全球火山活动时空分布特征及其对强震活动趋势的指示

石富强, 王芃, 杨晨艺, 王光明, 刘洁, 邵志刚, 王庆林, 贾若

石富强,王芃,杨晨艺,王光明,刘洁,邵志刚,王庆林,贾若. 2024. 全球火山活动时空分布特征及其对强震活动趋势的指示. 地震学报,46(2):273−291. DOI: 10.11939/jass.20230120
引用本文: 石富强,王芃,杨晨艺,王光明,刘洁,邵志刚,王庆林,贾若. 2024. 全球火山活动时空分布特征及其对强震活动趋势的指示. 地震学报,46(2):273−291. DOI: 10.11939/jass.20230120
Shi F Q,Wang P,Yang C Y,Wang G M,Liu J,Shao Z G,Wang Q L,Jia R. 2024. Spatio-temporal distribution characteristics of the worldwide volcano activity and their implication to the strong earthquake trends. Acta Seismologica Sinica46(2):273−291. DOI: 10.11939/jass.20230120
Citation: Shi F Q,Wang P,Yang C Y,Wang G M,Liu J,Shao Z G,Wang Q L,Jia R. 2024. Spatio-temporal distribution characteristics of the worldwide volcano activity and their implication to the strong earthquake trends. Acta Seismologica Sinica46(2):273−291. DOI: 10.11939/jass.20230120

全球火山活动时空分布特征及其对强震活动趋势的指示

基金项目: 中国地震局地震预测开放基金(XH23068D)、陕西省自然科学基础研究计划(2024JC-YBMS-210,2022JQ-254)、国家自然科学基金(42304004)和中国地震局地震大形势跟踪任务共同资助
详细信息
    作者简介:

    石富强,在读博士研究生,高级工程师,主要从事断层应力模拟和地震综合预测研究,e-mail: shifuqiang121@163.com

    通讯作者:

    邵志刚,博士,研究员,主要从事地球动力学与地震活动性方面的研究,e-mail: shaozg0911@126.com

  • 中图分类号: P315.5,P317.5

Spatio-temporal distribution characteristics of the worldwide volcano activity and their implication to the strong earthquake trends

  • 摘要:

    基于史密森学会火山目录分析了全球火山活动的时空特征,并结合中国地震台网目录讨论了火山活动对全球和中国大陆强震活动趋势的指示意义。结果显示:① 全球火山活动表现出较为显著的百年周期特征,且百年周期内火山活动和M≥8.0大震之间存在着频次准同步和能量互补现象;② 中国大陆1955年前后强震活动状态的变化可能与同期全球火山活动状态变化密切相关,且二者可能受控于百年周期内地球内部能量积累与释放的状态变化;③ 2022年汤加火山的剧烈喷发意味着地球内部能量仍在持续释放。结合全球M8地震和中国大陆M7浅源地震的活动特征,认为当前及未来一段时间全球及中国大陆的大震活动状态可能与二十世纪上半叶相似。

    Abstract:

    Identical with earthquakes, volcanic eruptions also play a role of energy release from the Earth’s interior. And the volcanic eruption intensity can be measured by volcanic explosivity index (VEI for short), which is determined by the volume of the eruption material and the height of the volcanic ash column. On January 15, 2022, a volcano erupted violently in Tonga in the South Pacific Ocean with the eruption intensity as high as VEI=5. And the energy release possibly exceed 58 Mt TNT, almost six times as much as the energy released by the great Wenchuan earthquake in 2008. The extremely energy release has attracted widespread attention from international scientists and has a significant impact on the global atmospheric environment and climate change.

    However, as a way of energy releasing of the Earth’s interior, whether the violent eruption of the Tonga volcano was related to the state change of strong earthquake trend worldwide or in a specific tectonic region? In other words, can the extreme eruption of the Tonga volcano provide some clues or indications for the analyses of strong earthquake trend worldwide or in a specific tectonic region?

    To answer this question, here, we firstly summarized the spatio-temporal features of global volcanic eruptions based on the the volcano catalogue from Smithsonian Institution and reviewed the characteristics of strong earthquake activities in the whole world and Chinese mainland on the basis of earthquake catalogue from China Earthquake Network. And then, we analyzed the possible indications of volcanic activity to the trends of global and Chinese mainland strong earthquakes in the viewpoint of the seismicity analysis. What is more, the possible change in strong earthquake trends of the whole world and Chinese mainland after the Tonga volcanic eruption is also discussed. The results are as following.

    Firstly, global volcanic and seismic activities have similar characteristics on the plate scale, and they share the same main active tectonic area, called the Pacific Ring of Fire. However, there may be some certain differences in their tectonic environment. Both the volcanic eruption and strong earthquakes are more likely to occur at the boundary of the youngest (0−50 million years) plates, such as Mexico, Chile-Peru and Vanuatu, or the boundary of the oldest (more than 90 million years) plates, such as Japan and New Zealand. But, instead, the volcanic eruption and strong earthquake activity displayed opposite state in some specific tectonic regions with middle-aged (50−90 million years) plate, such as the western section of Alaska subduction and the northern section of Sumatra subduction, where large earthquakes are active but volcanism is weak.

    Secondly, similar to the Gutenberg-Richter law in seismic activity, the volcanic eruption magnitude and accumulated frequency also satisfied power-law distribution. Moreover, the volcanic eruption also displayed periodic activity characteristics in time and intensity. The global volcanic activity can be divided into two visible characteristics of centennial period since 1800. In the latest centennial cycle, the strong earthquake records are complete, the energy release and cumulated frequency of volcano eruption and strong earthquakes with M≥8.0 displayed complementarity and quasi-synchronization in temporal evolution, respectively.

    Thirdly, the time series of shallow earthquakes with M≥7.0 in Chinese mainland since 1900 shows that the year 1955 is a significant time-point of strong earthquake activity in Chinese mainland. Before 1955, the strong shallow earthquake activity with M≥7.0 in Chinese mainland displayed relatively random distribution in time, and the average magnitude is also relatively high; while after 1955, it showed temporal rhythmic features with obviously alternating between calm and active periods, and the average magnitude is lower than that before 1955. Similarly, global volcanism around 1955 also showed clearly segmented characteristics, which are mainly reflected in three aspects: volcanic activity intensity, frequency and energy release. Our analyses suggest that the reverse of strong earthquake activity state before and after 1955 should be related to the contemporaneous increasing of the global volcanic activity. Both of them could be attributed to the change in energy release state of the earth interior in its centennial activity period.

    Finally, based on the analysis of global strong earthquake activity, we deduce that the violent eruption of the Tonga volcano may indicate that the energy release of the Earth’s interior is still ongoing. In combination with the seismicity of global earthquakes with M≥8.0 and shallow earthquakes with M≥7.0 in Chinese mainland, we deduced that the current seismicity with M≥7.0 in Chinese mainland may be similar to that in the first half of the 20th century.

    Our works in this paper could provide a reference for understanding the seismological geodynamics and analyzing the related earthquake trend.

