地震作用下山体地形地震动偏振效应研究

王伟, 齐亚坤, 熊文, 王浩宇, 李金宇, 张晓庆

王伟,齐亚坤,熊文,王浩宇,李金宇,张晓庆. 2024. 地震作用下山体地形地震动偏振效应研究. 地震学报,46(4):695−708. DOI: 10.11939/jass.20230166
引用本文: 王伟,齐亚坤,熊文,王浩宇,李金宇,张晓庆. 2024. 地震作用下山体地形地震动偏振效应研究. 地震学报,46(4):695−708. DOI: 10.11939/jass.20230166
Wang W,Qi Y K,Xiong W,Wang H Y,Li J Y,Zhang X Q. 2024. Polarization effect on the ground motion of mountain topography under earthquake action. Acta Seismologica Sinica46(4):695−708. DOI: 10.11939/jass.20230166
Citation: Wang W,Qi Y K,Xiong W,Wang H Y,Li J Y,Zhang X Q. 2024. Polarization effect on the ground motion of mountain topography under earthquake action. Acta Seismologica Sinica46(4):695−708. DOI: 10.11939/jass.20230166

地震作用下山体地形地震动偏振效应研究

基金项目: 中央高校基本科研业务费研究生科技创新基金(ZY20220313)、中国地震局地震科技星火计划(XH23062A)和中央高校基本科研业务费(ZY20180107)共同资助
详细信息
    作者简介:

    王伟,博士,副教授,主要从事强震动观测和强地面运动研究,e-mail:wwwiem@163.com

    通讯作者:

    齐亚坤,硕士,助理工程师,主要从事地震反应分析研究,e-mail:qiyakun0819@163.com

  • 中图分类号: P315.9

Polarization effect on the ground motion of mountain topography under earthquake action

  • 摘要:

    基于汶川MS8.0地震后在窦圌山坡顶和坡脚测点获得的9次余震记录,通过基线校正、滤波处理,得到各余震记录的傅里叶谱谱比及质点运动轨迹图,结果表明山体的自振频率具有多阶段性,其最大位移方位会出现在山体的横向或走向上,且山体存在偏振效应。将9次余震东西向和南北的水平向加速度时程以10°为单位进行分解得到324条新的时程曲线,基于分解合成后的时程记录,将坡顶与坡脚相同分解角度下的时程作比值,对其峰值加速度比和傅里叶谱谱比进行分析,结果表明二者最大值所在的方位均与山体最大位移所在的方位相同。结合9次余震坡脚测点的傅里叶谱分析可知,各输入地震动频率成分丰富的频段有所不同,低频段容易激发山体的低阶振型,导致山体在横向上发生偏振;高频段容易激发山体的高阶振型,导致山体在走向上发生偏振;当二者同时存在时,山体会同时产生低阶和高阶偏振效应。

    Abstract:

    A large number of earthquake site investigation and theoretical studies have shown that local site conditions have a significant effect on seismic damage and ground motion characteristics, which is usually manifested as amplification or reduction of ground motion. The mountain topographic effect of strong ground motion plays a great role in the antiseismic defense of major projects in mountainous areas. Currently, there are three main ways to study the topographic effect: topographic effect observation array, analytical analysis and numerical simulation calculation. The strong motion observation data from the array can directly reflect the characteristics caused by the complex terrain, and analysis results are more intuitive, real and reliable.

    Based on the nine aftershock records after the 2008 Wenchuan MS8.0 earthquake, the baseline-correction and filtration were carried out, and the Fourier spectral ratios and particle motion displacement trajectory diagrams were achieved.

