断层虚位错模式揭示的2022年1月8日青海门源MS6.9地震前的地电阻率变化

李新艳, 解滔, 曾宪伟, 卫定军, 崔瑾, 李霞

李新艳,解滔,曾宪伟,卫定军,崔瑾,李霞. 2024. 断层虚位错模式揭示的2022年1月8日青海门源MS6.9地震前的地电阻率变化. 地震学报,46(2):292−306. DOI: 10.11939/jass.20230027
引用本文: 李新艳,解滔,曾宪伟,卫定军,崔瑾,李霞. 2024. 断层虚位错模式揭示的2022年1月8日青海门源MS6.9地震前的地电阻率变化. 地震学报,46(2):292−306. DOI: 10.11939/jass.20230027
Li X Y,Xie T,Zeng X W,Wei D J,Cui J,Li X. 2024. Variations of apparent resistivity before the 2022 MS6.9 Menyuan earthquake in Qinghai Province revealed by the virtual fault dislocation model. Acta Seismologica Sinica46(2):292−306. DOI: 10.11939/jass.20230027
Citation: Li X Y,Xie T,Zeng X W,Wei D J,Cui J,Li X. 2024. Variations of apparent resistivity before the 2022 MS6.9 Menyuan earthquake in Qinghai Province revealed by the virtual fault dislocation model. Acta Seismologica Sinica46(2):292−306. DOI: 10.11939/jass.20230027

断层虚位错模式揭示的2022年1月8日青海门源MS6.9地震前的地电阻率变化

基金项目: 地震科技星火计划青年项目(XH21050Y)、宁夏自然科学基金(2022AAC03698)和震情跟踪定向工作任务(2023010408)联合资助
详细信息
    通讯作者:

    李新艳,在读博士研究生,主要从事地电阻率和遥感地球化学研究,e-mail:lixinyan905@163.com

  • 中图分类号: P315.722

Variations of apparent resistivity before the 2022 MS6.9 Menyuan earthquake in Qinghai Province revealed by the virtual fault dislocation model

  • 摘要:

    选取2022年1月8日青海门源MS6.9地震震中400 km范围内四个地电阻率观测台站的观测精度高、具有稳态年变、震前无显著干扰的地电阻率$ {\rho }_{{\mathrm{s}}} $观测数据,结合ERA5同化数据集中的多层土壤温度和土壤水分含量,在利用多项式拟合获取各台站(或测道)地电阻率正常年动态的基础上,分析了门源地震前地电阻率的异常变化。结果显示:金银滩台EW测道、武威台NS测道和山丹台EW测道、N45°W测道震前存在超阈值的异常变化,并呈现各向异性特征。基于断层虚位错模式分析了地电阻率异常变化与孕震过程之间的联系,结果表明:金银滩台震前处于压缩区并受到NNE方向的挤压,与主压应变近似正交的EW测道于震前10个月出现负异常;同样位于压缩区的武威台,受到了ENE向的挤压,NS测道的地电阻率在孕震早期(震前13个月)以负异常为主,孕震中晚期(震前3个月)出现了正异常;山丹台,位于膨胀区,受到近似NS向的拉张,与主张应变平行的NS测道未发现异常,但EW测道震前一年地电阻率出现正异常,N45°W测道的地电阻率也在震前半年左右出现超阈值并呈正异常。此外,金银滩台、山丹台和武威台距离门源地震震中的距离分别为92 km,113 km和139 km,相应的地电阻率异常最大变化幅值分别为−3.0σ,2.2σ和−2.1σ。此外,门源地震前地电阻率异常变化的时空特征与岩石实验结果及理论模型一致,也符合震源区应力应变积累程度较高、向外围方向逐渐衰减的分布特征。由此推断,2022年门源MS6.9地震前地电阻率的时空变化可能与区域介质变形及应力变化有关。

    Abstract:

    An earthquake with MS6.9 struck the Menyuan County, Qinghai Province, northwestern China on 8 January 2022. There were four apparent resistivity observation stations with anomalies in an area within 400 km from the epicenter. Using the observed data with high quality and stable annual variation as well as the soil temperature and soil water provided by ERA5 assimilation datasets, a polynomial fitting was performed so as to subtract the normal annual dynamics and to detect the anomalies of the apparent resistivity prior to the earthquake. The results indicate that the above-threshold changes and anisotropic characteristics appeared before the earthquake in the EW channel at the Jinyintan station, NS channel at the Wuwei station, and the EW and N45°W channels at the Shandan station. A virtual fault dislocation model was used to examine the relationship between apparent resistivity changes and seismogenic process of the Menyuan earthquake. In the areas with compression along NNE direction, the decrease changes in the EW channel, which is approximately orthogonal to the direction of the principal compressive strain, has been observed at the Jinyintan station since ten months before the earthquake, the negative anomaly in the NS channel in the early stages of the earthquake preparation (13 months before the main shock) appeared at the Wuwei station, while it turned to an increase change three months before the earthquake. At the Shandan station, which is located in the relative extensional area, no anomalies were detected in the NS channel parallel to the principle tensile strain. However, an increase change was observed in the EW channel one year prior to the earthquake, and an increase change was also recorded in the N45°W channel of Shandan station half-year before the earthquake. Furthermore, at the Jinyintan station, Shandan station, and Wuwei station with epicentral distance of 92 km, 113 km, and 139 km, the corresponding maximum variation of anomalies are −3.0σ, 2.2σ and −2.1σ respectively. In addition, Variations of apparent resistivity before the 2022 MS6.9 Menyuan earthquake were consistent with the results from rock experiment and theoretical models. Moreover, the spatio-temporal characteristics of the variation of apparent resistivity before the MS6.9 Menyuan earthquake are likely consistent with the stress accumulation in the source region, as well as with the characteristics of stress accumulation by a high degree in the epicenter and gradual attenuation towards the periphery. Therefore, it can be deduced that the spatio-temporal variation of apparent resistivity before the MS6.9 Menyuan earthquake may be related to regional medium deformation and stress change.

