基于背景噪声反演的兴蒙造山带阿巴嘎地区地壳S波速度结构

徐荟, 吴庆举

徐荟,吴庆举. 2025. 基于背景噪声反演的兴蒙造山带阿巴嘎地区地壳S波速度结构. 地震学报,47(1):54−72. DOI: 10.11939/jass.20230067
引用本文: 徐荟,吴庆举. 2025. 基于背景噪声反演的兴蒙造山带阿巴嘎地区地壳S波速度结构. 地震学报,47(1):54−72. DOI: 10.11939/jass.20230067
Xu H,Wu Q J. 2025. Crustal S-wave velocity structure of the Abaga area of Xing’an-Mongolia Orogenic Belt from ambient noise. Acta Seismologica Sinica47(1):54−72. DOI: 10.11939/jass.20230067
Citation: Xu H,Wu Q J. 2025. Crustal S-wave velocity structure of the Abaga area of Xing’an-Mongolia Orogenic Belt from ambient noise. Acta Seismologica Sinica47(1):54−72. DOI: 10.11939/jass.20230067

基于背景噪声反演的兴蒙造山带阿巴嘎地区地壳S波速度结构

基金项目: 国家自然科学基金(41274088,41674094,41874112)联合资助
详细信息
    作者简介:

    徐荟,在读博士研究生,主要从事背景噪声层析成像以及地壳上地幔结构研究,e-mail:xuhui05206106@126.com

    通讯作者:

    吴庆举,博士,研究员,主要从事地震学、地球内部结构以及动力学研究,e-mail:wuqj@cea-igp.ac.cn

  • 中图分类号: P315.3

Crustal S-wave velocity structure of the Abaga area of Xing’an-Mongolia Orogenic Belt from ambient noise

  • 摘要:

    利用布设于兴蒙造山带内蒙古中部阿巴嘎台阵记录的连续背景噪声数据,获取了研究区内周期为5—30 s的瑞雷面波频散,使用马尔科夫链-蒙特卡洛反演方法建立了阿巴嘎地区地壳高分辨率三维S波速度结构。结果显示,阿巴嘎和达里诺尔火山区上中下地壳的S波速度均呈低速,且下地壳30 km处存在明显的低速区,推断该处可能为下地壳的岩浆囊及上方岩浆通道。此外,阿巴嘎、达里诺尔、达里甘嘎和乌兰哈达火山群在地壳内的低速区都是相互连通的。结合前人研究结果,推测出阿巴嘎和达里诺尔火山群的岩浆源区位于上地幔顶部,并且进一步推测阿巴嘎和达里诺尔火山群的形成是源于区域内地幔热物质上涌,沿缝合带或断层侵入到地壳诱发了地表火山活动。

    Abstract:

    Cenozoic intraplate volcanoes are widely developed in the central part of Inner Mongolia in the Xing’an-Mongolia Orogenic Belt. These volcanoes are mainly distributed in groups to the west of the Greater Xing’an-Taihang Mountain Gravity Lineament, forming a number of volcanic regions, such as Abaga, Beilike and Dalinor volcanic regions. And these three volcanic regions are connected with the Dariganga volcanic region in southern Mongolia. The origin and dynamic mechanism of these Cenozoic intraplate volcanoes is still a controversial topic. Previous studies have mainly proposed the following three mechanisms: lithosphere delamination; upwelling of mantle plume in mantle transition zone; westward subduction of the Pacific plate.

    In this study, to further reveal the magma structure and origin of these intraplate volcanoes, a high-resolution 3-D S-wave velocity structure of the crust in the study area was established. Based on the continuous data of the Abaga Array deployed in the central part of Inner Mongolia in the Xing’an-Mongolia Orogenic Belt, the Rayleigh surface wave dispersion with period range of 5 s to 30 s was obtained. Then the high-resolution 3-D S-wave velocity structure of the crust was further obtained by using the Markov Chain Monte Carlo method. The results show the crustal velocity of the Abaga and Dalinor volcanic group is low, and there is an obvious low velocity zone at about 30 km depth in the lower crust, which may be the magma chamber in the lower crust of the volcanic groups. The results also imply the low velocity in the crust of Abaga volcanic group, Dalinor volcanic group, Dariganga volcanic group and Ulanhada volcanic group are interconnected. According previous results, the magma sources of the Abaga volcanic group and the Dalinor volcanic group are in the uppermost layer of the upper mantle. Furtherly it is speculated that the formation of the Abaga and Dalinor volcanic group is due to the upwelling of hot material in the upper mantle, which invaded the crust along the suture zones or faults.

  • 高烈度山区斜坡稳定性问题突出,在地震作用下,研究地质构造和地层结构与滑坡触发机制的关系具有重要意义。我国西部地区地震滑坡等地质灾害极为发育,“5·12”汶川特大地震触发了超过19万7 000处滑坡、崩塌等地质灾害(许冲等,2013),造成近三万余人遇难,约占总遇难人数的1/3 (黄润秋,2011)。汶川地震之后,大量学者对强震诱发滑坡的成因及其形成机制开展了研究:通过遥感解译和现场调查发现大型滑坡与发震断层瞬间的错动密切相关(黄润秋等,2009许强,李为乐,2010),而断层上盘效应是触发高速远程滑坡的主要原因(汤明高等,2011);李强等(2019)对2017年九寨沟MS7.0地震中的地震滑坡分布特征开展分析,揭示了滑坡分布存在明显的断层效应;2022年泸定MS6.8地震中,地震滑坡分布与距断层的距离密切相关,滑坡主要分布在断层1 km范围内,若距离超过1 km则滑坡分布密度显著降低(范宣梅等,2022)。可见,断层与地震的滑坡成因具有密切联系。

    典型地震滑坡研究表明,地震易诱发滑坡后缘形成陡倾的拉张破坏(Wang et al,2019)。青川东河口高速远程滑坡启动区的断层破碎带以及力学性质较差的千枚岩、板岩的存在,均对该滑坡的启动有着显著影响(孙萍等,2009)。刘家湾滑坡不同岩性组合斜坡具有明显的差异特性,软硬岩层交界面的动力突变效应耦合凸出地形是导致斜坡破坏的主要原因(何源等,2015Luo et al,2021)。大量振动台试验揭示,在水平向地震波作用下上硬下软组合斜坡比上软下硬组合斜坡对加速度的放大程度更大(许强等,2010)。有限元分析表明,软弱夹层使坡体出现了局部放大效应,动力响应具有软岩大于硬岩、层状大于均质的特点(宋丹青等,2021)。地震作用下对某软硬互层斜坡的研究表明,软岩是坡体变形破坏的优势拉裂区域,在强震的应力挤压作用下,坡体内强风化千枚岩因其质软而变形强烈,有向外剪出的趋势(刘云鹏等,2012)。岩质斜坡稳定性受地层层面和节理面密度的控制,滑动面常为后缘节理面和软弱夹层的贯通面,地震时易沿软弱夹层和后缘节理贯通面发生破坏,如孙家滑坡、大竹坪滑坡等(刘新荣等,2019谭明健等,2022)。以上研究表明,不同物理力学性质的岩性组合是诱发地震滑坡的重要因素。

