Change identification of coseismic surface rupture zone over time based on multi-source satellite images:A casestudy of the west of Kunlunshan Pass MS8.1 earthquake in 2001
-
摘要:
基于震前、震后多期卫星数据,对2001年11月4日昆仑山口西MS8.1同震地表破裂进行了研究,结果表明:① 同震破裂带的西段在震前未发现先存破裂遗迹,而东段是在先存地震破裂遗迹上再次发生了破裂。② 震后两年,湖面冰、大型河道、冲沟和冲洪积扇上的地表破裂迅速地被活动性流水和气温变化等破坏,在影像上已无踪迹;震后二十年,低级阶地的地表破裂几乎无法识别,而高级阶地的破裂带保留较完整,可识别长度锐减至64%,呈“碎片”化展布。因此,同震地表破裂带的影像识别主要受所处地貌位置和气候变化等地表作用过程的影响,同时也受影像的空间分辨率及影像获取时间等因素的影响;而较老地貌面上保留的破裂带遗迹仍有助于开展历史地震、古地震地表破裂带的回溯研究。
-
关键词:
- 同震地表破裂带 /
- 昆仑山口西MS8.1地震 /
- 锁眼 /
- 高分卫星影像 /
- 地表过程
Abstract:Coseismic surface rupture is the permanent deformation on the surface in the middle and upper parts of the earth’s crust during a strong earthquake occurred. It indicates to a certain extent the deep structural characteristics of the active faults and the pre-existing tectonic environment , so complete extraction of characteristic of coseismic surface rupture has an important influence on the understanding of geometry and structure of the active faults.
On November 14, 2001, a West Pass of Kunlunshan earthquake with magnitude of MS8.1 occurred at Hoh Xil of no man’s land in Golmud City, Qinghai Province, northern Qinghai-Xizang Plateau. The instrumental epicenter was located near the Kunlun mountains at the junction of Xinjiang Uygur Autonomous Region and Qinghai Province within higher local altitude. The strong quake destroyed the Qinghai-Xizang Railway under construction and Qinghai-Xizang Highway connecting Xining to Lhasa, causing major economic losses to the country's lifeline projects. Due to the hypoxia, harsh natural environment, and inconvenient transportation of the epicenter area which difficult to conduct extensive field surveys. It is necessary to use high-resolution satellite archived images to study the time-varying characteristics of coseismic surface rupture induced by recent strong earthquakes, which has important reference significance for conducting research on historical strong earthquake events. This paper uses multi-temporal high-resolution satellite images (with resolution of 1−6 m) covering the coseismic surface rupture zone of the 2001 MS8.1 mainshock in the west of Kunlun Pass as the main research data to discuss the changes of coseismic surface rupture zone at different segments under natural surface process and check the reasons for its changes.
We select USGS KeyHole images with a spatial resolution of 6 m as pre-earthquake images, and the multi-period image data within 20 years post- earthquake from Google Earth (1 m), ALOS (10 m), Chinese GF-2 (1 m), and GF-7 (0.6 m). We use a comprehensive method of machine-assisted visual interpretation to extract the distribution of the coseismic rupture zone. The research results show that: ① A nearly 400 km linear coseismic surface rupture zone was formed during the 2001 earthquake, no pre-existing rupture remains were found in the relatively shorter western section before the earthquake, while the fresh coseismic rupture was reoccurrence along pre-existing earthquake ruptures at the longer eastern section. ② In 2003, two years after the earthquake, the coseismic surface ruptures locating at lake surface, crossing river valleys, gullies and alluvial fans which been checked during the earthquake field survey were rapidly affected by seasonal water flow and temperature (lake ice melt) changes. In 2011, 10 years after the earthquake, the surface rupture segments gradually showed a significant fragmented distribution on the images. Usually, continuous coseismic surface rupture zones can only be identified on high-level terraces or locations far away from active alluvial fans; in 2021, 20 years after the earthquake, coseismic surface ruptures on low-level terraces are almost impossible to identify, while the rupture zones on high-level terraces are relatively intact. The total length of identifiable rupture zones sharply reduced to 64%. More than 500 coseismic rupture sections had disappeared from the images during the past 20 years. ③ The measurement of coseismic horizontal dislocation based on GF image 20 years after the earthquake shows that the distribution of horizontal dislocation still has multiple peaks with maximum measured horizontal coseismic slip of 8.6 m, which is consistent with previous field survey but slightly smaller, and this proved that high quality satellite images can be used to combine the discontinuous coseismic rupture zone to together the length.
