Microseismic detection and location around the Zipingpu reservoir and its adjacent areas
-
摘要:
首先对四川省地震局提供的1 017次地震进行重定位,并将重定位后的578次高信噪比地震作为模板,利用基于图像处理器加速的匹配定位技术(GPU-M&L)对紫坪铺水库地震台网7个台站2005—2008年记录的连续波形数据进行扫描;然后利用基于深度学习算法的去噪技术(DeepDenoiser)设计出的卷积神经网络模型来进一步验证这些新检测到的地震事件;最后利用双差定位法对检测到的地震事件进行精定位。最终识别到的地震事件多达1万6 836个,约为四川省地震局目录事件的13倍,地震目录的完备震级由ML1.4降为ML−0.1。定位结果显示,研究区的地震事件呈北东向线性分布,优势震源深度指示区域地壳内的滑脱层位置,结合b值和震源深度分析结果推测,研究区蓄水后的地震主要是构造应力积累导致的天然地震活动,并伴随水库触发地震混杂发生。
-
关键词:
- 紫坪铺水库 /
- GPU加速的匹配定位技术 /
- 双差定位 /
- 深度学习
Abstract:We relocate the 1017 earthquakes provided by the Sichuan Earthquake Agency and then use the 578 relocated earthquakes with a high signal-to-noise ratio as templates. The continuous waveform data recorded by 7 stations of Zipingpu reservoir seismic network from 2005 to 2008 are scanned by graphics processing unit-based match and locate (GPU-M&L) method. Then, based on the denoising results by applying the deep learning algorithm called DeepDenoiser, a convolutional neural network model is designed to further verify these newly detected events. Finally, the double-difference location method is used to accurately relocate them. A total of 16836 events are eventually identified, which is about 13 times as many as the events listed in the local catalog of Sichuan Earthquake Agency. The magnitude of completeness is reduced from ML1.4 given by the local catalog to ML−0.1. The relocated results show that the seismic events in the study area are linearly distributed in the northeast direction. The dominant focal depth indicates the location of the detachment layer in the crust of the region. Combined with the analysis results of b value and the focal depth, it is speculated that the earthquakes after impoundment in the study area are mainly natural seismic activities caused by the accumulation of tectonic stress, accompanied by the occurrence of reservoir-triggered seismicity.
-
-
图 12 台网目录重定位前后震源分布(a)及沿剖面AB和CD方向的事件投影分布(b,c)
F1:汶川—茂汶断裂; F2:北川—映秀断裂;F3:安县—灌县断裂
Figure 12. The distribution of earthquakes before and after relocation (a) and projections of the events along AB and CD profiles,respectively (b,c)
F1:Wenchuan-Maowen fault;F2:Beichuan-Yingxiu fault;F3:Anxian-Guanxian fault
图 2 基于图像处理器加速的匹配定位技术检测结果示例 (起始时间为2008−06−06 00:00:00)
(a) 平均互相关系数CC值,红色虚线表示检测阈值为0.3,红色圆点表示检测到的地震事件;(b) 对应图(a)中所示窗口互相关系数的分布统计图;(c) 连续波形(灰色)与模板事件(红色)在时间窗口中的比较,台网台站和各分量CC值分别标记于波形左右两侧
Figure 2. An example of detection based on the GPU-M&L technique
(a) Mean CC value trace,where the red dashed line marks the detection threshold of 0.3,and the positive detection is shown by the red dot;(b) Histogram of the CC value distribution corresponding to the window shown in Fig. (a);(c) Comparisons of continuous waveforms (gray) with templates (red) in a zoom-in time window. The stations of seismic networks and CC values are given to the left and right,respectively
表 1 不同阈值下的检测事件
Table 1 The detected events under different thresholds
阈值 检测事件个数 互相关系数<0.2的事件占比 9MAD 109 822 21.15% 12MAD 21 213 2.20% 15MAD 8 643 2.13% 注:MAD为中值绝对偏差。 -
程万正,张致伟,阮祥. 2010. 紫坪铺水库区不同蓄水阶段的地震活动及成因分析[J]. 地球物理学进展,25(3):759–767. doi: 10.3969/j.issn.1004-2903.2010.03.003 Cheng W Z,Zhang Z W,Ruan X. 2010. Analysis of seismicity and its causes in Zipingpu reservior region at each water storage stage[J]. Progress in Geophysics,25(3):759–767 (in Chinese).