  • 确定输入地震波是结构抗震工程领域进行时程动力分析过程中的一个重要课题,目前国内外使用比较广泛的方法是根据设计反应谱来拟合匹配的人工地震波,将其作为抗震设计的输入地震波。为了满足某些特定的地震动工程特性,如时域、频域信息等,按照一定的数值算法合成地震动时程的过程即为地震动的反应谱拟合。

    反应谱拟合分为时域法和频域法两种(刘帅等,2018)。时域法是通过时域内某个特定点的脉冲来调整反应谱上某点发生的最大位移,例如使用窄带时程叠加法(赵凤新,张郁山,2007何佳,王海涛,2010)或小波变换来拟合地震动(白泉等,2015Cecini,Palmeri,2015谢皓宇等,2019),以及使用Broyden算法的地震动拟合方法(Adekristi,Eatherton,2015)。时域法更多是在已有某地震动的条件下,通过修正地震波的时域分量使其反应谱向设计谱逼近,而频域法则不需要自然波或者其它地震波作为必要条件,仅通过一个随机相位谱即可生成人工地震波(陈永祁等,1981Gupta,2002),因此频域法拟合人工地震波的随机性高于时域法。

    然而,传统的频域法拟合人工地震动在计算过程中并未区别傅里叶谱各频率分量对最大反应的贡献为正或负,也未涉及随机相位谱对于拟合结果的影响,这造成了算法的迭代效率偏低、拟合的频域顽固点较多等问题。因此,亟需研发一种改进的人工地震波拟合方法。

    鉴于此,本文在传统的频域法拟合人工地震动的基础上,提出考虑每次迭代的相关性,区别傅里叶谱各频率分量对最大反应的贡献的正负,并对随机相位谱进行修正的一种新的综合方法,以期提高拟合精度,加快计算速度。

    频域法的基本原理是通过具有随机相位谱的一组三角函数的叠加来构造一个近似的平稳高斯过程,再乘以一个等时程的包络函数,最终得到一个非平稳的加速度时程(杨庆山,姜海鹏,2002)。频域内拟合人工地震波并使用迭代调整幅值谱的方法主要包括以下几部分:

    1) 使用单阻尼反应谱与频谱(功率谱密度函数)之间的近似转换关系(Kaul,1978),将目标反应谱转换为相应的功率谱密度函数。通常使用的近似转换关系为

    $ {S_{{{\!\!\ddot x}_0}}}\!\!\!\!\!{\text{(}}{{\omega _k}} {\text{)}}\!\!\!\! {\text{=}} \frac{\textit{ξ} }{{{\rm{\pi }}{\omega _k}}}[S_{\rm{a}}^{\rm{T}}\!\!\!\!{\text{(}}{{\omega _k}} {\text{)}}\!\!\!\!]^2 \cdot {\left\{ { {\text{-}} \ln \left[ {\frac{{ {\text{-}} {\rm{\pi }}}}{{{\omega _k}T}}\ln \!\!\!\!{\text{(}}{1 {\text{-}} \gamma } {\text{)}}\!\!\!\!} \right]} \right\}^{ {\text{-}} 1}} {\text{,}} $

    (1)

    This page contains the following errors:

    error on line 1 at column 1: Start tag expected, '<' not found

    Below is a rendering of the page up to the first error.

    2) 将得到的功率谱密度转化为傅里叶幅值谱:

    $ {A}^{2}\!\!\!\!{\text{(}}{\omega }_{k}{\text{)}}\!\!\!\!{\text{=}} 4{S}_{{ \!\!\ddot{x}}_{0}}\!\!\!\!\!\!{\text{(}}{\omega }_{k}{\text{)}}\!\!\!\!\cdot \Delta \omega {\text{,}} $

    (2)

    式中,Aωk)为傅里叶幅值谱,Δω为频域采样间隔。

    3) 基于通过步骤2)计算所得的傅里叶幅值谱,再引入随机相位谱,使用三角函数的叠加或者快速傅里叶逆变换将得到的傅里叶幅值谱转换为零均值的平稳高斯过程:

    $ {\tilde x}_{0}\!\!\!\!{\text{(}}t{\text{)}}\!\!\!\!{\text{=}} \sum\limits_{k {\text{=}} 1}^N A\!\!\!\!{\text{(}}{\omega }_{k}{\text{)}}\!\!\!\!\sin\!\!\!\!{\text{(}}{\omega }_{k}t {\text{+}}{\varphi }_{k}{\text{)}}\!\!\!\!{\text{,}} $

    (3)

    $ {{\tilde x}_0}\!\!\!\!{\text{(}}t {\text{)}}\!\!\!\! {\text{=}} {\rm{FF}}{{\rm{T}}^{ {\text{-}} 1}}\left[ {A\!\!\!\!{\text{(}}{{\omega _k}} {\text{)}}\!\!\!\!{{\rm{e}}^{{\rm{i}}{\varphi _k}}}} \right]{\text{,}} $

    (4)

    This page contains the following errors:

    error on line 1 at column 1: Start tag expected, '<' not found

    Below is a rendering of the page up to the first error.

    (3)与式(4)所对应的两种方法最后的合成结果几乎一致,不同之处在于:快速傅里叶变换的计算速度更快,但对反应谱采样和插值有一定要求;利用三角函数叠加的计算速度较慢,但计算过程中的限制更少。

    This page contains the following errors:

    error on line 1 at column 1: Start tag expected, '<' not found

    Below is a rendering of the page up to the first error.

    $ {\ddot{x}}_{{\rm{a}}}\!\!\!\!{\text{(}}t{\text{)}}\!\!\!\! {\text{=}}I\!\!\!\!{\text{(}}t{\text{)}}\!\!\!\!\cdot {\tilde x}_{0}\!\!\!\!{\text{(}}t{\text{)}}\!\!\!\!{\text{,}} $

    (5)

    $ I\!\!\!\!{\text{(}}t {\text{)}}\!\!\!\! {\text{=}} \left\{ {\begin{array}{*{20}{l}} {{{\left( {{\dfrac{t}{{{t_1}}}} } \right)}^2}}&\qquad{0 {\text{<}} t {\text{≤}} {t_1}}{\text{,}}\\ 1&\qquad{{t_1} {\text{<}} t {\text{≤}} {t_2}}{\text{,}}\\ {\exp [{ {\text{-}} c({t {\text{-}} {t_2}} })]\!\!\!\!\!}&\qquad{{t_2} {\text{<}} t {\text{≤}} T}{\text{,}} \end{array}} \right. $

    (6)

    This page contains the following errors:

    error on line 1 at column 1: Start tag expected, '<' not found

    Below is a rendering of the page up to the first error.

    $ {A}_{n {\text{+}}1}\!\!\!\!{\text{(}}\omega_{k}{\text{)}}\!\!\!\!{\text{=}}{A}_{n}\!\!\!\!{\text{(}}\omega_{k}{\text{)}}\!\!\!\!\cdot \frac{{S}_{{\rm{a}}}^{{\rm{T}}}\!\!\!\!{\text{(}}{\omega }_{k}{\text{)}}\!\!\!\!}{{S}_{{\rm{a}}n}\!\!\!\!{\text{(}}{\omega }_{k}{\text{)}}\!\!\!\!}{\text{,}} $

    (7)

    This page contains the following errors:

    error on line 1 at column 1: Start tag expected, '<' not found

    Below is a rendering of the page up to the first error.