  • 我国江河密布,许多重要建筑、桥梁、大坝等坐落在河谷附近。多次震害调查表明,河谷场地对地震动具有显著放大效应。国内外很多专家针对不含流体河谷对地震波的散射问题进行了研究(周国良等,2012陈少林等,2014Liu et al,2016梁建文等,2017刘中宪等,2017张宁等,2017Zhang et al,2017),然而河谷中通常包含一定深度的流体,地震波在流体/固体交界面上会发生复杂的透射与反射现象,从而影响水下地层的地震反应规律,研究流体层对河谷场地地震动的影响意义重大。

    王进廷等(20032004)研究了P波、SV波入射时弹性半空间上理想流体层的动力响应,随后给出了流体-固体-多孔介质耦合场地中动压力的解析解(Wang et al,20042009);李伟华(2010)采用有限元方法研究了考虑水-饱和土场地-结构耦合时的沉管隧道地震反应;Carbajal-Romero等(2013)采用间接边界元法(indirect boundary element method,缩写为IBEM)研究了Scholte波在流体-固体界面处的扩散;Alejandro等(2014)采用边界元法分析了理论地震事件发生时海洋水体的动态响应;杜修力等(2015)根据地震与波浪作用的动水压力解析解,研究了SV波斜入射时地震和波浪联合作用下自由场海水的动水压力反应问题;张奎等(2018)采用解析解方法得到了水下地层表面位移的表达式,并分析了含水层场地模型中土的刚度、饱和度及平面P波、SV波的入射角等因素变化时流体深度对场地位移响应的影响。

    需注意的是以上研究均是针对含水平成层流体的场地动态响应问题,而考虑地震波散射效应对含流体层河谷地形的地震动影响的研究仍非常有限。李伟华和赵成刚(2006)利用波函数展开法,首次在频率域内给出了具有饱和土沉积层的圆弧形充水河谷对平面P波、SV波散射问题的解析解,继而给出了瑞雷波的解析解(赵成刚等,2008)。解析方法中波场构造需严格满足波动方程和边界条件,对于求解复杂的偏微分算子及边界条件难度较大。

    在各类数值方法中,边界元法具有降低问题求解维数、自动满足无限远辐射条件且无高频数值弥散的优点,因而在地震波动研究中获得广泛应用。本文尝试将间接边界元法(IBEM)拓展到含流体层局部场地对地震波的散射求解:结合流体域格林函数,将河谷中的流体层模拟为无黏性、可压缩流体,考虑固体/液体交界面上地震波的透射与反射问题,研究了含流体层河谷场地在平面P波、SV波入射时的地震响应。通过与现有文献结果作对比,验证了该方法的精度和数值稳定性。进而结合具体算例,给出了入射波的频率、角度、流体深度等因素对河谷底部及附近地表位移放大系数的影响,为实际情况中含水河谷地震动的确定提供了定性和定量的参考依据。

    图1给出了计算模型。假设半空间河谷中为各向同性弹性介质,Ω1表示半空间域,Ω2表示水域;B表示水域与半空间域的交界面;与空气直接接触的表面用L表示,L1表示两侧水平地表,L3表示流体表面;θ为P波或SV波入射方向与竖直向的夹角;S1表示半空间域的虚拟荷载面,S2表示水域的虚拟荷载面。假设P波、SV波从外部半空间入射,待求问题即为含流体层河谷场地对地震波的散射。

    图  1  含流体层沉积河谷对地震波的散射计算模型
    (a) 含流体河谷计算模型;(b) 单元离散
    Figure  1.  Calculation model of seismic wave scattering by sedimentary valley with fluid layer
    (a) Calculation model of the valley with fluid layer;(b) Element discretization

    半空间Ω1内的总位移场和总应力场可表示为

    $u_i^{}(x{\text{,}}\omega) {\text{=}} u_i^{\rm{s}}(x{\text{,}}\omega) {\text{+}} u_i^{\rm{f}}(x{\text{,}}\omega){\text{,}}x \in {\varOmega _1}{\text{,}}$

    (1)

    $t_i^{}(x{\text{,}}\omega) {\text{=}} t_i^{\rm{s}}(x{\text{,}}\omega) {\text{+}} t_i^{\rm{f}}(x{\text{,}} \omega){\text{,}}x \in {\varOmega _1}{\text{,}}$

    (2)

    This page contains the following errors:

    error on line 1 at column 1: Start tag expected, '<' not found

    Below is a rendering of the page up to the first error.

    This page contains the following errors:

    error on line 1 at column 1: Start tag expected, '<' not found

    Below is a rendering of the page up to the first error.

    $u_i^{\rm{s}}(x{\text{,}}\omega) {\text{=}} \int_{{S_1}} {\phi _j^{\rm{s}}(\xi{\text{,}}\omega)G_{ij}^{\rm{s}}(x{\text{,}}\xi){\rm{d}}{S_\xi }}{\text{,}}$

    (3)

    $t_i^{\rm{s}}(x{\text{,}}\omega) {\text{=}} {c_2}\phi _j^{\rm{s}}(x{\text{,}}\omega) {\text{+}} \int_{{S_1}} {\phi _j^{\rm{s}}(\xi{\text{,}}\omega)T_{ij}^{\rm{s}}(x{\text{,}}\xi){\rm{d}}{S_\xi }}{\text{,}}$

    (4)

    This page contains the following errors:

    error on line 1 at column 1: Start tag expected, '<' not found

    Below is a rendering of the page up to the first error.

    This page contains the following errors:

    error on line 1 at column 1: Start tag expected, '<' not found

    Below is a rendering of the page up to the first error.

    ${w_r}(x{\text{,}}\omega) {\text{=}} {c_1}\psi (x{\text{,}}\omega) {\text{+}} \frac{1}{{\rho {\omega ^2}}}\int_{{S_2}} \psi (\xi{\text{,}}\omega)\frac{{\partial {G^{\rm{w}}}(x{\text{,}}\xi)}}{{\partial r}}{\rm{d}}{S_\xi }{\text{,}}$

    (5)

    $p(x{\text{,}}\omega){\text{=}} \int_{{S_2}} \psi (\xi{\text{,}}\omega){G^{\rm{w}}}(x{\text{,}}\xi){\rm{d}}{S_\xi }{\text{,}}$

    (6)

    This page contains the following errors:

    error on line 1 at column 1: Start tag expected, '<' not found

    Below is a rendering of the page up to the first error.

    ${G}^{\rm{w}}(x{\text{,}}\xi){\text{=}}\frac{\rho {\omega }^{2}}{4\rm{i}} \cdot {{\rm{H}}}_{0}^{(2)} \cdot \frac{\omega d}{{c}^{\rm{w}}},$

    (7)

    This page contains the following errors:

    error on line 1 at column 1: Start tag expected, '<' not found

    Below is a rendering of the page up to the first error.

    边界条件主要分为三部分:一部分是直接与空气接触的地表L1,满足地表零应力条件;一部分是与空气接触的水体表面L3,满足流体层表面孔压为零;另一部分是半空间与流体域的交界面B处,满足位移连续条件和应力连续条件,包括流量位移和孔压连续及固体位移和应力连续。可分别表示为

    $t_\tau ^{\rm{s}}(x{\text{,}}\omega) {\text{+}} t_\tau ^{\rm{f}}(x{\text{,}}\omega) {\text{=}} 0{\text{,}}x \in {L_1}{\text{,}}$

    (8)

    $t_r^{\rm{s}}(x{\text{,}}\omega) {\text{+}} t_r^{\rm{f}}(x{\text{,}}\omega) {\text{=}} 0{\text{,}}x \in {L_1}{\text{,}}$

    (9)

    $p(x{\text{,}}\omega) {\text{=}} 0{\text{,}}x \in {L_3}{\text{,}}$

    (10)

    $t_\tau ^{\rm{s}}(x{\text{,}}\omega) {\text{+}} t_{\rm{\tau }}^{\rm{f}}(x{\text{,}}\omega) {\text{=}} 0{\text{,}}x \in B{\text{,}}$

    (11)

    $t_r^{\rm{s}}(x{\text{,}}\omega) {\text{+}} t_r^{\rm{f}}(x{\text{,}}\omega) {\text{=-}} p{\text{,}}x \in B{\text{,}}$

    (12)