    受“5·12”汶川强震作用,青川县石坝乡刨地里形成了多处同震滑坡。本文拟以刨地里滑坡为研究对象,通过调查该滑坡发育特征构建地质模型,并结合数值模拟对其放大效应特征和变形破坏过程开展深入研究,对滑坡成因机制开展探讨,以期为同类地震滑坡分析提供有价值的参考。

    研究区位于四川省青川县石坝乡(图1),处于龙门山系北段,区域山脉走向与地质构造走向基本一致,大多呈NE—SW向,所在地层为寒武系下统邱家河组(Єq),岩性为深灰色千枚岩夹硅质岩。研究区内的石坎断层走向NE—SW,断层面产状为283°∠23°,可见断层泥,夹有少量假玄武玻璃和断层角砾岩,新鲜断层泥呈灰白色,稍湿,风化后呈深灰色,主要成分为方解石和黏土矿物。断层两侧岩性为薄层状千枚岩,并发育大量褶皱,总体上产状较平缓,局部可见钙华和碎裂岩体崩塌。

    图  1  刨地里滑坡地理位置图(修改自黄润秋等,2009
    Figure  1.  Geographical location map of Paodili landslide (modified from Huang et al,2009

    刨地里地震滑坡共3处(图2),发育特征如下:1号滑坡位于图幅北侧,后缘高程约1 326 m,坡脚高程约1 050 m,高差约276 m,滑坡长约为750 m,宽约为350 m,平均厚度约为25 m,堆积方量约为1.84×106 m3,地震发生时滑坡向南侧滑动,滑体运动距离约为250 m。滑坡后部高陡,坡度为35°—45°,中部坡度约为30°,前部堆积体较厚而坡度平缓,为10°—20°,滑坡地形具有上陡下缓的特征。2号滑坡位于南侧,后缘高程约1 280 m,坡脚高程约1 075 m,高差约205 m,坡角约34°,滑坡长约为450 m,宽约为200 m,平均厚度约为12 m,堆积方量约为2.4×105 m3,地震发生时滑坡向北东侧滑动。3号滑坡位于东侧,平面形态呈舌型,后缘高程约为1 210 m,坡脚高程约为1 090 m,滑坡长约为230 m,宽约为100 m,平均厚度为6 m,堆积方量约3.5×104 m3,地震发生时滑坡向南西侧滑动。

    图  2  刨地里滑坡发育特征
    Figure  2.  Development characteristics of the Paodili landslides

    根据滑坡的发育、运动及堆积特征,将1号滑坡分为滑源区和堆积区(图2),其中堆积区又可分为硅质岩堆积区和千枚岩堆积区两个亚区。各区特征如下:

    1) 滑源区。出露高程1 200—1 350 m,滑源区长约200 m,宽约200 m,地形坡度为40°—45°。顶部岩性出露为厚层状硅质岩(图3ab),质地坚硬。岩层产状332°∠5°,两组节理面产状分别为68°∠81°和150°∠53°。下部岩性出露为土黄色薄层状千枚岩(图3c),节理裂隙发育,岩体力学性质较差,产状为338°∠8°。大量硅质岩巨石在此区堆积(图3d),块径多为5 m×4 m×3 m,平整面多为节理面,表面擦痕清晰,破裂的岩块、碎块尚可拼合。石坎断层贯穿滑源区,带内可见断层角砾岩,呈碎裂状。结合现场调查和已有资料,未发现研究区内在汶川地震期间存在地表破裂。

    图  3  刨地里滑坡发育分布与堆积特征
    (a) 硅质岩;(b) 擦痕;(c) 千枚岩;(d) 滑源区巨块石;(e) 硅质岩堆积区;(f) 假基岩体
    Figure  3.  Distribution and accumulation characteristics of Paodili landslide
    (a) Siliceous rock;(b) Scratches;(c) Phyllite;(d) Large block stones in the sliding source area; (e) Siliceous rock accumulation area;(f) Pseudobasic rock mass

    2) 硅质岩堆积区。位于堆积区后侧,区域内由大量裂解的硅质岩块组成(图3e),块径多为1 m×0.6 m×0.5 m,明显小于滑源区的硅质岩大块石。

    3) 千枚岩堆积区。位于堆积体前侧,物质组成主要为千枚岩块石,粒径范围1—25 cm,自滑源区方向碎块石粒径由大变小。可见数座小型假基岩,部分产状50°∠21°,25°∠38°,150°∠50°,与滑床产状差异较大。新鲜面形态不规整,推测为原斜坡的裂隙,其中典型的一座长宽高各约为15 m×10 m×8 m,与底部的板岩堆积体分界清晰(图3f)。

    2号滑坡滑源区可见多级台坎分布,出露岩性为中风化千枚岩,产状313°∠40°。表层为第四系黄色黏土夹碎石,碎石呈次棱角状,粒径2—15 cm,下部为千枚岩,节理裂隙发育。2号滑坡堆积区为土黄色黏土夹碎石土。3号滑坡仅可见少量碎石和黏土。2号和3号滑坡与1号滑坡间可见清晰肉红色土体堆积边界,且均覆盖在1号滑坡堆积体之上(图2)。

    针对各滑坡体的接触关系及边界行迹的调查表明,1号滑坡先于2号及3号滑坡失稳。下文对地震滑坡的影响因素及失稳过程均以1号滑坡为主进行论述。

    刨地里1号滑坡为典型的近水平上硬下软结构(图4),其上部为硅质岩,相对坚硬,下部为薄层千枚岩,岩性较软且褶皱发育。受构造作用等影响,斜坡具有复杂的应力史,坡体内褶皱和节理裂隙发育,受风化作用影响岩体物理力学强度进一步弱化。根据振动台物理模拟、数值分析等研究(许强等,2010宋丹青等,2021),上硬下软岩体组合斜坡在强震作用下斜坡动力响应强烈,对斜坡稳定性极为不利。

    图  4  1号滑坡工程地质剖面图
    Figure  4.  Engineering geology profile of Paodili 1st landslide

    研究区内石坎断层为顺扭走滑—逆冲型断层,在南坝地区存在一定的地表破裂(李传友,魏占玉,2009张伟,2009),但无相关资料及现场证据表明该断层在刨地里附近存在地表破裂。斜坡内断层经过多次活动,断层角砾岩岩体破碎,沿断层带形成地下导水通道,进一步弱化岩体质量,在强震作用下不利于斜坡稳定性(图5ab)。