    传统的频域法存在两个明显的问题:其一,在迭代过程中,存在迭代次数增加却无法提高收敛精度的频率控制点,这些点被称为顽固点,这些顽固点对应的傅里叶频率分量可能对于该频率反应谱值的收敛并非正贡献,若此时继续按照式(7)进行迭代,则无法使得顽固点收敛,甚至会产生发散的效果;其二,该方法对于相位谱未作任何约束,然而随机反应谱的选取对最终的拟合程度影响很大(胡聿贤,何训,1986瞿希梅,吴知丰,1995)。基于以上问题,本文提出改进的综合方法,基于传统频域法进行修正,考虑迭代过程中频率分量是否正相关,同时考虑修改随机相位谱,以期达到更好的收敛效果。

    This page contains the following errors:

    error on line 1 at column 1: Start tag expected, '<' not found

    Below is a rendering of the page up to the first error.

    $ a\!\!\!\!{\text{(}}{\omega }_{k}{\text{,}}\!\!\!\!\!t{\text{)}}\!\!\!\!\cdot {a}_{{\omega }_{k}}\!\!\!\!{\text{(}}{\omega }_{k}{\text{,}}\!\!\!\!t{\text{)}}\!\!\!\! {\text{<}} 0{\text{,}} $

    (8)

    This page contains the following errors:

    error on line 1 at column 1: Start tag expected, '<' not found

    Below is a rendering of the page up to the first error.

    This page contains the following errors:

    error on line 1 at column 1: Start tag expected, '<' not found

    Below is a rendering of the page up to the first error.

    $ {S}_{{\rm{a}}n}\!\!\!\!{\text{(}}{\omega }_{k}{\text{)}}\!\!\!\!{\text{>}}{S}_{{\rm{a}}}^{{\rm{T}}}\!\!\!\!{\text{(}}{\omega }_{k}{\text{)}}\!\!\!\!{\text{,}} $

    (9)

    将式(7)代入式(3)和式(4),有

    $ \begin{aligned} {\ddot x_{{\rm{a}}\!\!\!\!{\text{(}}{n {\text{+}} 1} {\text{)}}\!\!\!\!}}\!\!\!\!{\text{(}}t {\text{)}}\!\!\!\! {\text{=}}& \sum\limits_{k {\text{=}} 1}^N {A}_{n {\text{+}}1} \!\!\!\!{\text{(}}\omega_k {\text{)}}\!\!\!\!{a_{{\omega _k}}}\!\!\!\!{\text{(}}{{\omega _k}{\text{,}}\!\!\!\!t} {\text{)}}\!\!\!\! \cdot I\!\!\!\!{\text{(}}t {\text{)}}\!\!\!\! {\text{=}} \sum\limits_{k {\text{=}} 1}^N A_n\!\!\!\!\!\!\!\! &(\omega )\frac{{S_{\rm{a}}^{\rm{T}}\!\!\!\!{\text{(}}{{\omega _k}} {\text{)}}\!\!\!\!}}{{{S_{{\rm{a}}n}}\!\!\!\!{\text{(}}{{\omega _k}} {\text{)}}\!\!\!\!}}{a_{{\omega _k}}}\!\!\!\!{\text{(}}{{\omega _k}{\text{,}}\!\!\!\!t} {\text{)}}\!\!\!\! \cdot I\!\!\!\!{\text{(}}t {\text{)}}\!\!\!\!{\text{,}} \end{aligned}$

    (10)

    This page contains the following errors:

    error on line 1 at column 1: Start tag expected, '<' not found

    Below is a rendering of the page up to the first error.

    ${S_{{\rm{a}}\!\!\!\!{\text{(}}{n {\text{+}} 1} {\text{)}}\!\!\!\!}}\!\!\!\!{\text{(}}{{\omega _k}} {\text{)}}\!\!\!\! {\text{=}} {\omega _k}{\left| {\int _0^T {{\ddot x}_{{\rm{a}}\!\!\!\!{\text{(}}{n {\text{+}} 1} {\text{)}}\!\!\!\!}}\!\!\!\!{\text{(}}\tau {\text{)}}\!\!\!\! \cdot {\rm{exp}}\left[{ {\text{-}} \xi {\omega _k}\!\!\!\!{\text{(}}{T {\text{-}} \tau } {\text{)}}\!\!\!\!} \right] \sin {\omega _k}\!\!\!\!{\text{(}}{T {\text{-}} \tau } {\text{)}}\!\!\!\!{\rm d}\tau } \right|_{\rm max}}$

    (11)

    $ {S}_{{\rm{a}}(n {\text{+}}1)}\!\!\!\!{\text{(}}{\omega }_{k}{\text{)}}\!\!\!\!{ {\text{>}}S}_{{\rm{a}}n}\!\!\!\!{\text{(}}{\omega }_{k}{\text{)}}\!\!\!\! {\text{>}}{S}_{{\rm{a}}}^{{\rm{T}}}\!\!\!\!{\text{(}}{\omega }_{k}{\text{)}}\!\!\!\! $

    (12)

    This page contains the following errors:

    error on line 1 at column 1: Start tag expected, '<' not found

    Below is a rendering of the page up to the first error.

    $ {A}_{n{\text{+}}1}\!\!\!\!{\text{(}}\omega {\text{)}}\!\!\!\!{\text{=}}{A}_{n}\!\!\!\!{\text{(}}\omega_k {\text{)}}\!\!\!\! \cdot {\left({\frac{{S}_{{\rm{a}}}^{{\rm{T}}}\!\!\!\!{\text{(}}{\omega }_{k}{\text{)}}\!\!\!\!}{{S}_{{\rm{a}}n}\!\!\!\!{\text{(}}{\omega }_{k}{\text{)}}\!\!\!\!}}\right)}^{c}{\text{,}} $

    (13)

    $ c {\text{=}} \left\{ {\begin{array}{*{20}{l}} 1&\quad{a\!\!\!\!{\text{(}}{{\omega _k}{\text{,}}\!\!\!t} {\text{)}}\!\!\!\! \cdot {a_{{\omega _k}}}\!\!\!\!{\text{(}}{{\omega _k}{\text{,}}\!\!\!t} {\text{)}}\!\!\!\! {\text{>}} 0}{\text{,}}\\ { {\text{-}} 1}&\quad{a\!\!\!\!{\text{(}}{{\omega _k}{\text{,}}\!\!\!t} {\text{)}}\!\!\!\! \cdot {a_{{\omega _k}}}\!\!\!\!{\text{(}}{{\omega _k}{\text{,}}\!\!\!t} {\text{)}}\!\!\!\! {\text{<}} 0}{\text{,}} \end{array}} \right. $