    The average spectral ratio curve of the two horizontal records of 9 aftershocks has good consistency with the spectral ratio curve of a single aftershock. The natural frequency of the mountain is not unique, and the maximum spectral ratio will appear in different frequency bands, indicating a clear multi-order nature of the mountain vibration. 1.0−4.0 Hz is the lower-order vibration mode of the mountain, and 9.0−15.0 Hz is the higher-order vibration mode. There are significant differences in the source, magnitude, epicenter distance, and propagation path of each aftershock, but the spectral ratio curves of each aftershock have good consistency, indicating that the natural frequency of the mountain is related to factors such as the geometric shape of the mountain itself.

    The particle motion displacement trajectory diagrams show that under different earthquake input, the maximum displacement amplitude of the mountain vibration can appear in the transverse or longitudinal direction of the mountain.

    There exists the obvious polarization effect in the mountain vibration. The EW and NS acceleration records of the nine aftershocks were decomposed in 10° increments to obtain 324 new time histories. The amplification coefficients of the peak ground acceleration and the Fourier spectral ratio were analyzed for each decomposition angle. The orientation of the maximum peak acceleration amplification coefficient is basically the same as that of the maximum displacement amplitude of the mountain vibration, and the peak acceleration amplification coefficients of each decomposition angle have obvious polarization effects. The frequency bands of the nine aftershocks with the largest Fourier spectral ratios at different decomposition angles are relatively close to each other, and all of them are distributed in the frequency bands of 0.8−2.8 Hz, 7.8−10.2 Hz, and 11.5−16.0 Hz.

    However, the angular range in which the extreme values of the Fourier spectral ratios are located varies from one aftershock to another, with aftershocks 1, 3, 4, and 9. For the Fourier spectral ratio in the low frequency band of 0.8−2.8 Hz, the maximum amplitude appears in the range of 110°−160° i.e. transverse direction of the mountain; in the middle and high frequency bands of 7.8−10.2 Hz, the maximum amplitude appears in the range of 30°−60° i.e. longitudinal direction of the mountain.

    The seismic energy of the aftershocks 2, 5, 6, 7, and 8 is mainly concentrated in the mid- and high-frequency bands, and the maximum value of the spectral ratio is concentrated in the range of 30°−60° i.e. longitudinal direction of the mountain, which is more easily to stimulate of higher-order vibration modes of the mountain in this angular range, and the phenomenon is also roughly similar to that of the particle motion displacement trajectory diagrams and the orientation of polarization of the peak ground acceleration.

    Considering the Fourier spectrum analysis of the nine aftershock records at the foot of the slope, we can obtain that the frequency content is different. The low frequency band is easy to stimulate the lower-order vibration mode of the mountain that leads to polarization in the transverse direction; the high-order vibration mode is easily stimulated by the high-frequency band that leads to polarization in the longitudinal direction of the mountain; the mountain can produce both low-order and high-order polarization effects when the low and high frequency exist at the same time. The maximum displacement amplitude of the mountain under the action of different earthquakes will appear in the transverse and longitudinal direction of the mountain, which is closely related to the spectral characteristics of the input earthquake. In the seismic design of large-scale structures such as bridges, tunnels and hydropower stations across mountain areas, the polarization effect of the mountain topography should be given priority consideration.

  • 大量的地震震害调查及地形地震动观测记录研究发现,山地、丘陵地区对地震波会有显著的放大现象,且狭长、高耸的山体会出现共振及偏振旋转现象,位于山体地形的结构震害程度远大于附近平坦地形(胡聿贤等,1980Bard,Tucker,1985Çelebi,1987Geli et al,1988Bonamassa,Vidale,1991Bouchon,Barker,1996章文波等,2001薄景山等,2021)。由于山体地形场地条件下的强震动记录较少,关于地震动的山体地形效应尤其是偏振效应研究较为薄弱。随着西部大开发战略的实施,在山区需要兴建大量桥梁、隧道和水电站等基础设施,因此山体地形地震动效应研究对于山区重大工程抗震设计参数的确定尤为重要。