    $u_r^{\rm{s}}(x{\text{,}}\omega) {\text{+}} u_r^{\rm{f}}(x{\text{,}}\omega) {\text{=}} {w_r}(x{\text{,}}\omega){\text{,}}x \in B{\text{,}}$

    (13)

    将式(1)(7)代入式(8)(13),移项,可得

    ${c_2}\phi _j^{\rm{s}}(x{\text{,}}\omega) {\text{+}} \int_{{S_1}} {\phi _j^{\rm{s}}(\xi{\text{,}}\omega)T_{\tau j}^{\rm{s}}(x{\text{,}}\xi){\rm{d}}{S_\xi }} {\text{=-}}t_\tau ^{\rm{f}}(x{\text{,}}\omega){\text{,}}x \in {L_1}{\text{,}}$

    (14)

    ${c_2}\phi _j^{\rm{s}}(x{\text{,}}\omega) {\text{+}} \int_{{S_1}} {\phi _j^{\rm{s}}(\xi{\text{,}}\omega)T_{rj}^{\rm{s}}(x{\text{,}}\xi){\rm{d}}{S_\xi }} {\text{=-}} t_r^{\rm{f}}(x{\text{,}}\omega){\text{,}}x \in {L_1}{\text{,}}$

    (15)

    $\int_{{S_2}} \psi (\xi{\text{,}}\omega){G^{\rm{f}}}(x{\text{,}}\xi){\rm{d}}{S_\xi } {\text{=}} 0{\text{,}}x \in {L_3}{\text{,}}$

    (16)

    ${c_2}\phi _j^{\rm{s}}(x{\text{,}}\omega) {\text{+}} \int_{{S_1}} {\phi _j^{\rm{s}}(\xi{\text{,}}\omega)T_{\tau j}^{\rm{s}}(x{\text{,}}\xi){\rm{d}}{S_\xi }} {\text{=-}} t_\tau ^{\rm{f}}(x{\text{,}}\omega){\text{,}}x \in B{\text{,}}$

    (17)

    ${c_2}\phi _j^{\rm{s}}(x{\text{,}}\omega) {\text{+}} \int_{{S_1}} {\phi _j^{\rm{s}}(\xi{\text{,}}\omega)T_{rj}^{\rm{s}}(x{\text{,}}\xi){\rm{d}}{S_\xi }} {\text{+}} \int_{{S_2}} \psi (\xi{\text{,}}\omega){G^{\rm{f}}}(x{\text{,}}\xi){\rm{d}}{S_\xi } {\text{=-}} t_r^{\rm{f}}(x{\text{,}}\omega){\text{,}}x \in B{\text{,}}$

    (18)

    $\int_{{S_1}} {\phi _j^{\rm{s}}(\xi{\text{,}}\omega)G_{rj}^{\rm{s}}(x{\text{,}}\xi){\rm{d}}{S_\xi }} - {c_1}\psi (x{\text{,}}\omega) - \frac{1}{{\rho {\omega ^2}}}\int_{{S_2}} \psi (\xi{\text{,}}\omega)\frac{{\partial {G^{\rm{f}}}(x{\text{,}}\xi)}}{{\partial r}}{\rm{d}}{S_\xi } {\text{=-}} u_r^{\rm{f}}(x{\text{,}}\omega){\text{,}}x \in B{\text{,}}$

    (19)

    存在线性方程组

    $\sum\limits_{l {\text{=}} 1}^N {\left[ {\sum\limits_{j {\text{=}} 1}^2 {\phi _j^{\rm{s}}({\xi _l}{\text{,}}\omega)t_{\tau j}^{\rm{s}}({x_n}{\text{,}}{\xi _l})} } \right]} {\text{=-}} t_\tau ^{\rm{f}}({x_n}{\text{,}}\omega){\text{,}}{x_n} \in {L_1}{\text{,}}$

    (20)

    $\sum\limits_{l {\text{=}} 1}^N {\left[ {\sum\limits_{j {\text{=}} 1}^2 {\phi _j^{\rm{s}}({\xi _l}{\text{,}}\omega)t_{rj}^{\rm{s}}(x{\text{,}}{\xi _l})} } \right]} {\text{=-}} t_r^{\rm{f}}({x_n}{\text{,}}\omega){\text{,}}{x_n} \in {L_1}{\text{,}}$

    (21)

    $\sum\limits_{l {\text{=}} 1}^N {\left[ {\sum\limits_{j {\text{=}} 1}^2 {\psi ({\xi _l}{\text{,}}\omega){g^{\rm{f}}}({x_n}{\text{,}}{\xi _l})} } \right]} {\text{=}} 0{\text{,}}{x_n} \in {L_3}{\text{,}}$

    (22)

    $\sum\limits_{l {\text{=}} 1}^N {\left[ {\sum\limits_{j {\text{=}} 1}^2 {\phi _j^{\rm{s}}({\xi _l}{\text{,}}\omega)t_{\tau j}^{\rm{s}}({x_n}{\text{,}}{\xi _l})} } \right]} {\text{=-}} t_\tau ^{\rm{f}}({x_n}{\text{,}}\omega){\text{,}}{x_n} \in B{\text{,}}$

    (23)

    $\sum\limits_{l {\text{=}} 1}^N {\left[ {\sum\limits_{j {\text{=}} 1}^2 {\phi _j^{\rm{s}}({\xi _l}{\text{,}}\omega)t_{rj}^{\rm{s}}({x_n}{\text{,}}{\xi _l})} } \right]} {\text{+}} \sum\limits_{l {\text{=}} 1}^N {\left[ {\sum\limits_{j {\text{=}} 1}^2 {\psi ({\xi _l}{\text{,}}\omega)g_1^{\rm{f}}({x_n}{\text{,}}{\xi _l})} } \right]} {\text{=-}} t_r^{\rm{f}}({x_n}{\text{,}}\omega){\text{,}}{x_n} \in B{\text{,}}$

    (24)

    $\sum\limits_{l {\text{=}}1}^N {\left[ {\sum\limits_{j {\text{=}} 1}^2 {\phi _j^{\rm{s}}({\xi _l}{\text{,}}\omega)g_{rj}^{\rm{s}}({x_n}{\text{,}}{\xi _l})} } \right]} {\text{-}} \sum\limits_{l {\text{=}} 1}^N {\left[ {\sum\limits_{j {\text{=}}1}^2 {\psi ({\xi _l}{\text{,}}\omega)g_2^{\rm{f}}({x_n}{\text{,}}{\xi _l})} } \right]} {\text{=-}} u_r^{\rm{f}}({x_n}{\text{,}}\omega){\text{,}}{x_n} \in B{\text{,}}$

    (25)

    式中,

    $t_{\tau j}^{\rm{s}}({x_n}{\text{,}}{\xi _l}){\text{=}}{c_{\rm{2}}}{\delta _{ij}}{\delta _{nl}} {\text{+}} \int_{{S_1}} {T_{\tau j}^{\rm{s}}({x_n}{\text{,}}{\xi _l}){\rm{d}}{S_\xi }}{\text{,}}$

    (26)

    $t_{rj}^{\rm{s}}({x_n}{\text{,}}{\xi _l}){\text{=}}{c_{\rm{2}}}{\delta _{ij}}{\delta _{nl}} {\text{+}} \int_{{S_1}} {T_{rj}^{\rm{s}}({x_n}{\text{,}}{\xi _l}){\rm{d}}{S_\xi }}{\text{,}}$

    (27)

    $g_1^{\rm{f}}({x_n}{\text{,}}{\xi _l}){\text{=}}\int_{{S_2}} {{G^{\rm{f}}}({x_n}{\text{,}}{\xi _l}){\rm{d}}{S_\xi }}{\text{,}}$

    (28)