The identification of whole coseismic surface rupture zones on images is mainly affected by the surface processes. It is also affected by the spatial resolution of the images and their acquisition time. The identification of coseismic surface rupture of strong earthquakes can rely on emergency scientific surveys and satellite and aerial image data shortly after the earthquakes. However, the identification of surface rupture zones in uninhabited areas and historical strong earthquakes mainly relies on long-elapsed time and satellite imagery. Through residual rupture zone information on older landforms, it can recover more complete surface rupture zones than can be directly observed at the surface ground. Using satellite remote sensing images, scholars can restore the rupture scale of paleo-earthquakes and historical earthquakes, the surface rupture zone can be traced back through the residual rupture traces on older landforms, which is helpful in estimating the total length of the surface rupture zone, its magnitude, etc. Our research shows that the transformation process of coseismic surface ruptures induced by strong earthquakes can be understood in detail using multi-temporal high-spatial resolution images, which provides a methodological reference for exploring a large number of active faults within the Qinghai-Xizang Plateau to assess their earthquake risk in the future.
-
-
图 3 地表破裂带长度及水平位移测量方式示意图(修改自陈杰等,2004)
(a) 连续地震破裂带长度测量方法;(b) “碎片状”地震破裂带长度测量方法;(c) 标志线两侧产生弯曲变形的位移测量方法;(d) 未变形标志线的测量方法
Figure 3. Schematic diagram of the measurement method of the length and horizontal displacement of surface rupture zone (modified from Chen et al,2004)
(a) Methods of measuring the length of successive surface ruptures;(b) Methods for measuring the length of “fragmentary” surface ruptures;(c) The displacement measurement method for marking line with bending deformation;(d) Method of measuring undeformed mark lines
图 4 昆仑山口西同震地表变形的典型识别标志
(a) 地震裂缝在影像上的阴影和纹理特征和挤压鼓包在影像上的形状和阴影特征;(b) 断塞塘在影像上的颜色变化;(c) 被断错的冲沟在影像上的形状变化
Figure 4. Typical identification signs of surface deformation in the West Kunlunshan Pass earthquake
(a) The shadow and texture features of seismic cracks on the image,and the shape and shadow features of mole-track on the image;(b) The colour change of the sag pond on the image;(c) The shape change of the dislocated gully on the image
图 5 1973—1980年KeyHole影像及地震破裂遗迹解译结果
(a) 震前KeyHole影像;(b) 多级阶地上的同震地表破裂遗迹;(c) 暗色条带状的先存构造迹线;(d) 地震破裂遗迹分布图
Figure 5. Interpretation results of earthquake rupture remains using KeyHole images during 1973−1980
(a) Pre-earthquake KeyHole image;(b) Earthquake surface rupture remains on multistage terrace;(c) Dark banded preexisting structural trace;(d) Earthquake rupture trace distribution map
图 6 震后两年(2003年)同震地表破裂带的影像特征
(a) 太阳湖西侧地表破裂的组合特征;(b) 东段西端点的马尾状分叉;(c) 红水河口东侧的南北两支地表破裂带;(d) 玉西峰段右阶排列的次级破裂带。箭头指示断裂走向