    关于地形效应的研究主要有三种途径:解析分析、数值模拟计算及地形台阵观测。解析分析以波函数展开法为主(Wong,Trifunac,1974袁晓铭,廖振鹏,1996梁建文等,2006),由于该方法计算模型简单,很难得到三维复杂场地的地震响应,常用于检验数值模拟计算的精度及收敛性;数值模拟主要包括有限差分法(Tessmer,Kosloff,1994王铭锋等,2017)、有限元法(刘晶波,1996Kurita et al,2005章小龙等,2017)、有限元-有限差分法(李小军等,1995荣棉水等,2009)、边界元法(巴振宁等,2019)及谱元法(周红等,2010)等,数值模拟计算方法发展迅速,但是其研究对象建模的合理性及算法的选取很难控制,计算结果与实际值往往有所偏差;地形台阵观测方法是对复杂地形上台阵记录到的地震动时程进行研究,该方法是研究场地地形效应最直观、最真实可靠的方法。

    所谓地形效应,指的是地形对地震波的传播路径和传播特点产生的影响,地形的不规则性和复杂性使得地震波在地形场地的传播过程中发生反射、衍射和折射等现象,从而影响地震波的传播速度、振幅和频谱等。基于地形台阵强震动记录,国内外学者进行了许多研究,例如:Bouchon (1973)对帕科伊马大坝加速度计记录的加速度数据分析表明,峰值加速度(peak ground acceleration,缩写为PGA)由于地形效应被放大30%—50%,对山脊和凹陷地形的研究发现,地震动在通过山体时,放大效应发生在顶部,衰减区域出现在凹陷地形底部;Çelebi (1991)基于强震动记录研究发现,地震能量由于地形的影响而被放大,并指出放大效应与震源的强度和地形构造相关;Pedersen等(1994)、Kurita等(2005)和唐晖等(2012)利用谱比法将山体地形场地的强震动记录分析结果与数值模拟结果进行了对比研究,发现当频率在5 Hz以下时二者有很好的一致性,频率大于5 Hz时,数值模拟结果会小于强震记录分析结果;姚凯等(2009)和孙崇绍等(2011)对局部孤突地形的地震动峰值加速度的研究也发现,加速度随局部地形的高度增加而增大;王海云和谢礼立(2010)、王伟(2011)及王伟等(20152016)用傅里叶谱谱比法(Fourier spectral ratio,缩写为FSR)对地震动记录进一步研究发现,地震动的放大效应与输入地震动在各频段的频率含量有关,低频段对地形放大效应不明显,当频率大于1 Hz时,地形放大效应显著,且两水平向的地震动放大效应也有所差别;Vidale等(1991)及Bouchon和Barker (1996)对地形台阵记录的研究表明,地震动传播到狭长的山体地形时会出现共振及偏振旋转现象;周正华等(2009)对自贡西山地形台阵各测点的观测资料进行研究,结果表明,两水平向的地震动明显强于竖直向的,且东西向的地震动放大效应最明显;周港圣等(2022)基于汶川地震主震及余震的地形效应观测台阵记录对山体地形效应进一步研究发现,地震动的地形效应会随着山体地形的变化而改变,且地形效应存在方向性,即会使山体发生偏振。前人对这种方向性的研究只是粗略的比较了两水平向的放大系数,并未全面考虑山体地形其它方位的放大程度,山体地形的偏振效应可能会发生在山体的其它方位,且由于地形台阵观测资料的缺乏,以往基于实际山体地形台阵记录的研究较少。基于此,本文拟利用汶川地震后窦圌山地形效应观测台阵获得的余震记录,绘制9次余震傅里叶谱谱比和质点运动轨迹图,并将强震动记录以10°为单位进行分解,对各分解角度下的傅里叶谱谱比、峰值加速度比等要素进行分析,以期为研究山体地形地震动偏振效应的影响机制提供参考。