    $g_{rj}^{\rm{s}}({x_n}{\text{,}}{\xi _l}) {\text{=}} \int_{{S_1}} {G_{rj}^{\rm{s}}({x_n}{\text{,}}{\xi _l}){\rm{d}}{S_\xi }}{\text{,}}$

    (29)

    $g_2^{\rm{f}}({x_n}{\text{,}}{\xi _l}){\text{=}}{c_{\rm{1}}}{\delta _{ij}}{\delta _{nl}} {\text{+}} \frac{1}{{\rho {\omega ^2}}}\int_{{S_2}} {\frac{{\partial {G^{\rm{f}}}({x_n}{\text{,}}{\xi _l})}}{{\partial r}}{\rm{d}}{S_\xi }}{\text{,}}$

    (30)

    n1=1,2,···,N1n2=1,2,···,N2NS1S2上点的个数。

    为验证本文IBEM方法的正确性,令流体深度h=0,计算模型如图2所示,则本文模型退化为不含流体层的河谷地形,并将所得结果与既有文献(Sánchez-Sesma,Campillo,1991)结果进行对比(图3)。计算参数为:入射波为平面SV波,弹性介质中剪切波速cβ1为1 000 m/s,压缩波速cα1为2 000 m/s,密度ρ1为2 400 kg/m3;峡谷中空气的压缩波速cα1为330 m/s,密度ρ2为1.29 kg/m3;无量纲入射波频率ηωr/πcβ=2.0,a为河谷半径,入射波角度分别取θβ=0°,θβ=30;阻尼比ζ=0.001,泊松比v=1/3。图3表明本文结果与文献结果吻合良好,验证了计算方法的正确性。

    图  2  含流体半圆形河谷计算模型
    Figure  2.  Calculation model of semi-circular valley with fluid layer
    图  3  平面SV波入射下本文含水河谷退化位移与文献结果对比 (引自Sánchez-Sesma,Campillo,1991
    Figure  3.  Comparison between the degradation displacement of water bearing valley of this paper and the results of literature induced by plane SV waves (after Sánchez-Sesma,Campillo,1991
    (a) η=2.0,θβ=0°;(b) η=2.0,θβ=30°

    采用上述间接边界元方法,研究含流体层的河谷地形对平面P波、SV波的地震响应,计算模型为含流体层的半圆形河谷地形(图2)。阻尼比ζ=0.001,计算参数列于表1

    表  1  含流体层河谷地形对平面P波、SV波的地震响应计算参数
    Table  1.  Calculation parameters of seismic response of valley terrain with fluid layer for plane P wave and SV wave
    P波波速cα/(m·s−1SV波波速cβ/(m·s−1密度ρ/(kg·m−3
    空气3301.29
    流体1 5011 000
    弹性土体2 6701 0902 200
    下载: 导出CSV 
    | 显示表格

    对于含流体层的河谷地形而言,流体层的存在会对峡谷地形的地震波散射产生很大的影响,影响因素主要包括:入射波的类型、角度、频率以及流体深度。图45给出了在不同影响因素作用下,平面P波、SV波入射时充满流体层(h/r=1)的河谷地形和不含流体的河谷地形表面主方向位移放大系数对比。入射波角度取θα=0°,30°;θβ=0°,30°。

    图  4  平面P波入射下不含流体的河谷与充满流体的河谷竖向位移放大系数对比
    Figure  4.  Comparison of vertical displacement amplification factors between the valley without fluid and the valley full of fluid induced by plane P waves
    (a) η=0.5,θα=0°;(b) η=2.0,θα=0°;(c) η=5.0,θα=0°;(d) η=0.5,θα=30°;(e) η=2.0,θα=30°;(f) η=5.0,θα=30°

    This page contains the following errors:

    error on line 1 at column 1: Start tag expected, '<' not found

    Below is a rendering of the page up to the first error.

    总体来看,与不含流体层的峡谷地形相比,充满流体的河谷场地对地表地震动存在不同程度的缩幅效应。例如P波入射θα=0°,η=0.5时,在x/a=2处,不含流体的峡谷地形的竖向位移放大系数为2.66,含流体层的河谷地形的竖向位移放大系数仅为2.03,降低了约24% (图4);SV波入射θβ=0°,η=0.5时,在x/a=2处,不含流体的峡谷地形的竖向位移放大系数为2.74,含流体层的河谷地形的竖向位移放大系数仅为2.02,降低了约26% (图5)。

    图  5  平面SV波入射下不含流体的河谷与充满流体的河谷水平位移放大系数对比
    Figure  5.  Comparison of horizontal displacement amplification factors between the valley without fluid and the valley full of fluid induced by plane SV waves
    (a) η=0.5,θα=0°;(b) η=2.0,θα=0°;(c) η=5.0,θα=0°;(d) η=0.5,θα=30°;(e) η=2.0,θα=30°;(f) η=5.0,θα=30°

    图45可以看出,由于流体可吸收地震波中的纵波能量,使地震波的散射作用减弱,地表位移震荡较平缓。考虑入射角度的影响,与垂直入射相比,斜入射时,河谷左侧(靠近波入射方向)位移比右侧(远离波入射方向)位移震荡剧烈且幅值较大。

    图45还可以看出,与斜入射(θ=30°)相比,垂直入射(θ=0°)流体对河谷地形地震动响应的影响较大,位移放大系数的放大与减小效应更加明显。

    图6为充满流体层的河谷底部与流体表面位移放大系数谱对比,图78为不含流体层的河谷场地和含流体层的河谷场地地表典型观察点处的位移放大系数谱,图中选取了x/a=0,0.5 (河谷底部)和1.5 (右侧水平地表)三个典型点位作为观察点。入射波无量纲频率η=0—5,入射角度取θα=0°,30°;θβ=0°,30°。

    图  6  平面P波入射下充满流体的河谷表面和流体表面位移放大系数谱
    Figure  6.  Displacement amplification factor spectrum of the valley surface with full of fluid and that of the fluid surface induced by plane P waves
    (a) x/a=0,θα=0°;(b) x/a=0.5,θα=0°;(c) x/a=0,θα=30°;(d) x/a=0.5,θα=30°
    图  7  平面P波入射下不含流体的河谷与充满流体的河谷竖向位移放大系数谱
    Figure  7.  Amplification factor spectrum of vertical displacement for the valley without fluid and the valley full of fluid induced by plane P waves
    (a) x/a=0,θα=0°;(b) x/a=0.5,θα=0°;(c) x/a=1.5,θα=0°;(d) x/a=0,θα=30°;(e) x/a=0.5,θα=30°;(f) x/a=1.5,θα=30°
    图  8  平面SV波入射下不含流体的河谷与充满流体的河谷水平位移放大系数谱
    Figure  8.  Amplification factor spectrum of horizontal displacement for the valley without fluid and the valley full of fluid induced by plane SV waves
    (a) x/a=0,θα=0°;(b) x/a=0.5,θα=0°;(c) x/a=1.5,θα=0°;(d) x/a=0,θα=30°;(e) x/a=0.5,θα=30°;(f) x/a=1.5,θα=30°

    P波入射时,在低频域内(η<0.5),含流体河谷底部及附近地表的地震动反应与不含流体的河谷反应基本一致。随着入射频率的增大,河谷底部观察点的位移反应特性发生改变,在共振频率处河谷底部位移缩小效应显著,可缩减至接近于0 (图7)。例如,P波垂直入射时,在河谷-流体体系一阶(η=0.75)、二阶(η=2.2)和三阶(η=3.6)共振频率处,河谷底部(x/a=0)竖向位移分别为0.32,0.13,0.34。P波斜入射和其它点位也表现出这一特性。观察图6可以看出,河谷底部位移最小频率处刚好流体表面位移达到最大,这是因为在该频率下大量地震波动能量进入流体层内,对下部河谷波动反而产生了抑制作用。因此在某些频段,流体层的存在对其下部地层具有明显的减震效应。

    SV波入射时,随着入射频率的增大,水层体系共振频率增多,在共振频率处,位移频谱曲线震荡更为剧烈。在河谷外部附近地表观察点处地震动反应主要表现为位移放大系数的减小。

    This page contains the following errors:

    error on line 1 at column 1: Start tag expected, '<' not found

    Below is a rendering of the page up to the first error.