    (14)

    式中,c代表迭代过程中的修正系数。

    某频率ωk在反应谱拟合过程中为顽固点,则存在两种情况:① 合成波对应的谱加速度大于设计反应谱加速度,谱最大加速度发生的时间为t,且存在该频率对应的傅里叶分量所产生的加速度分量在该时间与谱最大加速度同向;② 合成波对应的谱值小于设计反应谱值,谱最大加速度发生的时间为t,且存在该频率对应的傅里叶分量所产生的加速度分量在该时间与谱最大加速度反向。这两种情况由式(15)描述,在此种情况下,传统的迭代方法已经无法有效地使顽固点收敛,因此考虑对相位谱进行修正,过程如下:

    $\left\{ { \begin{array}{*{20}{l}} \!\!\!{{S_{{\rm{a}}n}}\!\!\!\!{\text{(}}{{\omega _k}} {\text{)}}\!\!\!\! {\text{>}} S_{\rm{a}}^{\rm{T}}\!\!\!\!{\text{(}}{{\omega _k}} {\text{)}}\!\!\!\!}\\ \!\!\!{a\!\!\!\!{\text{(}}{{\omega _k}{\text{,}}\!\!\!t} {\text{)}}\!\!\!\! \cdot {a_{{\omega _k}}}\!\!\!\!{\text{(}}{{\omega _k}{\text{,}}\!\!\!t} {\text{)}}\!\!\!\! {\text{>}} 0} \end{array}\;\;{\text{或}}\;\;} \right.\left\{ {\begin{array}{*{20}{l}} \!\!\!{{S_{{\rm{a}}n}}\!\!\!\!{\text{(}}{{\omega _k}} {\text{)}}\!\!\!\! {\text{<}} S_{\rm{a}}^{\rm{T}}\!\!\!\!{\text{(}}{{\omega _k}} {\text{)}}\!\!\!\!}\\ \!\!\!{a\!\!\!\!{\text{(}}{{\omega _k}{\text{,}}\!\!\!t} {\text{)}}\!\!\!\! \cdot {a_{{\omega _k}}}\!\!\!\!{\text{(}}{{\omega _k}{\text{,}}\!\!\!t} {\text{)}}\!\!\!\! {\text{<}} 0} \end{array}} \right. $

    (15)

    $ {\varphi '_k} {\text{=}} {\varphi _k} {\text{+}} {\rm{\pi }} $

    (16)

    This page contains the following errors:

    error on line 1 at column 1: Start tag expected, '<' not found

    Below is a rendering of the page up to the first error.

    $ x'\!\!\!\!{\text{(}}t {\text{)}}\!\!\!\! {\text{=}} \sin \!\!\!\!{\text{(}}{{\omega _k}t {\text{+}} {\varphi _k} {\text{+}} {\rm{\pi }}} {\text{)}}\!\!\!\! {\text{=}} {\text{-}} \sin \!\!\!\!{\text{(}}{{\omega _k}t {\text{+}} {\varphi _k}} {\text{)}}\!\!\!\! {\text{=}} {\text{-}} x\!\!\!\!{\text{(}}t {\text{)}}\!\!\!\!{\text{,}} $

    (17)

    $\begin{aligned} a'\!\!\!\!{\text{(}}{{\omega _k}{\text{,}}t} {\text{)}}\!\!\!\! {\text{=}}& {\rm{F^{-1}}}\left\{ {{H\!\!\!\!{\text{(}}\omega {\text{)}}\!\!\!\! \cdot {\rm{F}}\left[ {{x'\!\!\!\!{\text{(}}t {\text{)}}} } \!\!\!\right]} } \right\} {\text{=}} {\text{-}} {\rm{F^{-1}}}\left\{ {H {\!\!\!\!\text{(}}\omega {\text{)}}\!\!\!\!} \right.\left. \!\!\!\! \cdot{{\rm{F}}\left[ {x({t})} \right]} \right\} {\text{=}} {\text{-}} a\!\!\!\!{\text{(}}{{\omega _k}{\text{,}}\!\!\!\!t} {\text{)}}\!\!\!\!{\text{,}} \end{aligned}$

    (18)

    $ H\!\!\!\!{\text{(}}\omega {\text{)}}\!\!\!\! {\text{=}}\frac{{ {\omega _k^2 {\text{+}} 2{\rm{i}}\xi {\omega _k}\omega } }}{{{\omega _k^2 {\text{-}} {\omega ^2} {\text{+}} 2{\rm{i}}\xi {\omega _k}\omega } }}{\text{,}} $

    (19)

    This page contains the following errors:

    error on line 1 at column 1: Start tag expected, '<' not found

    Below is a rendering of the page up to the first error.

    两种改进反应谱拟合过程的方法是考虑迭代相关的反应谱拟合以及考虑相位谱的反应谱拟合。本文以 《公路桥梁抗震设计规范》 (中华人民共和国交通运输部,2020)中的设计谱及美国核管会标准审查大纲(U.S. NRC,2014)中的核电厂设备的抗震需求谱分别作为目标谱,对比经改进之后的拟合方法与传统方法所生成的模拟结果。

    考虑到相位谱的反应谱拟合方法对相位谱的修正较大,修正之后会显著增加迭代计算的计算量、运算时间,所以需严格约束此方法的使用范围和修正的迭代次数。具体改进方案如下:首先使用考虑迭代相关的反应谱拟合方法迭代10次,再使用考虑相位谱的反应谱拟合迭代1次,最后使用考虑迭代相关的反应谱拟合方法迭代9次,总共迭代20次,以此与使用传统拟合方法迭代20次的结果进行对比。

    图1为使用3组随机相位谱,针对某公路桥梁抗震设计谱(中华人民共和国交通运输部,2020),通过传统方法和改进方法分别模拟出的6条人工地震波反应谱对比图,图2为传统方法与改进方法在高频以及低频部分的局部对比图,图(a),(b)和(c)分别对应于特定的一组随机相位谱。图3图1a1b中下行拟合结果所对应的人工地震波波形。表1列出了6条人工波反应谱与目标谱之间81个控制点的平均误差对比。从图1表1可以看到,改进方法所生成的人工地震波反应谱与传统方法相比拟合精度有显著提高,尤其在高频段和低频段的顽固点数量大幅减少,误差最少降低50%。