丁原章,潘建雄,肖安予,沈立英,马汉雄,谬维成. 1983. 新丰江水库诱发地震的构造条件[J]. 地震地质,5(3):63–74. Ding Y Z,Pan J X,Xiao A Y,Shen L Y,Ma H X,Miao W C. 1983. Tectonic environment of reservoir induced earthquake in the Xinfengjiang reservoir area[J]. Seismology and Geology,5(3):63–74 (in Chinese).
胡毓良,陈献程. 1979. 我国的水库地震及有关成因问题的讨论[J]. 地震地质,1(4):45–57. Hu Y L,Chen X C. 1979. Discussion on the reservoir-induced earthquakes in China and some problems related to their origin[J]. Seismology and Geology,1(4):45–57 (in Chinese).
华卫,陈章立,郑斯华,晏纯清. 2012. 水库诱发地震与构造地震震源参数特征差异性研究:以龙滩水库为例[J]. 地球物理学进展,27(3):924–935. Hua W,Chen Z L,Zheng S H,Yan C Q. 2012. Differences existing in characteristics of source parameters between reservoir induced seismicity and tectonic earthquake:A case study of Longtan reservoir[J]. Progress in Geophysics,27(3):924–935 (in Chinese).
姜金钟,付虹,陈棋福. 2016. 位于构造活跃区的小湾水库地震活动特征:基于地震精定位的分析[J]. 地球物理学报,59(7):2468–2485. Jiang J Z,Fu H,Chen Q F. 2016. Characteristics of seismicity of the Xiaowan reservoir in an area of active tectonics from double-difference relocation analysis[J]. Chinese Journal of Geophysics,59(7):2468–2485 (in Chinese).
雷兴林,马胜利,闻学泽,苏金蓉,杜方. 2008. 地表水体对断层应力与地震时空分布影响的综合分析:以紫坪铺水库为例[J]. 地震地质,30(4):1046–1064. Lei X L,Ma S L,Wen X Z,Su J R,Du F. 2008. Integrated analysis of stress and regional seismicity by surface loading:A case study of Zipingpu reservoir[J]. Seismology and Geology,30(4):1046–1064 (in Chinese).
李大虎,詹艳,丁志峰,高家乙,吴萍萍,孟令媛,孙翔宇,张旭. 2021. 四川长宁MS6.0地震震区上地壳速度结构特征与孕震环境[J]. 地球物理学报,64(1):18–35. Li D H,Zhan Y,Ding Z F,Gao J Y,Wu P P,Meng L Y,Sun X Y,Zhang X. 2021. Upper crustal velocity and seismogenic environment of the Changning MS6.0 earthquake region in Sichuan,China[J]. Chinese Journal of Geophysics,64(1):18–35 (in Chinese).
李勇,周荣军,赵国华,苏德辰,闫亮,颜照坤,云锟. 2013. 龙门山前缘的芦山地震与逆冲-滑脱褶皱作用[J]. 成都理工大学学报(自然科学版),40(4):353–363. Li Y,Zhou R J,Zhao G H,Su D C,Yan L,Yan Z K,Yun K. 2013. Thrusting and detachment folding of Lushan earthquake in front of Longmenshan mountains[J]. Journal of Chengdu University of Technology (Science &Technology Edition),40(4):353–363 (in Chinese).
刘雁冰,裴顺平. 2017. 汶川地震前后b值的时空变化及构造意义[J]. 地球物理学报,60(6):2104–2112. doi: 10.6038/cjg20170607 Liu Y B,Pei S P. 2017. Temporal and spatial variation of b-value before and after Wenchuan earthquake and its tectonic implication[J]. Chinese Journal of Geophysics,60(6):2104–2112 (in Chinese).