    图  9  平面P波入射下流体深度不同时河谷表面的竖向位移放大系数
    Figure  9.  Vertical displacement amplification factor of the valley surface with different fluid depth induced by P waves
    (a) η=0.5,θα=0°;(b) η=2.0,θα=0°;(c) η=5.0,θα=0°;(d) η=0.5,θα=30°;(e) η=2.0,θα=30°;(f) η=5.0,θα=30°
    图  10  平面SV波入射下流体深度不同时河谷表面的水平位移放大系数
    Figure  10.  Horizontal displacement amplification factor of the valley surface with different fluid depth induced by plane SV waves
    (a) η=0.5,θα=0°;(b) η=2.0,θα=0°;(c) η=5.0,θα=0°;(d) η=0.5,θα=30°;(e) η=2.0,θα=30°;(f) η=5.0,θα=30°

    This page contains the following errors:

    error on line 1 at column 1: Start tag expected, '<' not found

    Below is a rendering of the page up to the first error.

    流体深度对P波入射时地震动的影响较大,对SV波入射时地震动的影响较小。P波入射时,流体层的深度对河谷附近地表的位移放大系数影响显著,而对河谷内部位移放大系数影响较小。

    本文采用间接边界元方法,求解了含流体层河谷地形对平面P波、SV波的散射,定性和定量地讨论了地震波入射时流体层对河谷地震放大效应的影响规律和地震动空间分布特征。主要结论如下:

    1) 流体层具有吸收地震波能量的作用。整体上看,流体深度越大,河谷表面及附近地表的地震动幅值越小,流体深度对P波入射动力反应比对SV波入射情况的影响要更为显著;

    2) 当P波入射频率与河谷中流体层的体系共振频率接近时,大量地震能量进入流体层,流体层表面位移放大最为显著,但河谷由于受到流体层的抑制作用,其底部位移放大系数明显降低;

    3) 与斜入射(θα=30°)相比,P波垂直入射(θα=0°)时,流体对河谷地形地震动响应的影响较大,位移放大系数的放大或减小效应更加明显。

    含流体层河谷地形附近地震动空间变化十分显著,因此在河谷中修建水库、桥梁等重要工程时,有必要考虑流体-河谷局部场地效应以更科学地确定地震动参数。

  • 图  1   史密森学会(Smithsonian Institution)记录的全球火山活动(VEI≥2)

    图中红点为1900年以来VEI≥5的火山活动

    Figure  1.   Global volcanic activity (VEI≥2) recorded by the Smithsonian Institution

    The red dots are volcanic eruptions with VEI≥5 since 1900

    图  2   全球火山和M≥7.0地震活动随经(上)、纬(下)度变化统计图

    Figure  2.   Statistical chart of frequency of global volcano eruptions and M≥7.0 earthquakes with longitude (upper) and latitude (lower)

    图  3   1800年以来环太平洋VEI≥4火山活动区的地震b值与板块年龄、板块汇聚速率、上伏板块相对海沟速率以及海沟深度的统计关系

    蓝色方块为Nishikawa和Ide (2014)给出的关于全球大震的结果

    Figure  3.   Statistical relationships between seismic b value and plate age,plate convergence rate,motion rate of the overlying plate relative to trench,and trench depth in the Circum-Pacificregion with VEI≥4 volcano eruption since 1800

    The blue squares are the results of global large earthquakes given by Nishikawa and Ide (2014)

    图  4   1600年以来全球VEI≥4火山喷发时序图(a)及能量释放曲线(b)

    Figure  4.   Volcanic eruption sequence (a) and energy release curves (b) for global volcanos with VEI≥4 since 1600

    图  5   1813—1912年(a)和1900年以来(b)全球火山的阶段加速活动

    Figure  5.   Acceleration activities of global volcanic activity from 1812 to 1912 (a) and from 1900 to now (b)

    图  6   1900年以来全球M≥7.0地震M-t时序图(a)和M≥8.0地震(小圆圈标记)应变释放曲线(b)

    Figure  6.   M-t plot of global M≥7.0 earthquakes since 1900 (a) and the strain release curve of global M≥8.0 earthquakes denoted by small circles (b)

    图  7   1900年以来中国大陆地区M≥7.0浅源地震M-t图(小圆圈标记为M≥8.0地震)

    Figure  7.   M-t plot of shallow earthquakes with M≥7.0 in Chinese mainland since 1900 (M≥8.0 earthquakes are denoted by small circles)

    图  8   1913年以来全球火山和强震活动的应变累积释放速率对比

    Figure  8.   Comparison of strain accumulation and release rate of volcano eruption with that of strong seismicity

    图  9   1909年以来全球M≥8.0地震(a)和VEI≥4火山喷发(b)的累积频次变化

    Figure  9.   Variation of cumulative frequency of global earthquakes with M≥8.0 (a) and the contemporaneous VEI≥4 volcano eruptions (b) since 1909

    图  10   全球火山活动和中国大陆M≥7.0地震活动对比

    (a) 全球VEI≥4火山活动,图中蓝色矩形为5年窗长1年步长频次,红色直线为VEI≥5火山事件;(b) 中国大陆M7浅源地震,红线直线为M≥8.0地震

    Figure  10.   Comparison of global volcanic activities with M≥7.0 earthquakes in Chinese mainland

    (a) Global volcanic eruptions with VEI≥4,where the blue rectangle is the five-year window length and one-year step length frequency,and the red lines are the volcano eruptions with VEI≥5;(b) Shallow earthquakes with M7 in Chinese mainland,where the red lines are M≥8.0 earthquakes

    表  1   1900年以来强火山喷发与全球强震活动统计对比

    Table  1   Comparison between strong volcanic eruptions and global strong earthquake activities since 1900

    火山喷发 全球强震活动
    起始时间 VEI 地点 后续三年
    M7频次
    后续三年最大地震 后续十年
    M8频次
    后续十年最大地震
    年-月-日 地点 MS 年-月-日 地点 MS
    1 902-10-24 6 危地马拉圣玛利亚 32 1 903-06-02
    1 903-08-11
    阿拉斯加
    希腊
    8.3
    8.3
    22 1 903-06-02
    1 903-08-11
    1 906-08-17
    1 911-01-03
    阿拉斯加
    希腊
    智利
    哈萨克斯坦
    8.3
    8.3
    8.3
    8.3
    1 907-03-28 5 俄罗斯堪察加半岛 45 1 907-04-15 墨西哥 8.1 9 1 911-01-03
    1 917-06-26
    哈萨克斯坦
    萨摩亚
    8.3
    8.3
    1 912-06-06 6 阿拉斯加 58 1 914-11-24 马里亚纳 8.1 11 1 920-12-16 宁夏海原 8.5
    1 916-01-01 5 秘鲁赛罗阿苏尔 55 1 917-06-26 萨摩亚 8.3 13 1 920-12-16 宁夏海原 8.5
    1 933-01-08 5 墨西哥科利马 54 1 933-03-02 日本本州 8.5 12 1 933-03-02 日本本州 8.5
    1 955-10-22 5 俄罗斯别济米安纳 59 1 957-12-04 蒙古 8.3 8 1 960-05-22
    1 964-03-28
    智利
    阿拉斯加
    8.5
    8.5
    1 963-02-18 5 菲律宾阿贡 49 1 964-03-28 阿拉斯加 8.5 7 1 964-03-28 阿拉斯加 8.5
    1 980-03-27 5 美国西部圣海伦斯 49 1 981-01-02 琉球群岛 8.0 6 1 985-09-19 墨西哥 8.3
    1 982-03-28 5 墨西哥埃尔奇琼 48 1 983-10-05 智利 7.9 6 1 985-09-19 墨西哥 8.3
    1 991-04-02 6 菲律宾吕宋 54 1 991-04-23 哥斯达黎加 8.0 3 2 001-11-14 昆仑山口西 8.1
    1 991-08-08 5 智利哈德森 54 1 992-06-28 美国加州 7.9 2 2 001-11-14 昆仑山口西 8.1
    2 011-06-04 5 智利南部普耶韦 67 2 012-04-11 苏门答腊 8.7 12 2 012-04-11 苏门答腊 8.6
    2 021-12-20 5 汤加 24? 2 023-02-06 土耳其 7.8
    下载: 导出CSV