    图  5  石坎断层特征
    (a) 断层面;(b) 断层角砾岩
    Figure  5.  Characteristics of Shikan fault
    (a) Fault plane;(b) Fault breccia

    由第2节可知,1号滑坡堆积体后侧主要为硅质岩块石,前侧主要为强风化千枚岩及黏土,表明斜坡下部千枚岩首先开始破坏,导致了顶部硅质岩失稳崩塌。失稳过程具体如下:

    1) 斜坡地震动强烈放大

    上硬下软的地层结构使得下部千枚岩岩体在长期的地质内外动力作用下发育裂隙,形成了斜坡易滑块体(图6a)。一方面,地震发生时岩性分界处产生极大的拉应力和剪应力,导致易滑块体下滑力增大而抗滑力减小(Luo et al,2021)。另一方面,强震动作用使得拉张裂隙向深部延伸,随之在地震动的循环荷载作用下形成贯通结构面,块体失稳下滑(图6b)。

    图  6  刨地里1号滑坡破坏过程演示图
    (a) 斜坡震动强放大;(b) 下部岩体震裂破坏;(c) 上部岩体失稳滑动;(d) 运动堆积阶段
    Figure  6.  Destruction process demonstration diagram of Paodili 1st landslide
    (a) Amplification effect of strong vibration on slope;(b) Seismic fracture failure of the lower rock structure;(c) Sliding after instability of the upper rock structure;(d) Motion and accumulation

    2) 下部岩体震裂破坏—上部岩体失稳滑动

    在地震动作用下,软弱千枚岩体震裂破坏,以较高的初速度启动,并沿170°方向运移。顶部的硅质岩在底部失稳后,沿优势破裂面破坏后向下滑动(图6c)。

    3) 运动堆积阶段

    前侧滑坡体主要由千枚岩组成,部分未解体的大型千枚岩体成为假基岩体堆积于前侧。后侧滑坡体主要由硅质岩组成。1号滑坡体到达沟谷后遇阻(2号和3号滑坡体),受挤压变形后在原地堆积形成滑坡坝,上游形成堰塞湖(图6d)。

    基于以上定性分析,本节利用1号滑坡工程地质剖面原型建立离散元(universal distinct element code)二维模型(图7)。模型建立方法如下:① 由于刨地里斜坡岩体风化程度具有明显分带性,且地震对斜坡内部的稳定性影响较小(李龙起等,2020),模型按岩体风化程度分为上层风化岩体和下层微新岩体,二者根据岩性可进一步分为硅质岩和千枚岩;② 千枚岩和硅质岩的参数选择分别参考了刘家湾滑坡(距刨地里7.7 km)和唐家山滑坡等资料(曹琰波,2011黄宇,2015Luo et al,2021),经岩石力学参数类比后,选用的计算参数列于表1表2;③ 为了分析滑坡随时间变化的变形破坏特征,模型采用摩尔-库仑(Mohr-Coulomb)屈服准则,单元采用刚性本构模型,滑床采用塑性本构模型和摩尔-库仑屈服准则,结构面均采用库仑滑动准则,底边界设置为黏滞边界,两侧为自由场边界,且对三侧边界进行约束;④ Kuhlemeyer和Lysmer (1973)建议模型划分的最大尺寸(Δl)小于输入地震波最短波长λ的1/10—1/8,才不会导致输入波形失真而造成不必要的误差,综合考虑模型大小和计算精度,本研究将单元网格设置为20 m;⑤ 为了研究斜坡对地震加速度的响应规律,本文设置了监测点D1D8和基准监测点D0图7)。

    图  7  刨地里1号滑坡离散元模型
    Figure  7.  UDEC model of Paodili 1st landslide
    表  1  岩体力学参数
    Table  1.  Mechanics parameters of rock mass
    岩性密度/(kg·m−3黏聚力
    /MPa
    内摩擦角
    体积模量/GPa剪切模量/GPa
    强风化
    岩体
    硅质岩2 7002.343539.020.00
    千枚岩2 2000.50239.65.76
    微新
    岩体
    硅质岩2 7502.403839.820.60
    千枚岩2 2500.50259.65.92
    下载: 导出CSV 
    | 显示表格
    表  2  结构面力学参数
    Table  2.  Mechanics parameters of structural plane
    界面法向刚度/(GPa·m−1剪切刚度/(GPa·m−1内摩擦角/°黏聚力/MPa抗拉强度/MPa
    岩层面2.321.33301.230.41
    节理面1.901.20290.500.30
    断层面1.810.92260.480
    下载: 导出CSV 
    | 显示表格

    本研究输入地震波采用距离研究区最近的石井台站记录的汶川地震数据,取其地震能量集中段50—115 s共长65 s,将加速度时程转化为速度时程后从底部输入模型(图8)。

    图  8  汶川地震广元石井监测台站速度时程
    Figure  8.  Velocity time history of Guangyuan Shijing monitoring station for Wenchuan earthquake

    输入地震动力荷载后,最大不平衡力随时间的变化曲线如图9所示。由图可见,系统最大不平衡力在18—35 s保持在较高值,其中在22 s时达到最大值139.89 MPa,45 s后变得很小,50 s后趋近于0,表明基本达到稳定,计算收敛。

    图  9  最大不平衡力时间变化曲线
    Figure  9.  The variation curve of the maximum unbalanced force changing with time

    经模拟发现,模型在4 s后开始变形,取0—3.5 s的数据进行分析。以监测点D0为参考点,定义PGA放大系数A为斜坡内监测点(D1D8)与参考监测点(D0)加速度反应谱峰值之比,得到放大系数曲线(图10)。

    图  10  各监测点PGA放大系数图
    Figure  10.  PGA amplification coefficient of each monitoring point

    取水平向与竖直向的平均值对比分析不同部位的放大效应,模拟结果如图10所示:① 各监测点的水平向放大系数总体上略大于竖直向。② 斜坡底部D6D7的放大系数在1.3—2.0,上部D1D5的放大系数在3.3—6.79,斜坡底部放大效应远低于上部。③ 硅质岩中D1D2的放大系数分别为4.16和3.96;千枚岩中D3D4D5的放大系数分别为4.11,6.79,3.81。④ 岩性变化处(D2D3)存在动力突变,断层带附近的D4放大系数最大,达到了6.79。

    经计算,汶川地震引起的刨地里1号滑坡从4 s开始出现大量裂隙并开始破坏,在33 s时破坏基本完成,整个变形破坏过程如图11a-e所示:

    图  11  模型及其各时间点的运动状态
    Figure  11.  The model and its motion state at each time point
    (a) t=7 s;(b) t=14 s;(c) t=20 s;(d) t=27 s;(e) t=33 s;(f) t=60 s