    图  1  使用传统方法(上)和改进方法(下)对三组随机相位谱的拟合结果对比
    (a) 第一组;(b) 第二组;(c) 第三组
    Figure  1.  Comparison of simulated results for three sets of random phase spectra by conventional method (upper panels) with those by improved method (lower panels)
    (a) The first set;(b) The second set;(c) The third set
    表  1  改进方法和传统方法模拟人工地震反应谱的误差
    Table  1.  Errors of response spectra of artificial ground motions generated by conventional and improved methods
    相位谱编号反应谱平均误差
    传统方法改进方法
    第一组4.81%1.40%
    第二组4.44%1.37%
    第三组3.25%1.60%
    下载: 导出CSV 
    | 显示表格
    图  2  传统方法与改进方法在高频部分(上)和低频部分(下)的拟合程度局部对比
    (a) 第一组;(b) 第二组;(c) 第三组
    Figure  2.  Comparison of simulated results in high frequency range (upper panels) and low frequency range (lower panels) by conventional method and improved method
    (a) The first set;(b) The second set;(c) The third set
    图  3  使用改进方法在两组随机相位谱(图1a和1b下行)下生成的加速度波形
    Figure  3.  Two acceleration time-series generated by improved method by the two random phase spectra as shown in the lower panels of Figs. 1a and 1b

    图4为使用三组随机相位谱分别通过传统方法和改进方法拟合而得的人工地震波反应谱对比图,其中各列子图对应一组随机相位谱,后两列为低频及高频部分的细部图。可以看到,无论是传统方法还是改进方法对于核电厂设计需求谱的拟合在频率中间段0.4—20 Hz的精度较高,但在高频及低频段均难以有效地拟合目标谱,部分原因是自然频率较高时单自由度体会随着地震波作刚体运动,地震波的加速度峰值即为高频段的谱加速度值,因此难以有效拟合。根据图4b4c中的细部图可以发现在传统方法与改进方法都难以有效拟合的情况下,改进方法的拟合结果仍然较传统方法更接近目标谱的取值。

    图  4  使用三组随机相位谱通过传统方法与改进方法所生成的人工波反应谱拟合对比图
    (a) 总体频段;(b) 低频段;(c) 高频段
    Figure  4.  Comparison of response spectra generated by conventional and improved methods with three sets of random phase spectra
    (a) General frequencies;(b) Low frequencies;(c) High frequencies

    根据反应谱拟合人工地震波是结构抗震领域一个很重要的课题。然而,传统的频域法拟合人工地震波存在诸多问题,包括迭代效率低、顽固点多等。针对这些问题,本文通过优化频域法迭代过程中相关性的处理以及考虑相位谱的影响,提出综合改进的方法,通过提升拟合过程中迭代过程的工作效率进一步提高人工地震波对设计反应谱的拟合精度。算例结果表明,该方法的拟合精度较高,较传统方法有明显改进。

    调整综合方法中两种改进方法的迭代次数、比例,形成更优化的综合方法,以进一步地提升迭代效率将是之后的研究重点。

  • 图  1   研究区主要活动断裂和台站分布图(主要活动断裂引自邓起东等,2002

    Figure  1.   Distribution of main active faults and the apparent resistivity stations in the study area where the main faults are referred to Deng et al2002

    图  2   山丹台(左)和金银滩台(右)降雨量与表层土壤水分含量(a)、气温与表层土壤温度(b)的相关性

    Figure  2.   Correlations between precipitation and surface soil water content (a) and air temperature andsurface soil temperature (b) for the stations Shandan (left panels) and Jinyintan (right panels)

    图  3   定西台NS测道(上)和EW测道(下)土壤水分含量和土壤温度拟合获取的地电阻率时间序列(a)及残差曲线(b)

    Figure  3.   Time series curves of apparent resistivity (a) and residual variance curves (b) at the NS channel (upper) and EW channel (lower) of Dingxi station obtained by polynomial fitting soil water content and soil temperature

    图  4   山丹台、金银滩台和武威台土壤水分含量和土壤温度拟合获取的地电阻率时间序列(左)及残差(右)

    (a) 金银滩台EW测道;(b) 山丹台NS测道;(c) 山丹台EW测道;(d) 山丹台N45°W测道;(e) 武威台NS测道;(f) 武威台EW测道

    Figure  4.   Time series curves of apparent resistivity (left panels) and residual variance curves (right panels) at Shandan,Jinyintan and Wuwei stations obtained by a polynomial fitting of soil water content and soil temperature

    (a) The EW channel of Jinyintan station;(b) The NS channel of Shandan station;(c) The EW channel of Shandan station;(d) The N45°W channel of Shandan station;(e) The NS channel of Wuwei station;(f) The EW channel of Wuwei station

    图  5   基于断层虚位错模式计算的门源MS6.9地震前震中区域的面应变及主应变

    图中红色为面应变膨胀区,蓝色为面应变压缩区,白色箭头为主张应变,黑色箭头为主压应变

    Figure  5.   Distribution of surface strain and principal strain calculated using the virtual fault dislocation model in the epicenter before the Menyuan MS6.9 earthquake

    The region in red color is the relative expansion area of surfacestrain,and the blue is the compression area of surface strain.The white arrows are the principal tensile strain,andthe black arrows are the principal compressive strain

    表  1   2022年门源MS6.9地震周边400 km范围内地电阻率台站的基础信息

    Table  1   Basic information of the apparent resistivity stations within 400 km to the epicenter of the 2022 Menyuan MS6.9 earthquake

    台站测道震中距/km数据质量历史数据干扰因素观测仪器年变动态备注
    嘉峪关N50°E347降雨、线路漏电、公路ZD8M无规律2021年8—9月漏电干扰
    N45°W降雨、线路漏电、公路夏高冬低
    山丹NS113线路漏电ZD8B夏高冬低
    EW线路漏电夏低冬高
    N45°W线路漏电夏低冬高
    白水河NS345大风ZD8M夏低冬高2021年8月—2022年1月电极故障
    EW大风夏高冬低
    金银滩NS92大风ZD8M无规律
    EW大风夏低冬高
    拦隆口NS114大风、灌溉ZD8M夏低冬高
    EW大风、灌溉夏高冬低
    兰州NS296地铁、塑料大棚ZD8M无规律
    EW地铁、塑料大棚无规律
    武威NS139仪器故障ZD8MI夏低冬高
    EW仪器故障夏高冬低
    临夏NS310漏电、塑料大棚、金属网ZD8M夏低冬高2020—2021年测区存在施工建设
    EW漏电、塑料大棚、金属网夏低冬高
    定西NS388漏电、灌溉ZD8M夏高冬低
    EW漏电、灌溉夏高冬低
    注:蓝色字为最终参与地电阻率异常分析的台站及测道。
    下载: 导出CSV

    表  2   地电阻率与土壤水分含量和土壤温度的相关系数

    Table  2   Correlative coefficient between apparent resistivity and soil water content and soil temperature