    表  2   全球VEI≥5火山活动与后续三年中国大陆M7浅源地震对应情况

    Table  2   Corresponding of global volcanic activity with VEI≥5 to shallow earthquakes with M7 in Chinese mainland in the following three years

    火山喷发当年中国大陆
    M7浅源地震
    后续三年中国大陆M7浅源地震
    起始时间VEI地点第一年第二年第三年
    1 902-10-246危地马拉圣玛利亚1 902-08-22
    新疆阿图什MS8.1
    1 904-08-30
    四川炉霍MS7.0
    1 907-03-285俄罗斯堪察加半岛1 908-08-20
    西藏班戈MS7.0
    1 912-06-066阿拉斯加1 913-12-21
    云南峨山MS7.0
    1 914-08-04
    新疆哈密MS7.5
    1 915-12-03
    西藏曲松MS7.0
    1 916-01-015秘鲁赛罗阿苏尔1 917-07-30
    云南大关MS7.0
    1 918-02-13
    南海MS7.3
    1 933-01-085墨西哥科利马1 933-08-25
    四川茂县MS7.5
    1 934-12-15
    西藏申扎MS7.0
    1 955-10-225俄罗斯别济米安纳1 955-04-14
    四川康定MS7.5
    1 963-02-185菲律宾阿贡1 963-04-19
    青海都兰MS7.0
    1 966-03-22
    河北邢台MS7.1
    1 980-03-275美国西部圣海伦斯
    1 982-03-285墨西哥埃尔奇琼1 985-08-23
    新疆乌恰MS7.4
    1 991-04-026菲律宾吕宋1 994-09-16
    台湾海峡MS7.3
    1 991-08-085智利哈德森1 994-09-16
    台湾海峡MS7.3
    2 011-06-045智利南部普耶韦2 013-04-20
    四川芦山MS7.0
    2 014-02-12
    新疆于田MS7.3
    2 021-12-205汤加2 021-05-22
    青海玛多MS7.4
    2 024-01-23
    新疆乌什MS7.1
    下载: 导出CSV
  • 安利. 2020. 火山爆发强度的八个等级[J]. 百科知识,(14):28–29.

    An L. 2020. Eight levels of the volcanic eruption intensity[J]. Encyclopedic Knowledge,(14):28–29 (in Chinese).

    安艺敬一. 2009. 预测地震和火山喷发的地震学[M]. 尹祥础,张永仙,王裕仓,周龙泉,张浪平,张晖辉等译. 北京:科学出版社:1−331.

    Aki K. 2009. Seismology of Earthquake and Volcano Prediction[M]. Yin X C,Zhang Y X,Wang Y C,Zhou L Q,Zhang L P,Zhang H H,et al trans. Beijing:Science Press:1−331 (in Chinese).

    陈学忠,吕晓健,王慧敏. 2001. 中国大陆地震活跃期和平静期的b值与地震趋势研究[J]. 地震,21(1):59–62.

    Chen X Z,Lü X J,Wang H M. 2001. b value of the seismically active and quiescent periods and research of seismicity tendency in China’s continent[J]. Earthquake,21(1):59–62 (in Chinese).

    邓起东,程绍平,马冀,杜鹏. 2014. 青藏高原地震活动特征及当前地震活动形势[J]. 地球物理学报,57(7):2025–2042.

    Deng Q D,Cheng S P,Ma J,Du P. 2014. Seismic activities and earthquake potential in the Tibetan Plateau[J]. Chinese Journal of Geophysics,57(7):2025–2042 (in Chinese).

    董金龙,胡修举,邹常伟. 2015. 全球地震及火山的分布特征及其变化关系[J]. 首都师范大学学报(自然科学版),36(5):87–90.

    Dong J L,Hu X J,Zou C W. 2015. Distribution characteristics of global earthquakes,volcanoes and their changes in relationship[J]. Journal of Capital Normal University (Natural Sciences Edition),36(5):87–90 (in Chinese).

    郭正府,刘嘉麒. 2002. 火山活动与气候变化研究进展[J]. 地球科学进展,17(4):595–604.

    Guo Z F,Liu J Q. 2002. Research advance in effect of volcanism on climate changes[J]. Advance in Earth Sciences,17(4):595–604 (in Chinese).

    洪汉净,于泳,郑秀珍,刘培洵,陶玮. 2003. 全球火山活动分布特征[J]. 地学前缘,10(增刊):11–16.

    Hong H J,Yu Y,Zheng X Z,Liu P X,Tao W. 2003. Global volcano distribution:Pattern and variation[J]. Earth Science Frontiers,10(S1):11–16 (in Chinese).

    洪汉净,陈会仙,赵谊,胡久常. 2009. 全球地震、火山分布及其变化特征[J]. 地震地质,31(4):573–583. doi: 10.3969/j.issn.0253-4967.2009.04.001

    Hong H J,Chen H X,Zhao Y,Hu J C. 2009. Global earthquakes and volcanoes:Distribution and variations[J]. Seismology and Geology,31(4):573–583 (in Chinese).

    洪汉净. 2011. 近年来全球地震与火山活动分析[J]. 自然杂志,33(5):266–270.

    Hong H J. 2011. Analysis on global earthquake and volcano activity in recent years[J]. Chinese Journal of Nature,33(5):266–270 (in Chinese).

    刘国明,张恒荣,孔庆军. 2006. 长白山天池火山区的地震活动特征分析[J]. 地震地质,28(3):503–508.

    Liu G M,Zhang H R,Kong Q J. 2006. Analysis of the seismic activity at the Changbaishan Tianchi volcano[J]. Seismology and Geology,28(3):503–508 (in Chinese).

    刘国明,杨景奎,王丽娟,孙纪财. 2011. 长白山火山活动状态分析[J]. 矿物岩石地球化学通报,30(4):393–399.

    Liu G M,Yang J K,Wang L J,Sun J C. 2011. Active level analysis of the Tianchi volcano in Changbaishan,China[J]. Bulletin of Mineralogy,Petrology and Geochemistry, 30 (4):393−399 (in Chinese).

    刘嘉麒,郭正府. 1998. 火山活动与构造气候旋回[J]. 第四纪研究,18(3):222–228.

    Liu J Q,Guo Z F. 1998. Volcanic activities and tectonic-climatic cycles[J]. Quaternary Sciences,18(3):222–228 (in Chinese).

    吕政,杨清福,张恒荣,刘国明,高金哲. 2007. 长白山天池火山地震活动与西北太平洋俯冲带内中深源地震关系的研究[J]. 地震地质,29(3):470–479.