    4—7 s:首先在千枚岩尤其是陡缓交界处沿82°陡倾节理面形成大而深的拉张裂缝,并有向临空面挤出的趋势,顶部硅质岩裂缝自下向上延伸,受地震动持续作用和模型底部失稳的影响,具有向下坐落的趋势。7—14 s:坡体中上部裂缝持续发育,顶部硅质岩沿68°节理面向下剪切滑移,失稳的千枚岩从断层处自上而下拉裂解体,向外挤出。14—20 s:硅质岩和千枚岩快速溃滑,向下滚动跳跃。底部千枚岩裂隙沿已有结构面发育并逐渐贯通,整体未失稳,表层强风化岩体在滚石的带动下向下滑移。20—27 s:滚动的岩体势能转为动能,到达沟谷后向上爬升,前缘小碎石越过山脊向远处抛射。随着地震动能量的增大,中下部岩体开始产生裂隙并沿层面滑动,位移量约为1.5 m。27—33 s:大部分块石动能耗尽后堆积于沟谷,小碎石经弹跳后飞跃出模型。顶部残余的硅质岩块向下崩落,坡体不断有滚石滑动堆积于坡脚。33—60 s:堆积体基本稳定。通过与现场调查资料对比可以得出,模拟运动结果与滑坡堆积现状具有较好的一致性。

    离散元数值模拟结果显示,刨地里滑坡放大效应最强处位于斜坡中上部,且在软硬岩性变化处存在动力突变效应。D4D5位于断层带附近,由于地震波在断层面、风化带和斜坡表面的不断反射,具有复杂的动力响应,使得放大效应更强。数值模拟运动分析表明,在地震发生4 s时,1号滑坡千枚岩内部产生微破裂和变形,并向外挤出、滑移,顶部硅质岩失稳后沿节理面拉裂—滑移,整体失稳向下溃滑。岩体在向下滑动的过程中推动了中下部表层岩体滑动,使得堆积体前侧为千枚岩,后侧为硅质岩,模拟结果也与实际调查情况相符。

    综上所述,通过对D4D5的PGA加速度对比,发现断层上盘监测点放大效应强于下盘监测点,在断层带附近的D4动力放大效应最为强烈。断层带附近的千枚岩动力响应最为强烈,导致斜坡从断层带附近开始变形破坏。

    值得注意的是,地震震中距刨地里滑坡和石井强震台站分别为216 km和268.5 km,滑坡更接近震中,因此刨地里滑坡实际的地震烈度应高于本次模拟。本文的数值模拟结果较好地反演了1号滑坡的破坏过程,其运动过程主要发生在前33 s,这也能合理地解释为何1号滑坡变形破坏时间早于2号滑坡。

    地震滑坡具有复杂的动力响应特征,其成因机制常与不同的岩性组合和断层影响密切相关(许强,李为乐,2010)。虽然已有学者对不同岩性组合滑坡的成因机制开展了大量研究,但对上硬下软且含断层的地震滑坡研究较少。本文刨地里滑坡为这一类典型滑坡,现场调查表明,1号滑坡堆积区可分为前侧千枚岩区和后侧硅质岩区,表明斜坡下部千枚岩先于顶部硅质岩失稳,而上硬下软的岩体结构耦合断层影响是导致这一结果的主要原因。数值模拟显示断层带附近千枚岩首先沿陡倾面产生拉裂破坏,随后“上硬”硅质岩体产生拉裂破坏,“下软”千枚岩失稳后并导致“上硬”硅质岩失稳,结果与现场调查堆积物特征相吻合。

    通过对各滑坡堆积体的接触方式和形状调查,以及对1号滑坡的数值模拟运动分析,揭示了刨地里各滑坡的形成先后期次首先为1号滑坡,其次为2号滑坡和3号滑坡。受前缘地形阻挡及2号、3号滑坡堆积挤压等影响,刨地里1号滑坡未形成高速远程碎屑流滑坡。

    基于现场调查及分析,并结合数值模拟中各监测点的放大效应及破坏运动特征,获得的主要认识和结论如下:

    1) 通过野外调查,揭示了刨地里1号滑坡具有近水平上硬下软的地层结构,斜坡节理裂隙发育,为强震诱发滑坡提供了有利的条件。与此同时,断层带穿越1号滑坡后缘较软的千枚岩。上硬下软的坡体结构与断层带对该滑坡动力响应、变形破坏起到了控制作用。

    2) 数值模拟分析表明1号斜坡变形破坏持续时间约33 s,其过程可大致分为4个阶段: ① 斜坡断层带附近强动力放大效应阶段;② 断层带附近千枚岩震裂变形破坏阶段;③ 断层带上部硬质岩体失稳滑动阶段;④ 后缘整体滑动破坏并推动下部浅表滑动堆积阶段。

    3) 对1号斜坡加速度的放大效应研究表明,斜坡下部的千枚岩尤其是断层带附近的千枚岩内放大系数达到最大值6.79,导致了斜坡变形破坏首先从断层带处的千枚岩开始。

  • 图  1   研究区台站分布(a)和区域构造图(b)

    图(a)中黑色三角形表示台站,黑色线表示二连盆地,灰色线是二连盆地构造单元(漆家福等,2015),下同;图(b)中红线为缝合带和断裂(Xiao et al,2003),红色火山符号表示新生代火山群(Ye et al,2020),蓝色线是SinoProbe反射地震测线(Zhang et al,2014b)和中国地质大学(北京)(CUGB)大地电磁测线(Ye et al,2020

    Figure  1.   Distribution map of seismic stations (a) and Tectonic map (b)

    In Fig.(a) the black triangles represent stations which were deployed in this study,the black line denotes Erlian Basin,the grey line denotes tectonic units of Erlian Basin (Qi et al,2015),the same below;In Fig.(b) the red lines denote suture lines and faults(Xiao et al,2003),the red volcanic symbols denote the Cenozoic volcanic groups (Ye et al,2020),the blue lines are the Sino- Probereflection seismic profile (Zhang et al,2014b) and the the magnetotelluric profile of CUGB (Ye et al,2020

    图  2   台站对间垂直分量(ZZ)的互相关函数 的对称分量波形

    Figure  2.   Symmetrical component of the cross-correlation functions of vertical components (ZZ) between stations

    图  3   测量得到的瑞雷波相速度频散曲线(5—35 s)

    Figure  3.   The measured Rayleigh wave phase velocity dispersion curves at periods of 5−35 s

    图  4   不同周期(5—35 s)(a−g)射线路径分布和各周期射线路径数目(h)

    Figure  4.   The ray paths distribution and the number of ray paths (h) at differernt periods (5−35 s)(a−g)

    图  5   不同周期(5—35 s)相速度棋盘分辨率测试图

    Figure  5.   Checkerboard resolution test of phase velocity for periods from 5 s to 35 s

    图  6   不同周期的瑞雷波相速度对S波速度的敏感核曲线

    Figure  6.   Sensitivity kernels to S-wave velocity for Rayleigh wavephase velocities at different periods