马文涛,徐长朋,张新东,徐锡伟,李海鸥,苑京立. 2011. 紫坪铺水库与汶川地震关系的讨论[J]. 地震地质,33(1):175–190. Ma W T,Xu C P,Zhang X D,Xu X W,Li H O,Yuan J L. 2011. Study on the relationship between the reservoir-induced seismicity at Zipingpu reservoir and the MS8.0 Wenchuan earthquake[J]. Seismology and Geology,33(1):175–190 (in Chinese).
马文涛,蔺永,苑京立,李海鸥,徐长朋,罗佳宏. 2013. 水库诱发地震的震例比较与分析[J]. 地震地质,35(4):914–929. doi: 10.3969/j.issn.0253-4967.2013.04.020 Ma W T,Lin Y,Yuan J L,Li H O,Xu C P,Luo J H. 2013. Comparison and analysis on the basic features of reservoir-induced seismicity[J]. Seismology and Geology,35(4):914–929 (in Chinese).
杨智娴,于湘伟,郑月军,陈运泰,倪晓晞,Winston Chan. 2004. 中国中西部地区地震的重新定位和三维地壳速度结构[J]. 地震学报,26(1):19–29. Yang Z X,Yu X W,Zheng Y J,Chen Y T,Ni X X,Chan W. 2004. Earthquake relocation and 3-dimensional crustal structure of P-wave velocity in central-western China[J]. Acta Seismologica Sinica,26(1):19–29 (in Chinese). doi: 10.1007/BF03191391
张致伟,程万正,张永久,谢蓉华,傅莺. 2009. 汶川8.0级地震前紫坪铺水库小震活动及震源参数研究[J]. 中国地震,25(4):367–376. doi: 10.3969/j.issn.1001-4683.2009.04.003 Zhang Z W,Cheng W Z,Zhang Y J,Xie R H,Fu Y. 2009. Research on seismicity and source parameters of small earthquakes in the Zipingpu dam before Wenchuan MS8.0 earthquake[J]. Earthquake Research in China,25(4):367–376 (in Chinese).
周斌,薛世峰,邓志辉,孙峰,蒋海昆,张晓东,卢显. 2010. 水库诱发地震时空演化与库水加卸载及渗透过程的关系:以紫坪铺水库为例[J]. 地球物理学报,53(11):2651–2670. Zhou B,Xue S F,Deng Z H,Sun F,Jiang H K,Zhang X D,Lu X. 2010. Relationship between the evolution of reservoir-induced seismicity in space-time and the process of reservoir water body load-unloading and water infiltration:A case study of Zipingpu reservoir[J]. Chinese Journal of Geophysics,53(11):2651–2670 (in Chinese).
周宏伟,佘云龙,李洪. 2007. 紫坪铺库区断层分布规律统计分析[J]. 工程地质学报,15(2):159–163. doi: 10.3969/j.issn.1004-9665.2007.02.003 Zhou H W,She Y L,Li H. 2007. Statistical analysis of fault distribution and lengths at Zipingpu hydropower project[J]. Journal of Engineering Geology,15(2):159–163 (in Chinese).
朱介寿. 2008. 汶川地震的岩石圈深部结构与动力学背景[J]. 成都理工大学学报(自然科学版),35(4):348–356. doi: 10.3969/j.issn.1671-9727.2008.04.002 Zhu J S. 2008. The Wenchuan earthquake occurrence background in deep structure and dynamics of lithosphere[J]. Journal of Chengdu University of Technology (Science &Technology Edition),35(4):348–356 (in Chinese).
Aki K. 1965. Maximum likelihood estimate of b in the formula logN=a−bM and its confidence limits[J]. Bull Earthq Res Inst Univ Tokyo,43(2):237–239.