    Lü Z,Yang Q F,Zhang H R,Liu G M,Gao J Z. 2007. Study of the relationship between Changbaishan Tianchi volcanic seismic activity and deep earthquakes in the Northwest Pacific subduction zone[J]. Seismology and Geology,29(3):470–479 (in Chinese).

    马宏生,邵志刚,周龙泉,蒋长胜. 2009. 汶川8.0级地震后中国大陆强震活动状态研究[J]. 地震,29(4):63–71.

    Ma H S,Shao Z G,Zhou L Q,Jiang C S. 2009. On the state of strong earthquake activity in mainland China after the Wenchuan 8.0 earthquake[J]. Earthquake,29(4):63–71 (in Chinese).

    曲维政,黄菲,杜凌,赵进平,秦婷,曹勇. 2011. 火山活动的周期性及其在若干气候要素中的反映[J]. 地球物理学报,54(3):643–655.

    Qu W Z,Huang F,Du L,Zhao J P,Qin T,Cao Y. 2011. The periodicity of volcano activity and its reflection in some climate factors[J]. Chinese Journal of Geophysics,54(3):643–655 (in Chinese).

    邵志刚,马宏生,李志雄,张国民. 2009. 中国大陆强震活动时空特征分析[J]. 地震,29(4):98–106.

    Shao Z G,Ma H S,Li Z X,Zhang G M. 2009. Temporal and spatial characteristics of strong earthquake activities in Mainland China[J]. Earthquake,29(4):98–106 (in Chinese).

    宋治平,张国民,刘杰,尹继尧,薛艳,宋先月. 2011. 全球地震目录[M]. 北京:地震出版社:113−448.

    Song Z P,Zhang G M,Liu J,Yin J Y,Xue Y,Song X Y. 2011. Global Earthquake Catalog[M]. Beijing:Seismological Press:113−448 (in Chinese).

    宋治平,尹继尧,薛艳,张国民,刘杰,朱元清,张永仙. 2013. 全球及各地震区带强震活动周期特征[J]. 地球物理学报,56(6):1868–1876.

    Song Z P,Yin J Y,Xue Y,Zhang G M,Liu J,Zhu Y Q,Zhang Y X. 2013. The global and sub-zone period characteristics for large earthquakes[J]. Chinese Journal of Geophysics,56(6):1868–1876 (in Chinese).

    孙加林,章瑞. 2007. 中国大陆20世纪以来第五地震活跃期的复杂性及其本质问题[J]. 地震,27(2):30–40.

    Sun J L,Zhang R. 2007. Complexity of the 5th seismic active period in Mainland China since the 20th Century and its true nature[J]. Earthquake,27(2):30–40 (in Chinese).

    王凡,沈正康,王阎昭,王敏. 2011. 2011年3月11日日本宫城MW9.0级地震对其周边地区火山活动的影响[J]. 科学通报,56(14):1080–1083.

    Wang F,Shen Z K,Wang Y Z,Wang M. 2011. Influence of the March 11,2011 MW9.0 Tohoku-Oki earthquake on regional volcanic activities[J]. Chinese Science Bulletin,56(20):2077–2081. doi: 10.1007/s11434-011-4523-y

    吴建平,明跃红,张恒荣,刘国明,房立华,苏伟,王未来. 2007. 长白山天池火山区的震群活动研究[J]. 地球物理学报,50(4):1089–1096.

    Wu J P,Ming Y H,Zhang H R,Liu G M,Fang L H,Su W,Wang W L. 2007. Earthquake swarm activity in Changbaishan Tianchi volcano[J]. Chinese Journal of Geophysics,50(4):1089–1096 (in Chinese). doi: 10.1002/cjg2.1126

    薛艳,刘杰,姜祥华. 2021. 全球及主要构造带大震活动状态研究[J]. 地球物理学报,64(12):4425–4436.

    Xue Y,Liu J,Jiang X H. 2021. Process and trend of great earthquakes in the globe and main zones[J]. Chinese Journal of Geophysics,64(12):4425–4436 (in Chinese).

    张国民,马宏生. 2006. 我国陆区7级地震形势分析[G]//中国大陆强震趋势预测研究(2007年度). 北京:地震出版社:59−64.

    Zhang G M,Ma H S. 2006. Analysis of magnitude 7 earthquake trend in Chinese mainland[G]//Forecasting Research of the Strong Earthquake Trend of Chinese Mainland in 2007. Beijing:Seismological Press:59−64 (in Chinese).

    中国地震台网. 2023. 历史地震[EB/OL]. [2023-08-31]. https://www.ceic.ac.cn/history/.

    China Earthquake Network. 2023. Historical earthquake[EB/OL]. [2023-08-31]. https://www.ceic.ac.cn/history/ (in Chinese).

    Adam D. 2022. Tonga volcano eruption created puzzling ripples in Earth’s atmosphere[J]. Nature,601(7894):497. doi: 10.1038/d41586-022-00127-1

    Bao Y,Song Y J,Shu Q,He Y,Qiao F L. 2023. Tonga volcanic eruption triggered anomalous Arctic warming in early 2022[J]. Ocean Model,186:102258. doi: 10.1016/j.ocemod.2023.102258

    Bell A F,Hernandez S,McCloskey J,Ruiz M,LaFemina P C,Bean C J,Möllhoff M. 2021. Dynamic earthquake triggering response tracks evolving unrest at Sierra Negra volcano,Galápagos Islands[J]. Sci Adv,7(39):eabh0894. doi: 10.1126/sciadv.abh0894

    Bonadonna C,Folch A,Loughlin S,Puempel H. 2012. Future developments in modelling and monitoring of volcanic ash clouds:Outcomes from the first IAVCEI-WMO workshop on Ash Dispersal Forecast and Civil Aviation[J]. Bull Volcanol,74(1):1–10. doi: 10.1007/s00445-011-0508-6

    Burgos V,Jenkins S F,Bebbington M,Newhall C,Taisne B. 2022. A new perspective on eruption data completeness:Insights from the First Recorded EruptionS in the Holocene (FRESH) database[J]. J Volcanol Geotherm Res,431:107648. doi: 10.1016/j.jvolgeores.2022.107648

    Carvajal M,Sepúlveda I,Gubler A,Garreaud R. 2022. Worldwide signature of the 2022 Tonga volcanic tsunami[J]. Geophys Res Lett,49(6):e2022GL098153. doi: 10.1029/2022GL098153

    Chen Y,Hu J P,Peng F. 2018. Seismological challenges in earthquake hazard reductions:Reflections on the 2008 Wenchuan earthquake[J]. Sci Bull,63(17):1159–1166. doi: 10.1016/j.scib.2018.06.015

    Cottrell E. 2015. Global distribution of active volcanoes[G]//Volcanic Hazards,Risks and Disasters. Heidelberg:Elsevier:1−16.

    Crampin S,Gao Y,Bukits J. 2015. A review of retrospective stress-forecasts of earthquakes and eruptions[J]. Phys Earth Planet Inter,245:76–87. doi: 10.1016/j.pepi.2015.05.008

    Deligne N I,Coles S G,Sparks R S J. 2010. Recurrence rates of large explosive volcanic eruptions[J]. J Geophys Res:Solid Earth,115(B6):B06203.

    Dieterich J,Cayol V,Okubo P. 2000. The use of earthquake rate changes as a stress meter at Kilauea volcano[J]. Nature,408(6811):457–460. doi: 10.1038/35044054

    Eggert S,Walter T R. 2009. Volcanic activity before and after large tectonic earthquakes:Observations and statistical significance[J]. Tectonophysics,471(1/2):14–26.

