 0.721 143.183 0.046% 256.835 3 8 500 1800 0.061 0.010% 0.699 245.276 0.047% 503.375 4 12 620 1800 0.058 0.010% 0.688 358.898 0.056% 776.576 5 22 1200 2000 1.000 0.010% 0.941 547.318 0.073% 3173.761 表 3 IBRH11和IBRH12场地不同地震事件实测最大加速度反应谱下周期点地表加速度反应谱值比较
Table 3 Comparison of acceleration response spectra at periodic points under different measured maximum acceleration response spectra of earthquake events at the sites IBRH11and IBRH12
场地 地震事件 方向 周期/s $S_{{\rm{a}}}^{\rm{EQ}} $
/(m·s−2)$S_{{\rm{a}}}^{\rm{orig}} $
/(m·s−2)$S_{{\rm{a}}}^{\rm{Phy-TCN}} $
/(m·s−2)等效线性反应谱值相对误差
(|$ S_{ {\rm{a} } }^{\rm{EQ} } $–$S_{ {\rm{a} } }^{\rm{orig} } $|/$S_{ {\rm{a} } }^{\rm{orig} } $)Phy-TCN反应谱值相对误差
(|$ S_{ {\rm{a} } }^{\rm{Phy-TCN} } $–$S_{ {\rm{a} } }^{\rm{orig} } $|/$S_{ {\rm{a} } }^{\rm{orig} } $)IBRH11 1 104 021 656 EW 0.12 1.42 2.71 2.48 0.476 0.085 NS 0.38 1.58 3.19 2.99 0.505 0.063 1 303 180 653 EW 0.20 0.97 2.96 2.74 0.672 0.074 NS 0.14 3.04 2.96 2.76 0.027 0.068 IBRH12 1 104 111 758 EW 0.14 1.15 1.51 1.46 0.238 0.033 NS 0.14 0.92 1.44 1.53 0.361 0.063 1 206 281 452 EW 0.14 2.78 3.98 3.77 0.302 0.053 NS 0.15 1.86 3.39 3.71 0.451 0.094 注:$S_{ {\rm{a} } }^{\rm{EQ} } $为等效线性化方法求得的反应谱值,$S_{ {\rm{a} } }^{\rm{Phy-TCN} } $为Phy-TCN方法求得的反应谱值,$S_{ {\rm{a} } }^{\rm{orig} } $为实测反应谱值. -
廖振鹏. 1989. 地震小区划: 理论与实践[M]. 北京: 地震出版社: 141–153. Liao Z P. 1989. Seismic Microzonation: Theory and Practice[M]. Beijing: Seismological Press: 141–153 (in Chinese).
刘聪, 刘颂凯, 刘礼煌, 张磊, 谭瑞, 张雅婷. 2023. 基于TCN-CCRELMS的电力系统暂态稳定评估[J]. 电力系统及其自动化学报, 35(7): 36−44. Liu C, Liu S K, Liu L H, Zhang L, Tang R, Zhang Y T. 2023. Transient strability assessment of power system based on TCN-CCRELMS[J]. Proceedings of the CSU-EPSA, 35(7): 36−44 (in Chinese).
刘丽,裴行智,雷雪梅. 2022. 基于时间卷积注意力网络的剩余寿命预测方法[J]. 计算机集成制造系统,28(8):2375–2386. Liu L,Pei X Z,Lei X M. 2022. Temporal convolutional attention network for remaining useful life estimation[J]. Computer Integrated Manufacturing Systems,28(8):2375–2386 (in Chinese).
刘献伟,陈苏,李小军,傅磊,胡进军,孙浩. 2023. 基于HVSR谱比动态聚类的海域场地特性研究[J]. 岩土工程学报,45(1):213–220. Liu X W,Chen S,Li X J,Fu L,Hu J J,Sun H. 2023. Characteristics of marine site based on HVSR dynamic clustering method[J]. Chinese Journal of Geotechnical Engineering,45(1):213–220 (in Chinese).
任叶飞,刘也,张鹏,冀昆,王宏伟,温瑞智,谢俊举. 2023. 基于聚类分析的我国工程场地分类方案优化研究[J]. 建筑结构学报,44(11):226–235. doi: 10.14006/j.jzjgxb.2022.0273 Ren Y F,Liu Y,Zhang P,Ji K,Wang H W,Wen R Z,Xie J J. 2023. Research on optimization of site classification scheme in Chinese seismic code based on clustering analysis[J]. Journal of Building Structures,44(11):226–235 (in Chinese).
王德涛,陈国雄. 2022. 基于时间卷积网络的地震波阻抗反演[J]. 地球科学,47(4):1492–1506. doi: 10.3321/j.issn.1000-2383.2022.4.dqkx202204021 Wang D T,Chen G X. 2022. Seismic wave impedance inversion based on temporal convolutional network[J]. Earth Science,47(4):1492–1506 (in Chinese).