    图  7   不同周期(5—30 s)相速度异常分布图,左上方标注了周期T和平均速度v

    Figure  7.   Distribution maps of phase velocity anomaly for periods from 5 s to 30 s. The average velocity v of each period T is marked at the upper left

    图  8   台站NM38一维反演实例

    (a) 一维 S 波速度模型;(b) 瑞雷波相速度频散

    Figure  8.   An example of inversion at station NM38

    (a) The 1-D S wave velocity model;(b) The Rayleigh wave phase velocity dispersions

    图  9   不同深度(1—30 km) S波速度分布图

    (a) 深度=5 km;(b) 深度=10 km;(c) 深度=15 km;(d) 深度=20 km;(e) 深度=25 km;(f) 深度=30 km,图中白线为图10中S波垂直剖面位置

    Figure  9.   Maps of vS at depths from 1 km to 30 km

    (a) depth=5 km;(b) depth=10 km;(c) depth=15 km;(d) depth=20 km;(e) depth=25 km;(f) depth=30 km, The white lines in Fig.(f) denote the locations of the vertical profiles presented in Fig. 10

    图  10   S波速度模型垂直剖面(剖面位置见图9f

    Figure  10.   Vertical sections of the S-wave velocity model,the location of which are indicated by white lines in Fig. 9f

    表  1   模型参数的采样空间

    Table  1   Sample ranges of model parameters

    沉积层 地壳层厚度/km 4个B样条系数/(km·s−1 不确定度σ1
    厚度/km 顶、底部vS /(km·s−1 波速比 地壳 上地幔
    m0±0.5 0—3.0 1.8—3.0 m0±3 3.1—4.4 4.0—5.4 10−4—10−1
    注:表中数据 ① 和 ② 参考CRUST 1.0,③ 参考何静等(2 018),④ 和 ⑤ 参考Dziewonski和Anderson (1 981)。
    下载: 导出CSV
  • 陈生生,樊祺诚,赵勇伟,史仁灯. 2013. 内蒙古贝力克玄武岩地球化学特征及地质意义[J]. 岩石学报,29(8):2695–2708.

    Chen S S,Fan Q C,Zhao Y W,Shi R D. 2013. Geochemical characteristics of basalts in Beilike area and its geological significance,Inner Mongolia[J]. Acta Petrologica Sinica,29(8):2695–2708 (in Chinese).

    陈生生,樊祺诚,赵勇伟,隋建立. 2011. 内蒙古贝力克玄武岩台地火山地质及成因探讨[J]. 地震地质,33(2):430–439. doi: 10.3969/j.issn.0253-4967.2011.02.016

    Chen S S,Fan Q C,Zhao Y W,Sui J L. 2011. Geological characteristics and genesis of basalt platform in Beilike,Inner Mongolia[J]. Seismology and Geology,33(2):430–439 (in Chinese).

    樊祺诚,赵勇伟,陈生生,李霓,隋建立. 2015. 大兴安岭—太行山重力梯度带以西的第四纪火山活动[J]. 矿物岩石地球化学通报,34(4):674–681.

    Fan Q C,Zhao Y W,Chen S S,Li N,Sui J L. 2015. Quaternary Volcanic Activities in the West of the Daxing'anling−Taihangshan gravity lineament[J]. Bulletin of Mineralogy,Petrology and Geochemistry,34(4):674–681

    龚辰,李秋生,叶卓,张洪双,李文辉,贺传松,李英康. 2016. 远震P波接收函数揭示的张家口(怀来)—中蒙边境(巴音温多尔)剖面地壳厚度与泊松比[J]. 地球物理学报,59(3):897–911.

    Gong C,Li Q S,Ye Z,Zhang H S,Li W H,He C S,Li Y K. 2016. Crustal thickness and Poisson ratio beneath the Huailai-Bayinonder profile derived from teleseismic receiver functions[J]. Chinese Journal of Geophysics,59(3):897–911 (in Chinese).

    何静,吴庆举,张瑞青,雷建设. 2018. 利用接收函数研究兴蒙造山带阿巴嘎地区的地壳结构[J]. 地球物理学报,61(9):3676–3688.

    He J,Wu Q J,Zhang R Q,Lei J S. 2018. Crustal structure beneath the Abaga area of Xing'an-Mongolia Orogenic Belt using teleseismic receiver functions[J]. Chinese Journal of Geophysics,61(9):3676–3688 (in Chinese).

    何静,吴庆举,高孟潭,张瑞青,余大新,Ulziibat M,Demberel S. 2014. 利用接收函数方法研究蒙古中南部地区地壳结构[J]. 地球物理学报,57(7):2386–2394. doi: 10.6038/cjg20140732

    He J,Wu Q J,Gao M T,Zhang R Q,Yu D X,Ulziibat M,Demberel S. 2014. Crustal structure and Poisson ratio beneath the central and southern Mongolia derived from receiver functions[J]. Chinese Journal of Geophysics,57(7):2386–2394 (in Chinese).

    李文辉,高锐,Randy K,李秋生,侯贺晟,李英康,张世红. 2014. 华北克拉通北缘(怀来—苏尼特右旗)地壳结构[J]. 地球物理学报,57(2):472–483. doi: 10.6038/cjg20140213

    Li W H,Gao R,Randy K,Li Q S,Hou H S,Li Y K,Zhang S H. 2014. Crustal structure of the northern margin of North China Craton from Huailai to Sonid Youqi profile[J]. Chinese Journal of Geophysics,57(2):472–483 (in Chinese).

    李英康,高锐,姚聿涛,米胜信,李文辉,熊小松,高建伟. 2014. 华北克拉通北缘—西伯利亚板块南缘的地壳速度结构特征[J]. 地球物理学报,57(2):484–497.

    Li Y K,Gao R,Yao Y T,Mi S X,Li W H,Xiong X S,Gao J W. 2014. Crustal velocity structure from the northern margin of the North China Craton to the southern margin of the Siberian plate[J]. Chinese Journal of Geophysics,57(2):484–497 (in Chinese).

    罗修泉,陈启桐. 1990. 内蒙古新生代玄武岩年代学初步研究[J]. 岩石矿物学杂志,9(1):37–46.

    Luo X Q,Chen Q T. 1990. Preliminary study on geochronology for Cenozoic basalts from Inner Mongolia[J]. Acta Petrologica et Mineralogica,9(1):37–46 (in Chinese).

    潘佳铁,李永华,吴庆举,余大新. 2014a. 中国东北地区地壳上地幔三维S波速度结构[J]. 地球物理学报,57(7):2077–2087.

    Pan J T,Li Y H,Wu Q J,Yu D X. 2014a. 3-D S-wave velocity structure of crust and upper-mantle beneath the northeast China[J]. Chinese Journal of Geophysics,57(7):2077–2087 (in Chinese).