    窦圌山地形效应观测台阵(以下简称窦圌山地形台阵)位于四川省江油市武都镇,窦圌山地质构造复杂,主要成分为砾岩,山体顶部走向为北偏东,坡度约为40°—50°。汶川地震后,地震科考人员在山体的坡顶及坡脚分别布设了一台强震仪,用于观测地震动山体地形效应。坡顶和坡角观测点的高程分别为1 058.0 m和995.0 m,二者高差为63.0 m,山体剖面及观测点高程见图1

    图  1  山体剖面及观测点高程示意图
    Figure  1.  Schematic diagram of hill profile and observation point elevation

    汶川地震后,该地形台阵共记录到9次余震数据,各余震的震中位置如图2所示,各余震的震级、震中距及方位角等信息列于表1

    图  2  窦圌山强震台站和震中位置
    Figure  2.  The location of stations and epicenters of strong earthquakes on Douchuan mountain
    表  1  窦圌山观测台阵观测到的汶川MS8.0地震的9次余震信息
    Table  1.  Information of nine aftershocks of Douchuan mountain observation array
    序号MS震中距/km东经/°北纬/°方位角/°序号MS震中距/km东经/°北纬/°方位角/°
    15.046.65104.9032.321163.527.55104.6232.10321
    24.630.67104.5632.0931174.124.35104.6232.06314
    36.1118.28105.4732.823183.422.00104.8632.1013
    45.924.08104.6432.0731995.432.83104.5932.14322
    55.226.83104.6732.12331
    注:方位角为震中位置相对于山体坡顶测点的角度。
    下载: 导出CSV 
    | 显示表格

    地震动主要受震源效应、传播路径效应和场地效应的影响,定义某一测点的地震动傅里叶谱为$A ( f ) $,$A ( f ) $可表示为震源函数$S ( f ) $、传播路径函数$T ( f ) $、场地效应函数$R ( f ) $三者的乘积(王海云,谢礼立,2010王伟,2011),即

    $$ A ( f ) =S ( f ) T ( f ) R ( f ) \text{,} $$ (1)

    式中f为频率。$R ( f ) $用下式表示:

    $$ R ( f ) =r ( f ) t ( f ) \text{,} $$ (2)

    式中,$r ( f ) $为除地形效应之外的其它场地效应,$t ( f ) $为地形效应。则坡脚场地地震动傅里叶谱$A_{1} ( f ) $为

    $$ {A}_{1} ( f ) ={S}_{1} ( f ) {T}_{1} ( f ) {r}_{1} ( f ) {t}_{1} ( f ) \text{,} $$ (3)

    坡顶场地地震动傅里叶谱${A}_{2} ( f ) $可表示为

    $$ {A}_{2} ( f ) ={S}_{2} ( f ) {T}_{2} ( f ) {r}_{2} ( f ) {t}_{2} ( f ) . $$ (4)

    假设${S}_{1} ( f ) ={S}_{2} ( f ) $,${T}_{1} ( f ) = {T}_{2} ( f ) $,${r}_{1} ( f ) ={r}_{2} ( f ) $,则傅里叶谱谱比的含义是坡顶与坡脚地形效应的传递函数,表征的是坡体的振动特性,即

    $$ \frac{{A}_{2} ( f ) }{{A}_{1} ( f ) }=\frac{{t}_{2} ( f ) }{{t}_{1} ( f ) } . $$ (5)

    从上面的假设可以看出,在一次地震中,若参考场地和台站测点二者的间距与震中距相比很小,传播路径效应可以忽略不计,则${S}_{1} ( f ) ={S}_{2} ( f ) $和${T}_{1} ( f ) ={T}_{2} ( f ) $两个假设成立,若想满足${r}_{1} ( f ) ={r}_{2} ( f ) $,则坡脚测点和参考场地的地质环境需保持一致,还需保证坡脚测点不受山体地形的影响,实际情况下此种情况很难存在,故一般将参考点布设在观测山体的底部。