Allen R. 1982. Automatic phase pickers:Their present use and future prospects[J]. Bull Seismol Soc Am,72(6B):S225–S242. doi: 10.1785/BSSA07206B0225
Chang C H,Wu Y M,Zhao L,Wu F T. 2007. Aftershocks of the 1999 Chi-Chi,Taiwan,earthquake:The first hour[J]. Bull Seismol Soc Am,97(4):1245–1258. doi: 10.1785/0120060184
Deng K,Zhou S Y,Wang R,Robinson R,Zhao C P,Cheng W Z. 2010. Evidence that the 2008 MW7.9 Wenchuan earthquake could not have been induced by the Zipingpu reservoir[J]. Bull Seismol Soc Am,100(5B):2805–2814. doi: 10.1785/0120090222
do Nascimento A F,Cowie P A,Lunn R J,Pearce R G. 2004. Spatio-temporal evolution of induced seismicity at Açu reservoir,NE Brazil[J]. Geophys J Int,158(3):1041–1052. doi: 10.1111/j.1365-246X.2004.02351.x
Grigoli F,Scarabello L,Böse M,Weber B,Wiemer S,Clinton J F. 2018. Pick- and waveform-based techniques for real-time detection of induced seismicity[J]. Geophys J Int,213(2):868–884. doi: 10.1093/gji/ggy019
Gutenberg B,Richter C F. 1944. Frequency of earthquakes in California[J]. Bull Seismol Soc Am,34(4):185–188. doi: 10.1785/BSSA0340040185
Huang H,Meng L S,Plasencia M,Wang Y L,Wang L S,Xu M J. 2017. Matched-filter detection of the missing pre-mainshock events and aftershocks in the 2015 Gorkha,Nepal earthquake sequence[J]. Tectonophysics,714-715:71–81. doi: 10.1016/j.tecto.2016.08.018
Huang Y F,Zhang S Z,Lü Y J,Li Y Z,Zhang Y T,Liu M. 2020. Earthquake detection in the Jiangsu region,China using graphics-processing-unit-based match & locate and rapid earthquake association and location[J]. Earthq Sci,33(1):23–33. doi: 10.29382/eqs-2020-0023-03
Ioffe S, Szegedy C. 2015. Batch normalization: Accelerating deep network training by reducing internal covariate shift[C]//Proceedings of 32nd International Conference on Machine Learning. Lille: PMLR: 448−456.
Kao H,Shan S J. 2007. Rapid identification of earthquake rupture plane using source-scanning algorithm[J]. Geophys J Int,168(3):1011–1020. doi: 10.1111/j.1365-246X.2006.03271.x
Kerr R A,Stone R. 2009. A human trigger for the great quake of Sichuan?[J]. Science,323(5912):322. doi: 10.1126/science.323.5912.322
Kerr R A,Stone R. 2010. Two years later,new rumblings over origins of Sichuan quake[J]. Science,327(5970):1184. doi: 10.1126/science.327.5970.1184
Liu M,Li H Y,Zhang M,Wang T L. 2020. Graphics processing unit-based match and locate (GPU-M&L):An improved match and locate method and its application[J]. Seismol Res Lett,91(2A):1019–1029. doi: 10.1785/0220190241
Mekkawi M,Grasso J R,Schnegg P A. 2004. A long-lasting relaxation of seismicity at Aswan reservoir,Egypt,1982−2001[J]. Bull Seismol Soc Am,94(2):479–492. doi: 10.1785/0120030067
Meng X F,Peng Z G,Hardebeck J L. 2013. Seismicity around Parkfield correlates with static shear stress changes following the 2003 MW6.5 San Simeon earthquake[J]. J Geophys Res:Solid Earth,118(7):3576–3591. doi: 10.1002/jgrb.50271
Meng X F,Peng Z G. 2016. Increasing lengths of aftershock zones with depths of moderate-size earthquakes on the San Jacinto fault suggests triggering of deep creep in the middle crust[J]. Geophys J Int,204(1):250–261. doi: 10.1093/gji/ggv445
Murru M,Console R,Falcone G,Montuori C,Sgroi T. 2007. Spatial mapping of the b value at Mount Etna,Italy,using earthquake data recorded from 1999 to 2005[J]. J Geophys Res:Solid Earth,112(B12):B12303. doi: 10.1029/2006JB004791
Peng Z G,Zhao P. 2009. Migration of early aftershocks following the 2004 Parkfield earthquake[J]. Nat Geosci,2(12):877–881. doi: 10.1038/ngeo697
Pesicek J D,Child D,Artman B,Cieślik K. 2014. Picking versus stacking in a modern microearthquake location:Comparison of results from a surface passive seismic monitoring array in Oklahoma[J]. Geophysics,79(6):KS61–KS68. doi: 10.1190/geo2013-0404.1
Ruan X,Meng X F,Peng Z G,Long F,Xie R H. 2017. Microseismic activity in the last five months before the MW7.9 Wenchuan earthquake[J]. Bull Seismol Soc Am,107(4):1582–1592.