Figure 6. Image characteristics of coseismic surface rupture zone in 2003,two years after the 2021 earthquake
(a) Combined characteristics of surface rupture on the west side of the Sun Lake;(b) Horsetail bifurcation at the west end of the eastern segment;(c) Surface rupture zones in the north and south branches east of the Hongshui River Pass;(d) Right-step secondary surface rupture zone at Mount Yuxi segment. The arrows indicating the srtike of active fault
图 9 典型地貌点地表破裂带的ALOS影像(左)及解译(右)
(a−b) 红水河西侧的多级阶地上的地表破裂带;(c−d) 玉西峰南缘的冲积扇和地表破裂带
Figure 9. ALOS image and interpretation of surface rupture zone at typical geomorphic points
(a−b) Surface fracture zone distribution on multilevel terrace on the west side of Hongshui River;(c−d) Alluvial fan and surface rupture zone distribution at the southern margin of Yuxifeng
图 11 图10中地点1的地表破裂带影像及解译图
图(a)和(c)为IKONOS图像(2002-01)及解译(Li et al,2005);图(b)和(d)为GF-7图像(2021-10-10)及解译
Figure 11. Image and interpretation of surface rupture zone at site 1 on Fig.10
Figs.(a) and (c) are IKONOS images (2002-01) and interpretation results (according to Li et al,2005);Figs.(b) and (d) are GF-7 images (2021-10-10) and interpretation results
图 12 地点2处地表破裂带影像(上)及解译(下)图
图(a),(c)为2003-01-06的IKONOS图像及解译(修改自Xu et al,2006);图(b),(d)为2021-11-28的 GF-7图像及解译
Figure 12. Image and interpretation of surface rupture zone at site 2
Figs.(a),(c) are IKONOS images (2003-01-06) and interpretation results (modified from Xu et al,2006);Figs.(b),(d) are GF-7 images (2021-11-28) and interpretation results
图 13 三维场景下不同时间的地表破裂带的影像展布特征
(a) 地表破裂带切断河流与各级冲沟;(b) 河流与部分冲沟上无法识别地表破裂带;(c) 河流与冲沟上无法识别的地表破裂带,图中序号表示地表监测点,序号后括号内数字表示无法识别的地表破裂带长度
Figure 13. Characteristics of surface fracture zones over time in a three-dimensional scene,noting gradual fragmentation
(a) Surface rupture zones cutting off rivers and gullies;(b) Surface rupture zones could not be identified on rivers and some gullies;(c) Surface rupture zones that cannot be identified on rivers and gullies。The serial numbers represent the local surface monitoring sites and the number after the serial number indicates the length of the surface rupture zone that cannot be identified
图 14 2021年昆仑山口西MS8.1地震同震地表破裂带可识别长度时空变化特征
(a) 2021年影像上不可识别破裂带地点分布图;(b) 不同时期影像上可识别破裂带长度变化图;(c) 影像上不可识别破裂带地点占比扇形图
Figure 14. The spatial and temporal variation characteristics of identifiable length of the coseismic surface rupture zone of the 2021 west of Kunlunshan Pass MS8.1 earthquake can be identified
(a) Location distribution of unrecognizable rupture zone in 2021 images;(b) Changes in the length of recognizable rupture zone on images at different periods;(c) Fan-chart of unrecognizable rupture zone locations
图 15 不同时期的水平位移量分布图和地表破裂带分布
(a) 野外实际调查得到的同震位错量 (Xu et al,2002,2006);(b) 前人学者根据震后影像得到的水平位错量 (Klinger et al,2005);(c) 本文研究得到的同震位错量分布
Figure 15. Distribution of horizontal displacement and surface rupture zone in different periods