    有学者将两水平向记录以某一固定角度依次分解,研究不同角度下的多个共振频率,例如,Vincenzo (2017)利用环境噪声记录进行了不同角度下放大效应的研究。本文用该方法对9次余震坡顶及坡脚的东西向和南北向地震动记录进行滤波和基线校正,在0°—180°之间以10°为单位沿逆时针方向进行分解合成,图3给出了东西向和南北向地震动时程分解合成示意图。

    图  3  东西向和南北向地震动时程分解合成示意图
    Figure  3.  Schematic of the decomposition synthesis of the ground motion time history in the EW and NS directions

    实际山体的走向角度为N47°E、横向角度为北偏西43°,分解方法见下式:

    $$ P ( \theta ) =\mathrm{E}\mathrm{W}\cdot \mathrm{c}\mathrm{o}\mathrm{s}\theta + \mathrm{N}\mathrm{S}\cdot \mathrm{s}\mathrm{i}\mathrm{n}\theta \text{,} $$ (6)
    $$ T ( \theta ) =\mathrm{N}\mathrm{S}\cdot \mathrm{c}\mathrm{o}\mathrm{s}\theta -\mathrm{E}\mathrm{W}\cdot \mathrm{s}\mathrm{i}\mathrm{n}\theta \text{,} $$ (7)

    式中,θ为10°,20°,30°,···,180°,$P ( \theta ) $和$T ( \theta ) $分别为两水平向记录以一定角度沿逆时针方向分解得到的新的两条地震动时程。

    对窦圌山余震的傅里叶谱谱比进行分析,分别计算9次余震东西向和南北向的坡顶/傅里叶谱谱比,相应的傅里叶谱谱比云图见图4。对于东西向谱比云图(图4a),山体的自振频率主要分布在1.3—2.8 Hz,7.1—10.1 Hz,11.5—16.0 Hz范围内;由南北向谱比云图(图4b)可见,山体的自振频率主要分布在1.8—4.2 Hz和9.2—14.2 Hz范围内。由9次余震东西向和南北向的傅里叶谱谱比平均值(图5)可以看出,9次余震两水平向记录的傅里叶谱谱比平均值曲线与单次余震傅里叶谱谱比曲线的一致性较好。由图4图5可见,山体的自振频率并不唯一,傅里叶谱谱比极大值会出现在不同的频段,山体存在明显的多阶性;由表1可知,各余震的震源、震级、震中距、传播路径等存在显著差异,但是各余震谱比曲线的一致性很好,说明山体的自振频率与山体本身的几何形状等因素有关。合并9次余震两水平向的自振频率可以发现,1.0—4.0 Hz为山体的低阶振型,9.0—15.0 Hz为山体的高阶振型。

    图  4  9次余震东西向 (a) 和南北向 (b) 傅里叶谱谱比FSR云图
    Figure  4.  Fourier spectral ratio cloud maps at EW (a) and NS (b) directions for the nine aftershocks
    图  5  窦圌山9次余震东西向 (a) 和南北向 (b) 傅里叶谱谱比FSR及其平均值比较
    Figure  5.  Comparison of Fourier spectral ratios and its average values for the nine aftershocks at EW (a) and NS (b) directions

    窦圌山台阵记录到的汶川地震9次余震的质点运动轨迹图见图6xy轴分别代表山体的东西向和南北向,正值分别为东向和北向),可以看出窦圌山在不同余震作用下的运动轨迹有明显的差别,说明不同的余震会使山体在不同方向上发生偏振旋转现象,在1,3,4,9号余震作用下,坡脚和坡顶均在横向方向发生偏振运动;在2,5,6号余震作用下,坡脚和坡顶均在走向方向发生偏振运动;在7,8号余震作用下,坡脚与坡顶分别在山体走向和横向发生偏振,质点运动优势方向不一致。

    图  6  窦圌山台阵记录到汶川地震9次余震坡脚、坡顶测点质点运动轨迹图
    Figure  6.  Particle motion trajectory diagrams at the foot and top of the slope for the nine aftershocks