    台站测道不同深度土壤水分含量与地电阻率的相关系数不同深度土壤温度与地电阻率的相关系数
    0—7 cm7—28 cm28—100 cm100—289 cm0—7 cm0—28 cm28—100 cm100—289 cm
    金银滩EW−0.32−0.390.08−0.16−0.63−0.68−0.78−0.75
    定西NS0.470.420.09−0.250.620.670.770.80
    EW0.510.43−0.02−0.450.610.650.76 0.82
    武威NS0.120.54−0.330.29−0.35−0.30−0.160.19
    EW−0.03−0.360.75−0.790.010.00−0.05−0.12
    山丹NS0.430.10−0.27−0.300.820.820.750.37
    EW−0.32−0.41−0.34−0.82−0.21−0.24−0.27−0.24
    N45°W−0.65−0.700.04−0.22−0.56−0.66−0.80−0.87
    注:蓝色数字为与地电阻率相关系数较高并参与拟合的土壤水分含量和土壤温度。
    下载: 导出CSV

    表  3   2022年门源MS6.9地震的震源参数(引自潘家伟等,2022

    Table  3   The source parameters of the Menyuan MS6.9 earthquake in 2022 (after Pan et al,2022

    断层中心位置 长度/km 宽度/km 中心深度/km 滑动量/cm 节面Ⅰ
    东经/° 北纬/° 滑动角/° 走向/° 倾角/°
    101.26 37.77 31 16 4 300 21 284 82
    下载: 导出CSV
  • 邓起东,张培震,冉勇康,杨晓平,闵伟,楚全芝. 2002. 中国活动构造基本特征[J]. 中国科学(D辑),32(12):1020–1030.

    Deng Q D,Zhang P Z,Ran Y K,Yang X P,Min W,Chu Q Z. 2003. Basic characteristics of active tectonics of China[J]. Science in China:Series D,46(4):356–372. doi: 10.1360/03yd9032

    杜学彬,李宁,叶青,马占虎,闫睿. 2007. 强地震附近视电阻率各向异性变化的原因[J]. 地球物理学报,50(6):1802–1810. doi: 10.3321/j.issn:0001-5733.2007.06.021

    Du X B,Li N,Ye Q,Ma Z H,Yan R. 2007. A possible reason for the anisotropic changes in apparent resistivity near the focal region of strong earthquake[J]. Chinese Journal of Geophysics,50(6):1802–1810 (in Chinese).

    杜学彬. 2010. 在地震预报中的两类视电阻率变化[J]. 中国科学(地球科学),40(10):1321–1330.

    Du X B. 2010. Two types of changes in apparent resistivity in earthquake prediction[J]. Science China Earth Sciences,54(1):145–156.

    杜学彬,孙君嵩,陈军营. 2017. 地震预测中的地电阻率数据处理方法[J]. 地震学报,39(4):531–548. doi: 10.11939/jass.2017.04.008

    Du X B,Sun J S,Chen J Y. 2017. Processing methods for the observation data of apparent resistivity in earthquake prediction[J]. Acta Seismologica Sinica,39(4):531–548 (in Chinese).

    冯万鹏,何骁慧,张逸鹏,房立华,Sergey S,张培震. 2023. 2022年青海门源MW6.6地震的发震断层及孕震构造模式[J]. 科学通报,68(2/3):254–270.

    Feng W P,He X H,Zhang Y P,Fang L H,Sergey S,Zhang P Z. 2023. Seismic faults of the 2022 MW6.6 Menyuan,Qinghai earthquake and their implication for the regional seismogenic structures[J]. Chinese Science Bulletin,68(2/3):254–270 (in Chinese).

    高曙德,汤吉,杜学彬,刘小凤,苏永刚,陈彦平,狄国荣,梅东林,詹艳,王立凤. 2010. 汶川8.0级地震前后电磁场的变化特征[J]. 地球物理学报,53(3):512–525.

    Gao S D,Tang J,Du X B,Liu X F,Su Y G,Chen Y P,Di G R,Mei D L,Zhan Y,Wang L F. 2010. The change characteristics of electromagnetic field before to after Wenchuan MS8.0 earthquake[J]. Chinese Journal of Geophysics,53(3):512–525 (in Chinese).

    桂燮泰,关华平,戴经安. 1989. 唐山、松潘地震前视电阻率短临异常图象重现性[J]. 西北地震学报,11(4):71–75.

    Gui X T,Guan H P,Dai J A. 1989. The short-term and immediate anomalous pattern recurrences of the apparent resistivity before the Tangshan and Songpan earthquakes of 1976[J]. Northwestern Seismological Journal,11(4):71–75 (in Chinese).

    李新,黄春林. 2004. 数据同化:一种集成多源地理空间数据的新思路[J]. 科学导报,22(2):13–16.

    Li X,Huang C L. 2004. Date assimilation:A new means for multi-source geospatial data integration[J]. Science &Technology Review,22(12):13–16 (in Chinese).

    李新艳,曾宪伟,卢军,马禾青,崔瑾,卫定军. 2022. 基于断层虚位错模式分析2015年内蒙古阿左旗MS5.8地震前地电阻率变化[J]. 地震,42(2):89–99. doi: 10.12196/j.issn.1000-3274.2022.02.007

    Li X Y,Zeng X W,Lu J,Ma H Q,Cui J,Wei D J. 2022. Anomalies of apparent resistivity before the 2015 Alxa Zuoqi MS5.8 earthquake in Inner Mongolia of China based on fault virtual dislocation model[J]. Earthquake,42(2):89–99 (in Chinese).

    潘家伟,李海兵,Chevalier M L,刘栋梁,李超,刘富财,吴琼,卢海建,焦利青. 2022. 2022年青海门源MS6.9地震地表破裂带及发震构造研究[J]. 地质学报,96(1):215–231. doi: 10.3969/j.issn.0001-5717.2022.01.018

    Pan J W,Li H B,Chevalier M L,Liu D L,Li C,Liu F C,Wu Q,Lu H J,Jiao L Q. 2022. Coseismic surface rupture and seismogenic structure of the 2022 MS6.9 Menyuan earthquake,Qinghai Province,China[J]. Acta Geologica Sinica,96(1):215–231 (in Chinese).

    钱复业,赵玉林. 1980. 地震前地电阻率变化十例[J]. 地震学报,2(2):186–197.

    Qian F Y,Zhao Y L. 1980. Ten examples of changes in earth-resistivity prior to strong earthquakes[J]. Acta Seismologica Sinica,2(2):186–197 (in Chinese).

    钱复业,赵玉林,于谋明,王志贤,刘小伟,常思敏. 1982. 地震前地电阻率的异常变化[J]. 中国科学(B辑),12(9):831–839.