    潘佳铁,吴庆举,李永华,余大新. 2014b. 中国东北地区噪声层析成像[J]. 地球物理学报,57(3):812–821.

    Pan J T,Wu Q J,Li Y H,Yu D X. 2014b. Ambient noise tomography in northeast China[J]. Chinese Journal of Geophysics,57(3):812–821 (in Chinese).

    潘佳铁,吴庆举,李永华,余大新,高孟潭,Ulziibat M,Demberel S. 2015. 蒙古中南部地区噪声层析成像[J]. 地球物理学报,58(8):3009–3022.

    Pan J T,Wu Q J,Li Y H,Yu D X,Gao M T,Ulziibat M,Demberel S. 2015. Ambient noise tomography in central-south Mongolia[J]. Chinese Journal of Geophysics,58(8):3009–3022 (in Chinese).

    漆家福,赵贤正,李先平,杨明慧,肖扬,于福生,董越崎. 2015. 二连盆地早白垩世断陷分布及其与基底构造的关系[J]. 地学前缘,22(3):118–128.

    Qi J F,Zhao X Z,Li X P,Yang M H,Xiao Y,Yu F S,Dong Y Q. 2015. The distribution of Early Cretaceous faulted-sags and their relationship with basement structure within Erlian basin[J]. Earth Science Frontiers,22(3):118–128 (in Chinese).

    强正阳,吴庆举. 2019. 利用剪切波分裂研究内蒙古阿巴嘎地区上地幔各向异性[J]. 地球物理学报,62(7):2510–2526.

    Qiang Z Y,Wu Q J. 2019. Upper mantle anisotropy beneath Abag area in Inner Mongolia from shear wave splitting[J]. Chinese Journal of Geophysics,62(7):2510–2526 (in Chinese).

    强正阳,吴庆举,何静,李永华. 2019. 内蒙古阿巴嘎地区地壳方位各向异性研究[J]. 地球物理学报,62(8):2946–2958.

    Qiang Z Y,Wu Q J,He J,Li Y H. 2019. Crustal azimuthal anisotropy beneath Abag area in Inner Mongolia,China[J]. Chinese Journal of Geophysics,62(8):2946–2958 (in Chinese).

    强正阳,吴庆举,李永华,何静,高孟潭,Ulziibat M,Demberel S. 2016. 蒙古中南部地区地壳各向异性及其动力学意义[J]. 地球物理学报,59(5):1616–1628. doi: 10.6038/cjg20160507

    Qiang Z Y,Wu Q J,Li Y H,He J,Gao M T,Ulziibat M,Demberel S. 2016. Crustal anisotropy beneath central-south Mongolia and its dynamic implications[J]. Chinese Journal of Geophysics,59(5):1616–1628 (in Chinese).

    王涛,郑亚东,张进江,王新社,曾令森,童英. 2007. 华北克拉通中生代伸展构造研究的几个问题及其在岩石圈减薄研究中的意义[J]. 地质通报,26(9):1154–1166.

    Wang T,Zheng Y D,Zhang J J,Wang X S,Zeng L S,Tong Y. 2007. Some problems in the study of Mesozoic extensional structure in the North China craton and its significance for the study of lithospheric thinning[J]. Geological Bulletin of China,26(9):1154–1166 (in Chinese).

    肖安成,杨树锋,陈汉林. 2001. 二连盆地形成的地球动力学背景[J]. 石油与天然气地质,22(2):137–145.

    Xiao A C,Yang S F,Chen H L. 2001. Geodynamic background on formation of Erlian Basin[J]. Oil &Gas Geology,22(2):137–145 (in Chinese).

    余大新,吴庆举,王鹏,叶庆东,潘佳铁,高孟潭. 2016. 蒙古中南部地区基于天然地震的勒夫波相速度层析成像[J]. 地震学报,38(1):41–52.

    Yu D X,Wu Q J,Wang P,Ye Q D,Pan J T,Gao M T. 2016. Love wave phase velocity tomography in the south-central Mongolia from earthquakes[J]. Acta Seismologica Sinica,38(1):41–52 (in Chinese).

    余大新,吴庆举,李永华,潘佳铁,张风雪,何静,高孟潭,Ulziibat M,Demberel S. 2015. 蒙古中南部地区面波相速度层析成像[J]. 地球物理学报,58(1):134–142. doi: 10.6038/cjg20150111

    Yu D X,Wu Q J,Li Y H,Pan J T,Zhang F X,He J,Gao M T,Ulziibat M,Demberel S. 2015. Rayleigh wave tomography of the phase velocity in the central and southern Mongolia[J]. Chinese Journal of Geophysics,58(1):134–142 (in Chinese).

    张风雪,吴庆举,李永华. 2013. 中国东北地区远震P波走时层析成像研究[J]. 地球物理学报,56(8):2690–2700.

    Zhang F X,Wu Q J,Li Y H. 2013. The traveltime tomography study by teleseismic P wave data in the Northeast China area[J]. Chinese Journal of Geophysics,56(8):2690–2700 (in Chinese).

    张风雪,吴庆举,李永华,高孟潭,Ulziibat M,Sukhbaatar U,Demberel S. 2014. 蒙古中南部地区的上地幔P波速度结构[J]. 地球物理学报,57(9):2790–2801.

    Zhang F X,Wu Q J,Li Y H,Gao M T,Ulziibat M,Sukhbaatar U,Demberel S. 2014. The P wave velocity structure of the upper mantle beneath the Central and Southern Mongolia area[J]. Chinese Journal of Geophysics,57(9):2790–2801 (in Chinese).

    张广成,吴庆举,潘佳铁,张风雪,余大新. 2013. 利用H-κ叠加方法和CCP叠加方法研究中国东北地区地壳结构与泊松比[J]. 地球物理学报,56(12):4084–4094. doi: 10.6038/cjg20131213

    Zhang G C,Wu Q J,Pan J T,Zhang F X,Yu D X. 2013. Study of crustal structure and Poisson ratio of NE China by H-κ stack and CCP stack methods[J]. Chinese Journal of Geophysics,56(12):4084–4094 (in Chinese).

    张祥信,高永丰,雷世和. 2019. 内蒙古中部苏尼特左旗地区阿巴嘎组火山岩地球化学特征及成因[J]. 地质通报,38(4):643–655.

    Zhang X X,Gao Y F,Lei S H. 2019. Geochemistry and petrogenesis of the volcanic rocks from the Abaga Formation in Sonid Left Banner,central Inner Mongolia[J]. Geological Bulletin of China,38(4):643–655 (in Chinese).