    为了研究9次余震质点运动轨迹图的偏振效应出现在不同方位的原因,对9次余震坡脚及坡顶的地震动数据进行分解合成,方法见图3和式(6),(7)。将分解合成后同一分解角度的坡顶峰值加速度与坡脚峰值加速度相比,所得比值列于表2。通过表2可以分析9次余震峰值加速度的偏振效应,同时绘制了9次余震坡顶/坡脚测点各分解角度峰值加速度放大系数图(图7)。由表2图7可知,1,2,3,4,8号余震的放大系数最大值均出现在山体横向及其附近,5次余震放大系数最大值出现的方位与各自质点运动轨迹图偏振方位基本一致;5,6,7号余震的放大系数最大值出现在山体走向及其附近,3次余震放大系数最大值出现的方位与各自质点运动轨迹图偏振方位相一致;9号余震放大系数最大值出现在山体走向和横向上;故9次余震各分解角度的PGA放大系数具有明显的偏振效应。

    表  2  9次余震坡顶/坡脚测点各分解角度峰值加速度PGA放大系数
    Table  2.  PGA amplification factor for the decomposition angles of the nine aftershocks at the top/foot of the slope measurement points
    分解角度/° PGA放大系数
    余震1 余震2 余震3 余震4 余震5 余震6 余震7 余震8 余震9
    10 0.765 0.767 1.048 0.881 1.148 1.620 0.704 0.721 1.051
    20 0.722 0.697 1.016 0.901 1.159 1.744 0.820 0.745 0.904
    30 0.671 0.761 0.910 0.907 1.170 1.747 0.912 0.777 0.796
    40 0.697 0.836 0.801 0.841 1.176 1.394 0.984 0.822 0.709
    50 0.711 0.913 0.825 0.783 1.041 1.072 0.895 0.851 0.624
    60 0.773 1.015 0.852 0.864 0.903 0.832 0.836 0.843 0.521
    70 0.888 1.163 0.843 0.948 0.770 0.629 0.791 0.828 0.459
    80 0.998 1.278 0.791 1.053 0.695 0.592 0.784 0.893 0.451
    90 1.095 1.375 0.739 1.172 0.754 0.579 0.844 1.020 0.453
    100 1.196 1.418 0.723 1.334 0.747 0.579 0.901 1.098 0.456
    110 1.154 1.446 0.786 1.323 0.712 0.580 0.851 1.120 0.465
    120 1.045 1.471 0.860 1.262 0.680 0.580 0.792 1.141 0.484
    130 0.981 1.554 0.937 1.239 0.644 0.582 0.737 1.165 0.549
    140 0.930 1.375 1.049 1.268 0.668 0.680 0.683 1.191 0.687
    150 0.893 1.228 1.079 1.331 0.717 0.895 0.627 1.081 0.852
    160 0.863 1.091 1.075 1.320 0.772 1.188 0.621 0.898 0.879
    170 0.834 0.976 1.064 1.206 0.812 1.372 0.638 0.743 0.919
    180 0.801 0.870 1.057 0.964 1.017 1.493 0.659 0.682 1.114
    下载: 导出CSV 
    | 显示表格
    图  7  不同分解角度下9次余震坡顶/坡脚测点峰值加速度放大系数
    Figure  7.  PGA amplification coefficient at different decomposition angles for the nine aftershocks at the top/foot of the slope

    对各余震坡脚测点输入地震动的傅里叶谱图进行分析,研究9次余震质点运动轨迹图的偏振效应出现在不同方位的原因。由图8可知,1,3,4,9号余震频率丰富的频段主要集中在0.5—4.0 Hz的低频段及5.0—11.0 Hz的中高频段,因此容易激发山体的低阶及高阶振型;2,5,6,7,8号余震频率丰富的频段主要集中在4.0—9.0 Hz中高频段,容易激发山体的高阶振型。