    Qian F Y,Zhao Y L,Yu M M,Wang Z X,Liu X W,Chang S M. 1982. The anomalous changes of apparent resistivity before earthquakes[J]. Science in China:Series B,12(9):831–839 (in Chinese).

    钱复业,赵玉林,许同春. 1987. 地电阻率季节干扰变化分析[J]. 地震学报,9(3):289–302.

    Qian F Y,Zhao Y L,Xu T C. 1987. Analyses of the seasonal variation of disturbance in apparent resistivity[J]. Acta Seismologica Sinica,9(3):289–302 (in Chinese).

    钱家栋,陈有发,金安忠. 1985. 地电阻率法在地震预报中的应用[M]. 北京:地震出版社:196−205.

    Qian J D,Chen Y F,Jin A Z. 1985. Application of Earth-Resistivity Method in Earthquake Prediction[M]. Beijing:Seismological Press:196−205 (in Chinese).

    石富强,张国强,方炜,邵辉成,张国苓. 2014. 陕西周至地电台地电阻率年变特征分析[J]. 地震学报,36(6):1113–1123.

    Shi F Q,Zhang G Q,Fang W,Shao H C,Zhang G L. 2014. Annual variation characteristics of apparent resistivity at Zhouzhi geoelectric station,Shaanxi Province[J]. Acta Seismologica Sinica,36(6):1113–1123 (in Chinese).

    解滔,卢军. 2016. 地表固定干扰源影响下地电阻率观测随时间变化特征分析[J]. 地震地质,38(4):922–936. doi: 10.3969/j.issn.0253-4967.2016.04.010

    Xie T,Lu J. 2016. Apparent resistivity temporal variation characteristics affected by the fixed disturbance source on surface of measuring area[J]. Seismology and Geology,38(4):922–936 (in Chinese).

    解滔,于晨,王亚丽,李美,卢军. 2020. 基于断层虚位错模式讨论2008年汶川MS8.0地震前视电阻率变化[J]. 中国地震,36(3):492–501. doi: 10.3969/j.issn.1001-4683.2020.03.012

    Xie T,Yu C,Wang Y L,Li M,Lu J. 2020. Apparent resistivity variations before 2008 Wenchuan MS8.0 earthquake based on fault virtual dislocation model[J]. Earthquake Research in China,36(3):492–501 (in Chinese).

    解滔,薛艳,卢军. 2022a. 中国MS≥7.0地震前视电阻率变化及其可能原因[J]. 地球物理学报,65(8):3064–3077.

    Xie T,Xue Y,Lu J. 2022a. Changes in apparent resistivity and its possible reasons before earthquakes of MS≥7.0 in China[J]. Chinese Journal of Geophysics,65(8):3064–3077 (in Chinese).

    解滔,卢军,杜学彬. 2022b. 自适应变化幅度方法提取直流视电阻率中短期异常[J]. 中国地震,38(1):52–60.

    Xie T,Lu J,Du X B. 2022b. An adaptive variation amplitude method for extracting medium- and short-term anomalies of apparent resistivity[J]. Earthquake Research in China,38(1):52–60 (in Chinese).

    解滔,于晨,王亚丽,李美,王中平,姚丽,卢军. 2022c. 2013年岷县-漳县MS6.6地震前通渭台的视电阻率变化[J]. 地震地质,44(3):701–717.

    Xie T,Yu C,Wang Y L,Li M,Wang Z P,Yao L,Lu J. 2022c. Apparent resistivity variation of Tongwei seismic station before the Minxian-Zhangxian MS6.6 earthquake in 2013[J]. Seismology and Geology,44(3):701–717 (in Chinese).

    汪志亮,郑大林,余素荣. 2002. 地震地电阻率前兆异常现象[M]. 北京:地震出版社:45−49.

    Wang Z L,Zheng D L,Yu S R. 2002. Geoelectric Resistivity Precursor Anomalies of Earthquake[M]. Beijing:Seismological Press:45−49 (in Chinese).

    许英才,郭祥云,冯丽丽. 2022. 2022年1月8日青海门源MS6.9地震序列重定位和震源机制解研究[J]. 地震学报,44(2):195–210. doi: 10.11939/jass.20220008

    Xu Y C,Guo X Y,Feng L L. 2022. Relocation and focal mechanism solutions of the MS6.9 Menyuan earthquake sequence on January 8,2022 in Qinghai Province[J]. Acta Seismologica Sinica,44(2):195–210 (in Chinese).

    杨龙翔,刘学谦,孙召华. 2020. 金属大棚对周口台地电阻率干扰定量分析[J]. 地震工程学报,42(2):447–452. doi: 10.3969/j.issn.1000-0844.2020.02.447

    Yang L X,Liu X Q,Sun Z H. 2020. Quantitative analysis of the disturbance to earth resistivity caused by a metal greenhouse at Zhoukou station[J]. China Earthquake Engineering Journal,42(2):447–452 (in Chinese).

    姚赛赛,高曙德,陈雪梅,张晓阳,杨超,醴武权. 2023. 2022年青海门源MS6.9地震前地电阻率变化分析[J]. 大地测量与地球动力学,43(2):141–147.

    Yao S S,Gao S D,Chen X M,Zhang X Y,Yang C,Li W Q. 2023. Analysis of earth resistivity changes before the 2022 Qinghai Menyuan MS6.9 earthquake[J]. Journal of Geodesy and Geodynamics,43(2):141–147 (in Chinese).

    张国苓,王庆林,乔子云,贾立峰,张素欣. 2017. 地表点电流对地电阻率观测的影响[J]. 中国地震,33(1):122–128. doi: 10.3969/j.issn.1001-4683.2017.01.012

    Zhang G L,Wang Q L,Qaio Z Y,Jia L F,Zhang S X. 2017. Influence from the surface disturbance current on geoelectrical resistivity observation[J]. Earthquake Research in China,33(1):122–128 (in Chinese).

    张金铸,陆阳泉. 1983. 不同三轴应力条件下岩石电阻率变化的试验研究[J]. 地震学报,5(4):440–445.

    Zhang J Z,Lu Y Q. 1983. An experimental study on the variation of rock resistivity under triaxially different stresses[J]. Acta Seismologica Sinica,5(4):440–445 (in Chinese).

    张学民,李美,关华平. 2009. 汶川8.0级地震前的地电阻率异常分析[J]. 地震,29(1):108–115. doi: 10.3969/j.issn.1000-3274.2009.01.014

    Zhang X M,Li M,Guan H P. 2009. Anomaly analysis of earth resistivity observations before the Wenchuan earthquake[J]. Earthquake,29(1):108–115 (in Chinese).