(a) The coseismic displacement obtained from field survey (Xu et al,2002,2006);(b) The horizontal displacement obtained by previous scholars based on 2022 post-earthquake images (Klinger et al,2005);(c) The distribution of co-seismic displacement obtained in this study
表 1 文章所使用的卫星遥感数据参数
Table 1 Satellite remote sensing data parameters used in this paper
遥感数据类型 最高分辨率/m 景数 影像采集年份 解译用途 KeyHole-9① 6 5 1 973—1 980 震前 Landsat-7① 15 4 1 999—2 002 震前、震后补充 Google Earth 0.33 96 2 002—2 003 震后两年 ALOS② 10 10 2 007—2 010 震后10年 GF-7③ 0.76 27 2 021—2 022 震后20年 GF-2③ 1 8 2 021—2 022 震后20年 注:① 数据引自United States Geological Survey (2 021);② 数据引自National Aeronautics and Space Administration (2 022);③ 数据引自中国航天科技集团有限公司(2 022)。 表 2 2001年昆仑山口西MS8.1同震地表破裂带的长度统计
Table 2 Length statistics of coseismic surface rupture zone of the 2001 west of Kunlunshan Pass MS8.1 earthquake
-
陈桂华. 2010. 光学遥感影像阴影与2008年汶川地震同震地表变形的影像识别[J]. 地震地质,32(1):107–114. doi: 10.3969/j.issn.0253-4967.2010.01.011 Chen G H. 2010. Interpretational characteristics of optical remote sensing image for the co-seismic surface deformation of the 2008 Wenchuan earthquake and its relationship with imaging[J]. Seismology and Geology,32(1):107–114 (in Chinese).
陈桂华,闵伟,宋方敏,焦德成,许洪泰. 2011. 从1786年磨西地震看地震地表破裂带在不同地貌区的保存[J]. 地震地质,33(4):804–817. doi: 10.3969/j.issn.0253-4967.2011.04.006 Chen G H,Min W,Song F M,Jiao D C,Xu H T. 2011. Preservation of co-seismic surface rupture in different geomorphological settings from the study of the 1786 Moxi earthquake[J]. Seismology and Geology,33(4):804–817 (in Chinese).
陈杰,陈宇坤,丁国瑜,王赞军,田勤俭,尹功明,单新建,王志才. 2004. 2001年昆仑山口西MS8.1地震地表同震位移分布特征[J]. 地震地质,26(3):378–392. Chen J,Chen Y K,Ding G Y,Wang Z J,Tian Q J,Yin G M,Shan X J,Wang Z C. 2004. Surficial slip distribution and segmentation of the 426-km-long surface rupture of the 14 November,2001,MS8.1 earthquake on the east Kunlun fault,Northern Tibetan Plateau,China[J]. Seismology and Geology,26(3):378–392 (in Chinese).
付碧宏,时丕龙,张之武. 2008. 四川汶川MS8.0大地震地表破裂带的遥感影像解析[J]. 地质学报,82(12):1679–1687. Fu B H,Shi P L,Zhang Z W. 2008. Spatial characteristics of the surface rupture produced by the MS8.0 Wenchuan earthquake using high-resolution remote sensing imagery[J]. Acta Geologica Sinica,82(12):1679–1687 (in Chinese).
刘静,徐晶,偶奇,韩龙飞,王子君,邵志刚,张培震,姚文倩,王鹏. 2023. 关于1920年海原大地震震级高估的讨论[J]. 地震学报,45(4):579–596. Liu J,Xu J,Ou Q,Han L F,Wang Z J,Shao Z G,Zhang P Z,Yao W Q,Wang P. 2023. Discussion on the overestimated magnitude of the 1920 Haiyuan earthquake[J]. Acta Seismologica Sinica,45(4):579–596 (in Chinese).
梅安新,彭望琭,秦其明,刘慧平. 2001. 遥感导论[M]. 北京:高等教育出版社:1−324. Mei A X,Peng W L,Qin Q M,Liu H P. 2001. An Introduction to Remote Sensing[M]. Beijing:Higher Education Press:1−324 (in Chinese).
青海省地震局,中国地震局地壳应力研究所. 1999. 东昆仑活动断裂带[M]. 北京:地震出版社:127−154. Qinghai Earthquake Administration,Institute of Crustal Stress,China Earthquake Administration. 1999. Eastern Kunlun Active Fault Zone[M]. Beijing:Seismological Press:127−154 (in Chinese).