严冬梅,何雯馨,陈智. 2022. 融合情感特征的基于RoBERTa-TCN的股价预测研究[J]. 数据分析与知识发现,6(12):123–134. Yan D M,He W X,Chen Z. 2022. Research on stock price prediction based on RoBERTa-TCN with emotional characteristics[J]. Data Analysis &Knowledge Discovery,6(12):123–134 (in Chinese).
杨瑞朋,屈丹,朱少卫,钱叶魁,唐永旺. 2020. 基于改进时间卷积网络的日志序列异常检测[J]. 计算机工程,46(8):50–57. Yang R P,Qu D,Zhu S W,Qian Y K,Tang Y W. 2020. Anomaly detection for log sequence based on improved temporal convolutional network[J]. Computer Engineering,46(8):50–57 (in Chinese).
Asimaki D, Shi J. 2017. SeismoSoil User Manual, V1.3[M]. California: GeoQuake Research Group, California Institute of Technology: 6−12.
Bai S J, Kolter J Z, Koltun V. 2018. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling[DB/OL]. [2022-12-01]. https://arxiv.org/abs/1803.01271.
Darendeli M B. 2001. Development of a New Family of Normalized Modulus Reduction and Material Damping Curves[D]. Austin: The University of Texas: 220−272.
Derakhshani A,Foruzan A H. 2019. Predicting the principal strong ground motion parameters:A deep learning approach[J]. Appl Soft Comput,80:192–201. doi: 10.1016/j.asoc.2019.03.029
Gebru I D, Marković D, Richard A, Krenn S, Butler G A, De la Torre F, Sheikh Y. 2021. Implicit HRTF modeling using temporal convolutional networks[C]//ICASSP 2021−2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Toronto: IEEE: 3385–3389.
Hashash Y M A,Park D. 2001. Non-linear one-dimensional seismic ground motion propagation in the Mississippi embayment[J]. Eng Geol,62(1/2/3):185–206.
He K M, Zhang X Y, Ren S Q, Sun J. 2016. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE: 770–778.
Hewage P,Behera A,Trovati M,Pereira E,Ghahremani M,Palmieri F,Liu Y H. 2020. Temporal convolutional neural (TCN) network for an effective weather forecasting using time-series data from the local weather station[J]. Soft Comput,24(21):16453–16482. doi: 10.1007/s00500-020-04954-0
Idriss I M,Seed H B. 1968. Seismic response of horizontal soil layers[J]. J Soil Mech Found Div,94(4):1003–1031. doi: 10.1061/JSFEAQ.0001163
Kingma D P, Ba J. 2015. Adam: A method for stochastic optimization[C]//Proceedings of the 3rd International Conference on Learning Representations. San Diego: Institute for Catastrophic Loss Reduction: abs/1412.6980.
Kok C,Jahmunah V,Oh S L,Zhou X J,Gururajan R,Tao X H,Cheong K H,Gururajan R,Molinari F,Acharya U R. 2020. Automated prediction of sepsis using temporal convolutional network[J]. Comput Biol Med,127:103957. doi: 10.1016/j.compbiomed.2020.103957
Lara-Benítez P,Carranza-García M,Luna-Romera J M,Riquelme J C. 2020. Temporal convolutional networks applied to energy-related time series forecasting[J]. Appl Sci,10(7):2322. doi: 10.3390/app10072322
Li C X,Li H,Chen X. 2022. Fast seismic response estimation of tall pier bridges based on deep learning techniques[J]. Eng Struct,266:114566. doi: 10.1016/j.engstruct.2022.114566
Liang J K,Tang W Y. 2022. Ultra-short-term spatiotemporal forecasting of renewable resources:An attention temporal convolutional network-based approach[J]. IEEE Trans Smart Grid,13(5):3798–3812. doi: 10.1109/TSG.2022.3175451
Liu D C,Nocedal J. 1989. On the limited memory BFGS method for large scale optimization[J]. Math Program,45(1):503–528.
Liu T,Dai Z J. 2021. Real-time prediction of the trend of ground motion intensity based on deep learning[J]. Shock Vibrat,2021:5518204.