    赵和云,张文孝. 1985. 银川台地电阻率趋势变化及年变的分析[J]. 地震,(1):32–38.

    Zhao H Y,Zhang W X. 1985. Analysis of potential and annual variations of earth resistivity at Yinchuan station[J]. Earthquake,(1):32–38 (in Chinese).

    赵玉林,钱复业,杨体成,刘建毅. 1983. 原地电阻率变化的实验[J]. 地震学报,5(2):217–225.

    Zhao Y L,Qian F Y,Yang T C,Liu J Y. 1983. Experiments in situ of electrical resistivity changes[J]. Acta Seismologica Sinica,5(2):217–225 (in Chinese).

    赵玉林,卢军,李正南,钱复业,张洪魁. 1996. 唐山地震应变-电阻率前兆及虚错动模式[J]. 地震学报,18(1):78–82.

    Zhao Y L,Lu J,Li Z N,Qian F Y,Zhang H K. 1996. The precursors of strain-resistivity and virtual-dislocation model before Tangshan earthquake[J]. Acta Seismologica Sinica,18(1):78–82 (in Chinese).

    Brace W F,Orange A S,Madden T R. 1965. The effect of pressure on the electrical resistivity of water-saturated crystalline rocks[J]. J Geophys Res,70(22):5669–5678. doi: 10.1029/JZ070i022p05669

    Dobrovolsky I P,Zubkov S I,Miachkin V I. 1979. Estimation of the size of earthquake preparation zones[J]. Pure Appl Geophys,117(5):1025–1044. doi: 10.1007/BF00876083

    Hillel D. 1998. Environmental Soil Physics[M]. San Diego:Academic Press:771.

    Lin J,Stein R S. 2004. Stress triggering in thrust and subduction earthquakes and stress interaction between the southern San Andreas and nearby thrust and strike-slip faults[J]. J Geophys Res:Solid Earth,109(B2):B02303.

    Lu J,Qian F Y,Zhao Y L. 1999. Sensitivity analysis of the Schlumberger monitoring array:Application to changes of resistivity prior to the 1976 earthquake in Tangshan,China[J]. Tectonophysics,307(3/4):397–405.

    Lu J,Xue S Z,Qian F Y,Zhao Y L,Guan H P,Mao X J,Ruan A G,Yu S R,Xiao W J. 2004. Unexpected changes in resistivity monitoring for earthquakes of the Longmen Shan in Sichuan,China,with a fixed Schlumberger sounding array[J]. Phys Earth Planet Inter,145(1/2/3/4):87–97.

    Lu J,Xie T,Li M,Wang Y L,Ren Y X,Gao S D,Wang L W,Zhao J L. 2016. Monitoring shallow resistivity changes prior to the 12 May 2008 M8.0 Wenchuan earthquake on the Longmen Shan tectonic zone,China[J]. Tectonophysics,675:244–257. doi: 10.1016/j.tecto.2016.03.006

    Oki T,Kanae S. 2006. Global hydrological cycles and world water resources[J]. Science,313(5790):1068–1072. doi: 10.1126/science.1128845

    Thomas J F, Christopher H S. 1971. Mechanism of underthrusting in southwest Japan: A model of convergent plate interactions[J]. J Geophys Res, 76(29): 7260–7292.

    Thomas J F,Christopher H S. 1971. Mechanism of underthrusting in southwest Japan:A model of convergent plate interactions[J]. J Geophys Res,76(29):7260–7292.

    Wan Y G,Shen Z K,Bürgmann R,Sun J B,Wang M. 2017. Fault geometry and slip distribution of the 2008 MW7.9 Wenchuan,China earthquake,inferred from GPS and InSAR measurements[J]. Geophys J Int,208(2):748–766. doi: 10.1093/gji/ggw421

    Zhu Q,Nie X F,Zhou X B,Liao K H,Li H P. 2014. Soil moisture response to rainfall at different topographic positions along a mixed land-use hillslope[J]. Catena,119:61–70. doi: 10.1016/j.catena.2014.03.010

  • 期刊类型引用(11)

    1. 戴纳新,胡群,刘彦辉,周福霖,彭林欣. 基于核电厂规范反应谱的时-频人工波合成及楼层反应谱研究. 广西大学学报(自然科学版). 2025(01): 70-82 . 百度学术
    2. 王伟,许晨夜. 上承式大跨度钢箱无铰拱桥地震响应分析. 黑龙江交通科技. 2024(09): 127-130+137 . 百度学术
    3. 唐光武,于雯,谢皓宇,刘海明. 近场地震作用下桥梁结构动力响应研究进展. 公路交通技术. 2023(01): 60-68 . 百度学术
    4. 杨兰兰,傅梓岳,王登峰,XIE Weichau. 基于数字滤波技术拟合规范反应谱的地震动研究. 振动与冲击. 2023(09): 57-67+105 . 百度学术
    5. 张树翠,夏宏升,张欣刚,姚文莉,齐朝晖,刘大强. 一种内蕴基线漂移校正的人工地震波反应谱拟合方法. 地震工程学报. 2023(05): 1171-1178 . 百度学术
    6. 杨连,林雄伟,王军. 超高层建筑中考虑相位随机性的基岩地震动时程分析. 粉煤灰综合利用. 2022(01): 39-43+49 . 百度学术
    7. 高树飞,冯云芬. 基于Newmark滑块位移法的岸坡地震稳定性简易分析方法. 水运工程. 2022(06): 40-48 . 百度学术
    8. 谢皓宇,潘飞,朱翊洲,郑万山,仉文岗. 核设备设计地震动包络标准PSD的拟合及试验研究. 土木与环境工程学报(中英文). 2021(03): 128-134 . 百度学术
    9. 谢皓宇,朱翊洲,仉文岗,唐光武,谢永诚. 核电厂设备抗震设计标准功率谱密度的生成方法. 核动力工程. 2021(05): 128-133 . 百度学术
    10. 别江波,刘星星,刘宏. 某机场高填方边坡的动力特性模拟分析. 工程建设. 2021(09): 13-18 . 百度学术
    11. 杜迎乾,王之军,周承浩,许汉兵,贾书海. 人工地震波遗传优化生成方法. 工程抗震与加固改造. 2021(06): 149-156+95 . 百度学术

    其他类型引用(0)

图(5)  /  表(3)
计量
  • 文章访问数:  94
  • HTML全文浏览量:  28
  • PDF下载量:  58
  • 被引次数: 11
出版历程
  • 收稿日期:  2023-03-26
  • 修回日期:  2023-07-12
  • 网络出版日期:  2024-03-10
  • 刊出日期:  2024-03-14

目录

/

返回文章
返回