魏永明,李剑南,陈玉,高锦风. 2021. 不同类型发震断层的同震地表破裂光学遥感特征研究[J]. 第四纪研究,41(6):1513–1531. Wei Y M,Li J N,Chen Y,Gao J F. 2021. Research on optical remote sensing characteristics of coseismic surface rupture of different types of seismogenic faults[J]. Quaternary Sciences,41(6):1513–1531 (in Chinese).
徐锡伟,陈文彬,于贵华,马文涛,戴华光,张志坚,陈永明,何文贵,王赞军,党光明. 2002. 2001年11月14日昆仑山库赛湖地震(MS8.1)地表破裂带的基本特征[J]. 地震地质,24(1):1–13. Xu X W,Chen W B,Yu G H,Ma W T,Dai H G,Zhang Z J,Chen Y M,He W G,Wang Z J,Dang G M. 2002. Characteristic features of the surface ruptures of the Hoh Sai Hu (Kunlunshan) earthquake (MS8.1),Northern Tibetan Plateau,China[J]. Seismology and Geology,24(1):1–13 (in Chinese).
闫世勇. 2009. 遥感在汶川地震地质灾害评估中的应用[J]. 河北工程大学学报(自然科学版),26(1):76–80. doi: 10.3969/j.issn.1673-9469.2009.01.020 Yan S Y. 2009. Remote sensing application in the geologic disaster evaluation of Wenchuan earthquake[J]. Journal of Hebei University of Engineering (Natural Science Edition),26(1):76–80 (in Chinese).
赵瑞斌,李军,向志勇,葛鸣,罗刚. 2002. 昆仑山口西8.1级地震地表破裂带西段考察[J]. 内陆地震,16(2):175–179. doi: 10.16256/j.issn.1001-8956.2002.02.016 Zhao R B,Li J,Xiang Z Y,Ge M,Luo G. 2002. Expedition on the west segment of the surface rupture zone of the MS8.1 earthquake in the West of Kunlun Mountain Pass[J]. Inland Earthquake,16(2):175–179 (in Chinese).
中国航天科技集团有限公司. 2022.中国资源卫星应用中心数据服务平台[DB/OL] 2022−01−30]. https://data.cresda.cn/#/home
China Aerospace Science and Technology Corporation. 2022.China Center for Resources Satellite Data and Application [DB/OL].[2022−01−30]. https://data.cresda.cn/#/home (in Chinese).
Antolik M,Abercrombie R E,Ekström G. 2004. The 14 November 2001 Kokoxili (Kunlunshan),Tibet,earthquake:Rupture transfer through a large extensional step-over[J]. Bull Seismol Soc Am,94(4):1173–1194. doi: 10.1785/012003180
Avouac J P,Tapponnier P. 1993. Kinematic model of active deformation in central Asia[J]. Geophys Res Lett,20(10):895–898. doi: 10.1029/93GL00128
Crippen R E. 1992. Measurement of subresolution terrain displacements using SPOT panchromatic imagery[J]. Episodes,15(1):56–61. doi: 10.18814/epiiugs/1992/v15i1/009
Fu B H,Awata Y,Du J G,Ninomiya Y,He W G. 2005. Complex geometry and segmentation of the surface rupture associated with the 14 November 2001 great Kunlun earthquake,northern Tibet,China[J]. Tectonophysics,407(1/2):43–63.