Scholz C H. 1968. The frequency-magnitude relation of microfracturing in rock and its relation to earthquakes[J]. Bull Seismol Soc Am,58(1):399–415. doi: 10.1785/BSSA0580010399
Shelly D R,Beroza G C,Ide S. 2007. Non-volcanic tremor and low-frequency earthquake swarms[J]. Nature,446(7133):305–307. doi: 10.1038/nature05666
Srivastava N,Hinton G,Krizhevsky A,Sutskever I,Salakhutdinov R. 2014. Dropout:A simple way to prevent neural networks from overfitting[J]. J Mach Learn Res,15(1):1929–1958.
Waldhauser F,Ellsworth W L. 2000. A double-difference earthquake location algorithm:Method and application to the northern Hayward fault,California[J]. Bull Seismol Soc Am,90(6):1353–1368. doi: 10.1785/0120000006
Walter J I,Meng X F,Peng Z G,Schwartz S Y,Newman A V,Protti M. 2015. Far-field triggering of foreshocks near the nucleation zone of the 5 September 2012 (MW7.6) Nicoya Peninsula,Costa Rica earthquake[J]. Earth Planet Sci Lett,431:75–86. doi: 10.1016/j.jpgl.2015.09.017
Wiemer S. 2001. A software package to analyze seismicity:ZMAP[J]. Seismol Res Lett,72(3):373–382. doi: 10.1785/gssrl.72.3.373
Wiemer S,Benoit J P. 1996. Mapping the b-value anomaly at 100 km depth in the Alaska and New Zealand subduction zones[J]. Geophys Res Lett,23(13):1557–1560. doi: 10.1029/96GL01233
Withers M,Aster R,Young C,Beiriger J,Harris M,Moore S,Trujillo J. 1998. A comparison of select trigger algorithms for automated global seismic phase and event detection[J]. Bull Seismol Soc Am,88(1):95–106. doi: 10.1785/BSSA0880010095
Woessner J,Wiemer S. 2005. Assessing the quality of earthquake catalogues:Estimating the magnitude of completeness and its uncertainty[J]. Bull Seismol Soc Am,95(2):684–698. doi: 10.1785/0120040007
Yang Z X,Waldhauser F,Chen Y T,Richards P G. 2005. Double-difference relocation of earthquakes in central-western China,1992−1999[J]. J Seismol,9(2):241–264. doi: 10.1007/s10950-005-3988-z
Zhang M,Wen L X. 2015. An effective method for small event detection:Match and locate (M&L)[J]. Geophys J Int,200(3):1523–1537. doi: 10.1093/gji/ggu466
Zhang M,Ellsworth W L,Beroza G C. 2019. Rapid earthquake association and location[J]. Seismol Res Lett,90(6):2276–2284. doi: 10.1785/0220190052
Zhang S J,Zhou S Y. 2016. Spatial and temporal variation of b-values in southwest China[J]. Pure Appl Geophys,173(1):85–96. doi: 10.1007/s00024-015-1044-7
Zhu W Q,Beroza G C. 2019. PhaseNet:A deep-neural-network-based seismic arrival-time picking method[J]. Geophys J Int,216(1):261–273.
Zhu W Q,Mousavi S M,Beroza G C. 2019. Seismic signal denoising and decomposition using deep neural networks[J]. IEEE Trans Geosci Remote Sens,57(11):9476–9488. doi: 10.1109/TGRS.2019.2926772