    Afonso J C,Fullea J,Griffin W L,Yang Y,Jones A G,Connolly J A D,O'Reilly S Y. 2013. 3-D multiobservable probabilistic inversion for the compositional and thermal structure of the lithosphere and upper mantle. I:A priori petrological information and geophysical observables[J]. J Geophys Res:Solid Earth,118(5):2586–2617. doi: 10.1002/jgrb.50124

    Bao X W,Song X D,Li J T. 2015. High-resolution lithospheric structure beneath Mainland China from ambient noise and earthquake surface-wave tomography[J]. Earth Planet Sci Lett,417:132–141. doi: 10.1016/j.jpgl.2015.02.024

    Bensen G D,Ritzwoller M H,Barmin M P,Levshin A L,Lin F,Moschetti M P,Shapiro N M,Yang Y. 2007. Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements[J]. Geophys J Int,169(3):1239–1260. doi: 10.1111/j.1365-246X.2007.03374.x

    Bodin T,Sambridge M,Tkalčić H,Arroucau P,Gallagher K,Rawlinson N. 2012. Transdimensional inversion of receiver functions and surface wave dispersion[J]. J Geophys Res:Solid Earth,117(B2):B02301.

    Brocher T M. 2005. Empirical relations between elastic wavespeeds and density in the Earth's crust[J]. Bull Seismol Soc Am,95(6):2081–2092. doi: 10.1785/0120050077

    Chen S S,Fan Q C,Zou H B,Zhao Y W,Shi R D. 2015. Geochemical and Sr-Nd isotopic constraints on the petrogenesis of late Cenozoic basalts from the Abaga area,Inner Mongolia,eastern China[J]. J Volcanol Geoth Res,305:30–44. doi: 10.1016/j.jvolgeores.2015.09.018

    Chu Z Y,Harvey J,Liu C Z,Guo J H,Wu F Y,Tian W,Zhang Y L,Yang Y H. 2013. Source of highly potassic basalts in northeast China:Evidence from Re-Os,Sr-Nd-Hf isotopes and PGE geochemistry[J]. Chem Geol,357:52–66. doi: 10.1016/j.chemgeo.2013.08.007

    Dziewonski A,Bloch S,Landisman M. 1969. A technique for the analysis of transient seismic signals[J]. Bull Seismol Soc Am,59(1):427–444. doi: 10.1785/BSSA0590010427

    Dziewonski A M,Anderson D L. 1981. Preliminary reference Earth model[J]. Phys Earth Planet Inter,25(4):297–356. doi: 10.1016/0031-9201(81)90046-7

    Fan Q C,Chen S S,Zhao Y W,Zou H B,Li N,Sui J L. 2014. Petrogenesis and evolution of Quaternary basaltic rocks from the Wulanhada area,North China[J]. Lithos,206-207:289–302. doi: 10.1016/j.lithos.2014.08.007

    Gardner G H F,Gardner L W,Gregory A R. 1974. Formation velocity and density:The diagnostic basics for stratigraphic traps[J]. Geophysics,39(6):770–780. doi: 10.1190/1.1440465

    Guo Z,Chen Y J,Ning J Y,Yang Y J,Afonso J C,Tang Y C. 2016. Seismic evidence of on-going sublithosphere upper mantle convection for intra-plate volcanism in Northeast China[J]. Earth Planet Sci Lett,433:31–43. doi: 10.1016/j.jpgl.2015.09.035

    Guo Z,Wang K,Yang Y J,Tang Y C,Chen Y J,Hung S H. 2018. The origin and mantle dynamics of quaternary intraplate volcanism in Northeast China from joint inversion of surface wave and body wave[J]. J Geophys Res:Solid Earth,123(3):2410–2425. doi: 10.1002/2017JB014948

    Guo Z,Chen Y J,Ning J Y,Feng Y G,Grand S P,Niu F L,Kawakatsu H,Tanaka S,Obayashi M,Ni J. 2015. High resolution 3-D crustal structure beneath NE China from joint inversion of ambient noise and receiver functions using NECESSArray data[J]. Earth Planet Sci Lett,416:1–11. doi: 10.1016/j.jpgl.2015.01.044

    He J,Wu Q J,Sandvol E,Ni J,Gallegos A,Gao M T,Ulziibat M,Demberel S. 2016. The crustal structure of south central Mongolia using receiver functions[J]. Tectonics,35(6):1392–1403. doi: 10.1002/2015TC004027

    He J,Sandvol E,Wu Q J,Gao M T,Gallegos A,Ulziibat M,Demberel S. 2017. Attenuation of regional seismic phases (Lg and Sn) in Eastern Mongolia[J]. Geophys J Int,211(2):979–989. doi: 10.1093/gji/ggx349

    He J,Li Y H,Sandvol E,Wu Q J,Du G B,Zhang R Q,Yu D X,Liu H L,Lei J S,Huang J P. 2019. Tomographic P n velocity and anisotropy structure in Mongolia and the adjacent regions[J]. J Geophys Res:Solid Earth,124(4):3662–3679. doi: 10.1029/2018JB016440

    Herrin E,Goforth T. 1977. Phase-matched filters:Application to the study of Rayleigh waves[J]. Bull Seismol Soc Am,67(5):1259–1275. doi: 10.1785/BSSA0670051259

    Herrmann R B,Ammon C J. 2004. Surface Waves,Receiver Functions and Crustal Structure[M/OL]. [2023−04−05]. https://www.eas.slu.edu/eqc/eqc_cps/CPS/CPS330/cps330c.pdf.

    Ho K S,Liu Y,Chen J C,Yang H J. 2008. Elemental and Sr-Nd-Pb isotopic compositions of late Cenozoic Abaga basalts,Inner Mongolia:Implications for petrogenesis and mantle process[J]. Geochem J,42(4):339–357. doi: 10.2343/geochemj.42.339

    Ho K S,Ge W C,Chen J C,You C F,Yang H J,Zhang Y L. 2013. Late Cenozoic magmatic transitions in the central Great Xing'an Range,Northeast China:Geochemical and isotopic constraints on petrogenesis[J]. Chem Geol,352:1–18. doi: 10.1016/j.chemgeo.2013.05.040

    Hou J,Wu Q J,Yu D X,Ye Q D. 2019. Crustal and upper mantle structure beneath Abaga area in Inner Mongolia revealed by Rayleigh-wave phase velocity tomography[J]. Earthquake Science,32(5/6):207–220.

    Hou J,Wu Q J,Yu D X,Ye Q D,Zhang R Q. 2023. Study on surface-wave tomography in Abaga volcanic area,Inner Mongolia[J]. Front Earth Sci,11:1131393. doi: 10.3389/feart.2023.1131393

    Huang X,Ding Z F,Ning J Y,Niu F L,Li G L,Wang X C,Xu X M. 2021. Sedimentary and crustal velocity structure of Trans-North China Orogen from joint inversion of Rayleigh wave phase velocity and ellipticity and some implication for Syn-rift volcanism[J]. Tectonophysics,819:229104. doi: 10.1016/j.tecto.2021.229104

    Kennett B L N,Sambridge M S,Williamson P R. 1988. Subspace methods for large inverse problems with multiple parameter classes[J]. Geophys J Int,94(2):237–247. doi: 10.1111/j.1365-246X.1988.tb05898.x

    Kononova V A,Kurat G,Embey-Isztin A,Pervov V A,Koeberl C,Brandstätter F. 2002. Geochemistry of metasomatised spinel peridotite xenoliths from the Dariganga Plateau,South-eastern Mongolia[J]. Miner Petrol,75(1):1–21.