King G,Klinger Y,Bowman D,Tapponnier P. 2005. Slip-partitioned surface breaks for the MW7.8 2001 Kokoxili earthquake,China[J]. Bull Seismol Soc Am,95(2):731–738. doi: 10.1785/0120040101
Klinger Y,Xu X W,Tapponnier P,Van der Woerd J,Lasserre C,King G. 2005. High-resolution satellite imagery mapping of the surface rupture and slip distribution of the MW~7.8,14 November 2001 Kokoxili earthquake,Kunlun Fault,Northern Tibet,China[J]. Bull Seismol Soc Am,95(5):1970–1987. doi: 10.1785/0120040233
Li H B,van der Woerd J,Tapponnier P,Klinger Y,Qi X X,Yang J S,Zhu Y T. 2005. Slip rate on the Kunlun Fault at Hongshui Gou,and recurrence time of great events comparable to the 14/11/2001,MW~7.9 Kokoxili earthquake[J]. Earth Planet Sci Lett,237(1/2):285–299.
Lin A M,Kikuchi M,Fu B H. 2003. Rupture segmentation and process of the 2001 MW7.8 central Kunlun,China,earthquake[J]. Bull Seismol Soc Am,93(6):2477–2492. doi: 10.1785/0120020179
McCalpin J P. 2009. Paleoseismology[M]. 2nd ed. Burlington:Academic Press:1−613.
Meyer B,Tapponnier P,Bourjot L,Métivier F,Gaudemer Y,Peltzer G,Guo S M,Chen Z T. 1998. Crustal thickening in Gansu-Qinghai,lithospheric mantle subduction,and oblique,strike-slip controlled growth of the Tibet plateau[J]. Geophys J Int,135(1):1–47. doi: 10.1046/j.1365-246X.1998.00567.x
Michel R,Avouac J P,Taboury J. 1999. Measuring ground displacements from SAR amplitude images:Application to the Landers earthquake[J]. Geophys Res Lett,26(7):875–878. doi: 10.1029/1999GL900138
National Aeronautics and Space Administration. 2022.Alaska Satellite Facility Distributed Active Archive Centers [DB/OL]. [2022−01−30]. https://search.asf.alaska.edu/.
Tocheport A,Rivera L,van der Woerd J. 2006. A study of the 14 November 2001 Kokoxili earthquake:History and geometry of the rupture from Teleseismic data and field observations[J]. Bull Seismol Soc Am,96(5):1729–1741. doi: 10.1785/0120050200
United States Geological Survey. 2021.USGS Earth Explorer [DB/OL].[2021−09−30]. https://earthexplorer.usgs.gov/.
van der Woerd J,Ryerson F J,Tapponnier P,Meriaux A S,Gaudemer Y,Meyer B,Finkel R C,Caffee M W,Zhao G G,Xu Z Q. 2000. Uniform slip-rate along the Kunlun fault:Implications for seismic behaviour and large-scale tectonics[J]. Geophys Res Lett,27(16):2353–2356. doi: 10.1029/1999GL011292
Xu X W,Chen W B,Ma W T,Yu G H,Chen G H. 2002. Surface rupture of the Kunlunshan earthquake (MS8.1),northern Tibetan Plateau,China[J]. Seismolog Res Lett,73(6):884–892. doi: 10.1785/gssrl.73.6.884
Xu X W,Yu G H,Klinger Y,Tapponnier P,van der Woerd J. 2006. Reevaluation of surface rupture parameters and faulting segmentation of the 2001 Kunlunshan earthquake (MW7.8),northern Tibetan Plateau,China[J]. J Geophys Res:Solid Earth,111(B5):B05316.
Xu X W,Yu G H,Ma W T,Klinger Y,Tapponnier P. 2008. Rupture behavior and deformation localization of the Kunlunshan earthquake (MW7.8) and their tectonic implications[J]. Science China:Earth Science,51(10):1361–1374. doi: 10.1007/s11430-008-0099-z
Zhang P Z,Shen Z K,Wang M,Gan W J,Bürgmann R,Molnar P,Wang Q,Niu Z J,Sun J Z,Wu J C,Sun H R,You X Z. 2004. Continuous deformation of the Tibetan Plateau from global positioning system data[J]. Geology,32(9):809–812. doi: 10.1130/G20554.1