Long J,Shelhamer E,Darrell T. 2017. Fully convolutional networks for semantic segmentation[J]. IEEE Trans Pattern Anal Mach Intell,39(4):640–651. doi: 10.1109/TPAMI.2016.2572683
Loschenbrand M. 2021. A temporal neural network model for probabilistic multi-period forecasting of distributed energy resources[J]. IEEE Access,9:147029–147041. doi: 10.1109/ACCESS.2021.3121988
Peng H,Yan J W,Yu Y,Luo Y Z. 2021. Time series estimation based on deep learning for structural dynamic nonlinear prediction[J]. Structures,29:1016–1031. doi: 10.1016/j.istruc.2020.11.049
Ramesh S,Dall’Alba D,Gonzalez C,Yu T,Mascagni P,Mutter D,Marescaux J,Fiorini P,Padoy N. 2021. Multi-task temporal convolutional networks for joint recognition of surgical phases and steps in gastric bypass procedures[J]. Int J Comput Assist Radiol Surg,16(7):1111–1119. doi: 10.1007/s11548-021-02388-z
Roten D,Olsen K B. 2021. Estimation of site amplification from geotechnical array data using neural networks[J]. Bull Seismol Soc Am,111(4):1784–1794. doi: 10.1785/0120200346
Shi J,Asimaki D. 2017. From stiffness to strength:Formulation and validation of a hybrid hyperbolic nonlinear soil model for site-response analyses[J]. Bull Seismol Soc Am,107(3):1336–1355. doi: 10.1785/0120150287
Song J C,Xue G X,Pan X H,Ma Y P,Li H. 2020. Hourly heat load prediction model based on temporal convolutional neural network[J]. IEEE Access,8:16726–16741. doi: 10.1109/ACCESS.2020.2968536
Xiao G R,Tu G,Zheng L,Zhou T,Li X,Ahmed S H,Jiang D Z. 2021. Multimodality sentiment analysis in social internet of things based on hierarchical attentions and CSAT-TCN with MBM network[J]. IEEE Internet Things J,8(16):12748–12757. doi: 10.1109/JIOT.2020.3015381
Yin L F,Xie J X. 2021. Multi-temporal-spatial-scale temporal convolution network for short-term load forecasting of power systems[J]. Appl Energy,283:116328. doi: 10.1016/j.apenergy.2020.116328
Yu F, Koltun V. 2016. Multi-scale context aggregation by dilated convolutions[Z]. arXiv preprint arXiv: 1511.07122.
Zhang N,Shen S L,Zhou A N,Jin Y F. 2021a. Application of LSTM approach for modelling stress-strain behaviour of soil[J]. Appl Soft Comput,100:106959. doi: 10.1016/j.asoc.2020.106959
Zhang R Y,Chen Z,Chen S,Zheng J W,Büyüköztürk O,Sun H. 2019. Deep long short-term memory networks for nonlinear structural seismic response prediction[J]. Comput Struct,220:55–68. doi: 10.1016/j.compstruc.2019.05.006
Zhang T,He L,Li X D,Feng G Q. 2021b. Efficient end-to-end sentence-level lipreading with temporal convolutional networks[J]. Appl Sci,11(15):6975. doi: 10.3390/app11156975
-
期刊类型引用(8)
1. 叶青,王晓,杜学彬,解滔,范晔,周振贵,刘高川. 中国地震井下地电阻率研究进展. 吉林大学学报(地球科学版). 2022(03): 669-683 . 百度学术
2. Guoze ZHAO,Xuemin ZHANG,Juntao CAI,Yan ZHAN,Qinzhong MA,Ji TANG,Xuebin DU,Bing HAN,Lifeng WANG,Xiaobin CHEN,Qibin XIAO,Xiangyu SUN,Zeyi DONG,Jijun WANG,Jihong ZHANG,Ye FAN,Tao YE. A review of seismo-electromagnetic research in China. Science China(Earth Sciences). 2022(07): 1229-1246 . 必应学术
3. 赵国泽,张学民,蔡军涛,詹艳,马钦忠,汤吉,杜学彬,韩冰,王立凤,陈小斌,肖骑彬,孙翔宇,董泽义,王继军,张继红,范晔,叶涛. 中国地震电磁研究现状和发展趋势. 中国科学:地球科学. 2022(08): 1499-1515 . 百度学术
4. 鲍海英,夏忠,毕雪梅,李鸿宇,王昕. 江苏海安顾庄观测站井下地电阻率观测影响系数分析. 地震. 2022(03): 192-203 . 百度学术
5. 黄明威,张琪,李梦莹,杨牧萍. 新城子井下地电阻率观测影响系数分析. 防灾减灾学报. 2020(01): 49-56 . 百度学术
6. 高曙德,罗维斌,张博,武善艺,李娜,曹玲玲,窦喜英. 编码源地电观测对干扰信号的抑制试验——以通渭台观测为例. 地震工程学报. 2020(05): 1096-1103 . 百度学术
7. 毛先进,段炜,庄儒新,杨玲英,赵晋民. 井下地电阻率观测中布极参数的确定方法. 地震研究. 2019(01): 96-101 . 百度学术
8. 樊晓春,解滔,吴帆,袁慎杰. 井下地电阻率观测影响系数分析——以江宁地震台为例. 中国地震. 2019(02): 347-358 . 百度学术
其他类型引用(1)