    Kuritani T,Kimura J I,Ohtani E,Miyamoto H,Furuyama K. 2013. Transition zone origin of potassic basalts from Wudalianchi volcano,northeast China[J]. Lithos,156-159:1–12. doi: 10.1016/j.lithos.2012.10.010

    Li G L,Niu F L,Yang Y J,Xie J. 2018. An investigation of time-frequency domain phase-weighted stacking and its application to phase-velocity extraction from ambient noise's empirical Green's functions[J]. Geophys J Int,212(2):1143–1156. doi: 10.1093/gji/ggx448

    Li G L,Chen H C,Niu F L,Guo Z,Yang Y J,Xie J. 2016. Measurement of Rayleigh wave ellipticity and its application to the joint inversion of high-resolution S wave velocity structure beneath northeast China[J]. J Geophys Res:Solid Earth,121(2):864–880. doi: 10.1002/2015JB012459

    Liu H L,Byrnes J S,Bezada M,Wu Q J,Pei S P,He J. 2022. Variable depths of magma genesis in the North China Craton and Central Asian Orogenic Belt inferred from teleseismic P wave attenuation[J]. J Geophys Res:Solid Earth,127(3):e2021JB022439. doi: 10.1029/2021JB022439

    Liu Y N,Niu F L,Chen M,Yang W C. 2017. 3-D crustal and uppermost mantle structure beneath NE China revealed by ambient noise adjoint tomography[J]. Earth Planet Sci Lett,461:20–29. doi: 10.1016/j.jpgl.2016.12.029

    Liu Z K,Huang J L,Yao H J. 2016. Anisotropic Rayleigh wave tomography of Northeast China using ambient seismic noise[J]. Phys Earth Planet Inter,256:37–48. doi: 10.1016/j.pepi.2016.05.001

    Meng Q R,Hu J M,Jin J Q,Zhang Y,Xu D F. 2003. Tectonics of the late Mesozoic wide extensional basin system in the China-Mongolia border region[J]. Basin Res,15(3):397–415. doi: 10.1046/j.1365-2117.2003.00209.x

    Qiang Z Y,Wu Q J,Li Y H,Gao M T,Demberel S,Ulzibat M,Sukhbaatar U,Flesch L M. 2017. Complicated seismic anisotropy beneath south-central Mongolia and its geodynamic implications[J]. Earth Planet Sci Lett,465:126–133. doi: 10.1016/j.jpgl.2017.02.035

    Rawlinson N,Sambridge M. 2004a. Multiple reflection and transmission phases in complex layered media using a multistage fast marching method[J]. Geophysics,69(5):1338–1350. doi: 10.1190/1.1801950

    Rawlinson N,Sambridge M. 2004b. Wave front evolution in strongly heterogeneous layered media using the fast marching method[J]. Geophys J Int,156(3):631–647. doi: 10.1111/j.1365-246X.2004.02153.x

    Tang Y C,Chen Y J,Zhou S Y,Ning J Y,Ding Z F. 2013. Lithosphere structure and thickness beneath the North China Craton from joint inversion of ambient noise and surface wave tomography[J]. J Geophys Res:Solid Earth,118(5):2333–2346. doi: 10.1002/jgrb.50191

    Tao K,Niu F L,Ning J Y,Chen Y J,Grand S,Kawakatsu H,Tanaka S,Obayashi M,Ni J. 2014. Crustal structure beneath NE China imaged by NECESSArray receiver function data[J]. Earth Planet Sci Lett,398:48–57. doi: 10.1016/j.jpgl.2014.04.043

    Xiao W J,Windley B F,Hao J,Zhai M G. 2003. Accretion leading to collision and the Permian Solonker suture,Inner Mongolia,China:Termination of the central Asian orogenic belt[J]. Tectonics,22(6):1069.

    Xu H R,Luo Y H,Yang Y J,Shen W S,Yin X F,Chen G X,Yang X Z,Sun S D. 2020. Three-dimensional crustal structures of the Shanxi rift constructed by Rayleigh wave dispersion curves and ellipticity:Implication for sedimentation,intraplate volcanism,and seismicity[J]. J Geophys Res:Solid Earth,125(11):e2020JB020146. doi: 10.1029/2020JB020146

    Ye G F,Fu H,Jin S,Wei W B. 2020. Magnetotelluric study of the mechanism of the Abaga and Dalinor volcanic groups in Central Inner Mongolia,China[J]. Phys Earth Planet Inter,308:106570. doi: 10.1016/j.pepi.2020.106570

    Zhang F X,Wu Q J,Grand S P,Li Y H,Gao M T,Demberel S,Ulziibat M,Sukhbaatar U. 2017. Seismic velocity variations beneath central Mongolia:Evidence for upper mantle plumes?[J]. Earth Planet Sci Lett,459:406–416. doi: 10.1016/j.jpgl.2016.11.053

    Zhang R Q,Wu Q J,Sun L,He J,Gao Z Y. 2014a. Crustal and lithospheric structure of Northeast China from S-wave receiver functions[J]. Earth Planet Sci Lett,401:196–205. doi: 10.1016/j.jpgl.2014.06.017

    Zhang S H,Gao R,Li H Y,Hou H S,Wu H C,Li Q S,Yang K,Li C,Li W H,Zhang J S,Yang T S,Keller G R,Liu M. 2014b. Crustal structures revealed from a deep seismic reflection profile across the Solonker suture zone of the Central Asian Orogenic Belt,northern China:An integrated interpretation[J]. Tectonophysics,612-613:26–39. doi: 10.1016/j.tecto.2013.11.035

    Zhao Y W,Fan Q C,Zou H B,Li N. 2014. Geochemistry of Quaternary basaltic lavas from the Nuomin volcanic field,Inner Mongolia:Implications for the origin of potassic volcanic rocks in Northeastern China[J]. Lithos,196-197:169–180. doi: 10.1016/j.lithos.2014.03.011

    Zou H B,Reid M R,Liu Y S,Yao Y P,Xu X S,Fan Q C. 2003. Constraints on the origin of historic potassic basalts from northeast China by U-Th disequilibrium data[J]. Chem Geol,200(1/2):189–201.

图(10)  /  表(1)
计量
  • 文章访问数:  428
  • HTML全文浏览量:  107
  • PDF下载量:  220
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-01
  • 修回日期:  2023-12-05
  • 网络出版日期:  2023-12-10
  • 刊出日期:  2025-01-29

目录

/

返回文章
返回