    Farrell J,Husen S,Smith R B. 2009. Earthquake swarm and b-value characterization of the Yellowstone volcano-tectonic system[J]. J Volcanol Geotherm Res,188(1/2/3):260–276.

    Global Volcanism Program,National Museum of Natural History,Smithsonian Institution. 2023. Volcanoes of the world[DB/OL]. [2023-08-31]. https://volcano.si.edu/search_eruption.cfm/.

    González G,Fujita E,Shibazaki B,Hayashida T,Chiodini G,Lucchi F,Yokoyama I,Németh K,Mora-Amador R,Moya A,Chigna G,Martí J,Rouwet D. 2021. Increment in the volcanic unrest and number of eruptions after the 2012 large earthquakes sequence in Central America[J]. Sci Rep,11(1):22417. doi: 10.1038/s41598-021-01725-1

    Green D N,Neuberg J. 2006. Waveform classification of volcanic low-frequency earthquake swarms and its implication at Soufrière Hills Volcano,Montserrat[J]. J Volcanol Geotherm Res,153(1/2):51–63.

    Gutenberg B,Richter C F. 1944. Frequency of earthquakes in California[J]. Bull Seismol Soc Am,34(4):185–188. doi: 10.1785/BSSA0340040185

    Jenkins S,Smith C,Allen M,Grainger R. 2023. Tonga eruption increases chance of temporary surface temperature anomaly above 1.5 °C[J]. Nat Clim Chang,13(2):127–129. doi: 10.1038/s41558-022-01568-2

    Kasahara J. 2002. Tides,earthquakes,and volcanoes[J]. Science,297(5580):348–349. doi: 10.1126/science.1074601

    Kulichkov S N,Chunchuzov I P,Popov O E,Gorchakov G I,Mishenin A A,Perepelkin V G,Bush G A,Skorokhod A I,Vinogradov Y A,Semutnikova E G,Šepic J,Medvedev I P,Gushchin R A,Kopeikin V M,Belikov I B,Gubanova D P,Karpov A V,Tikhonov A V. 2022. Acoustic-gravity Lamb waves from the eruption of the Hunga-Tonga-Hunga-Hapai Volcano,its energy release and impact on aerosol concentrations and tsunami[J]. Pure Appl Geophys,179(5):1533–1548. doi: 10.1007/s00024-022-03046-4

    Lay T. 2015. The surge of great earthquakes from 2004 to 2014[J]. Earth Planet Sc Lett,409:133–146. doi: 10.1016/j.jpgl.2014.10.047

    Lemarchand N,Grasso J R. 2007. Interactions between earthquakes and volcano activity[J]. Geophys Res Lett,34(24):L24303.

    Loughlin S C,Sparks S,Brown S K,Jenkins S F,Vye-Brown C. 2015. Global Volcanic Hazards and Risk[M]. Cambridge:Cambridge University Press:1−79.

    Marzocchi W,Zaccarelli L. 2006. A quantitative model for the time-size distribution of eruptions[J]. J Geophys Res:Solid Earth,111(B4):B04204.

    Mastin L G,Guffanti M,Servranckx R,Webley P,Barsotti S,Dean K,Durant A,Ewert J W,Neri A,Rose W I,Schneider D,Siebert L,Stunder B,Swanson G,Tupper A,Volentik A,Waythomas C F. 2009. A multidisciplinary effort to assign realistic source parameters to models of volcanic ash-cloud transport and dispersion during eruptions[J]. J Volcanol Geotherm Res,186(1/2):10–21.

    Mcnutt S R,Beavan R J. 1981. Volcanic earthquakes at Pavlof Volcano correlated with the solid earth tide[J]. Nature,294(5842):615–618. doi: 10.1038/294615a0

    Mellors R,Kilb D,Aliyev A,Yetirmishli G. 2007. Correlations between earthquakes and large mud volcano eruptions[J]. J Geophys Res:Solid Earth,112(B4):B04304.

    Nettles M,Ekström G. 1998. Faulting mechanism of anomalous earthquakes near Bárdarbunga Volcano,Iceland[J]. J Geophys Res:Solid Earth,103(B8):17973–17983. doi: 10.1029/98JB01392

    Newhall C G,Self S. 1982. The volcanic explosivity index (VEI) an estimate of explosive magnitude for historical volcanism[J]. J Geophys Res:Oceans,87(C2):1231–1238. doi: 10.1029/JC087iC02p01231

    Nishikawa T,Ide S. 2014. Earthquake size distribution in subduction zones linked to slab buoyancy[J]. Nat Geosci,7(12):904–908. doi: 10.1038/ngeo2279

    Nishimura T. 2017. Triggering of volcanic eruptions by large earthquakes[J]. Geophys Res Lett,44(15):7750–7756. doi: 10.1002/2017GL074579

    Omira R,Ramalho R S,Kim J,González P J,Kadri U,Miranda J M,Carrilho F,Baptista M A. 2022. Global Tonga tsunami explained by a fast-moving atmospheric source[J]. Nature,609(7928):734–740. doi: 10.1038/s41586-022-04926-4

    Papale P. 2018. Global time-size distribution of volcanic eruptions on Earth[J]. Sci Rep,8(1):6838. doi: 10.1038/s41598-018-25286-y

    Proud S R,Prata A T,Schmauß S. 2022. The January 2022 eruption of Hunga Tonga-Hunga Ha’apai volcano reached the mesosphere[J]. Science,378(6619):554–557. doi: 10.1126/science.abo4076

    Pyle D M. 2015. Sizes of volcanic eruptions[G]//The Encyclopedia of Volcanoes. 2nd ed. Amsterdam:Academic Press:257−264.

    Rougier J,Sparks S R,Cashman K V. 2016. Global recording rates for large eruptions[J]. J Appl Volcanol,5:11. doi: 10.1186/s13617-016-0051-4

    Schmincke H U. 2004. Volcanism[M]. Berlin:Springer-Verlag:324.

    Siebert L,Simkin T,Kimberly P. 2011. Volcanoes of the World[M]. 3rd ed. Berkeley:Berkeley University of California Press:1−32.

    Siebert L,Cottrell E,Venzke E,Andrews B. 2015. Earth’s volcanoes and their eruptions:An overview[G]//The Encyclopedia of Volcanoes. 2nd ed. Amsterdam:Academic Press:239−255.

    Simkin T. 1993. Terrestrial volcanism in space and time[J]. Annu Rev Earth Planet Sci,21(1):427–452. doi: 10.1146/annurev.ea.21.050193.002235

    Vömel H,Evan S,Tully M. 2022. Water vapor injection into the stratosphere by Hunga Tonga-Hunga Ha’apai[J]. Science,377(6613):1444–1447. doi: 10.1126/science.abq2299

    Wright C J,Hindley N P,Alexander M J,Barlow M,Hoffmann L,Mitchell C N,Prata F,Bouillon M,Carstens J,Clerbaux C,Osprey S M,Powell N,Randall C E,Yue J. 2022. Surface-to-space atmospheric waves from Hunga Tonga-Hunga Ha’apai eruption[J]. Nature,609(7928):741–746. doi: 10.1038/s41586-022-05012-5

    Zhang H,Wang F,Li J,Duan Y H,Zhu C W,He J Y. 2022. Potential impact of Tonga volcano eruption on global mean surface air temperature[J]. J Meteorol Res,36(1):1–5. doi: 10.1007/s13351-022-2013-6

图(10)  /  表(2)
计量
  • 文章访问数:  646
  • HTML全文浏览量:  91
  • PDF下载量:  89
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-27
  • 修回日期:  2024-01-09
  • 网络出版日期:  2024-03-10
  • 刊出日期:  2024-03-14

目录

/

返回文章
返回