    图  8  坡脚位置9次余震东西向和南北向傅里叶谱比较
    Figure  8.  Comparison of EW and NS direction Fourier spectra of the nine aftershocks at the foot of the slope

    为了更深入地研究山体地形发生偏振效应的影响机制,采用与峰值加速度分解合成相同的方法对9次余震地震动记录进行处理并绘制各分解角度的傅里叶谱谱比云图(图9)。由图9可知,各余震在不同分解角度下的谱比极大值所在的频段比较接近,均分布在0.8—2.8,7.8—10.2,11.5—16 Hz频段,但是各余震谱比极大值所在的角度范围有所不同。对余震1,3,4,9分析可知,在0.8—2.8 Hz低频段,傅里叶谱谱比最大值对应的分解角度在110°—160°范围,即山体横向方位;在7.8—10.2 Hz中高频段,傅里叶谱谱比最大值对应的分解角度在30°—60°范围,即山体走向方位;说明4次余震在低频和中高频段都含有丰富的能量,容易同时激发山体的低阶和高阶振型,导致山体振动具有明显的偏振效应,该现象与各自质点运动轨迹图及峰值加速度的偏振方位大致相同。对余震2,5,6,7,8分析可知,这5次余震的地震能量主要集中在中高频段,谱比最大值对应的分解角度集中在30°—60°范围,即山体走向方位,该角度范围更容易激发山体的高阶振型,该现象也与各自质点运动轨迹图及峰值加速度的偏振方位大致相同。

      9  9次余震不同分解角度下坡顶/坡脚测点傅里叶谱谱比FSR分布云图
      9.  Cloud plots of the FSR of the top and foot slope measure points at different decomposition angles of the nine aftershocks
      9  9次余震不同分解角度下坡顶/坡脚测点傅里叶谱谱比FSR分布云图
      9.  Cloud plots of the FSR of the top and foot slope measure points at different decomposition angles of the nine aftershocks

    基于窦圌山地形台阵记录到的汶川地震9次余震信息,利用傅里叶谱谱比法研究了山体地形地震动偏振效应,得出如下结论:

    1) 同一山体,9次余震的傅里叶谱谱比曲线基本一致,主要集中在1.0—4.0 Hz低频段及9.0—15.0 Hz中高频段,说明山体具有明显的多阶性,且山体的振动特性与山体本身的几何形状、地质构造等因素有关。

    2) 在9次余震作用下,山体的质点运动轨迹图和分解合成后的峰值加速度放大系数在山体横向及走向上均具有明显的偏振效应,且二者的偏振方位具有很好的一致性。低频和中高频均比较丰富的地震动容易同时激发山体的低阶和高阶振型;中高频含量比较丰富的地震动容易激发山体的高阶振型。

    3) 坡脚输入地震动的傅里叶谱表明,各输入地震动频率含量丰富的频段有所不同。分解合成后的地震动傅里叶谱谱比显示,山体的偏振效应主要发生在山体横向及走向方位上,低阶振型易引起山体横向振动,高阶振型易引起山体走向振动。

    4) 地震动作用下的山体,其位移幅值最大方位会出现在山体横向及走向上,与输入山体地震动的频谱特性有密切关系。在对跨山体桥梁、隧道、水电站等长大结构进行抗震设计时,应重点考虑山体地形的偏振效应。

  • 图  1   山体剖面及观测点高程示意图

    Figure  1.   Schematic diagram of hill profile and observation point elevation

    图  2   窦圌山强震台站和震中位置

    Figure  2.   The location of stations and epicenters of strong earthquakes on Douchuan mountain

    图  3   东西向和南北向地震动时程分解合成示意图

    Figure  3.   Schematic of the decomposition synthesis of the ground motion time history in the EW and NS directions

    图  4   9次余震东西向 (a) 和南北向 (b) 傅里叶谱谱比FSR云图

    Figure  4.   Fourier spectral ratio cloud maps at EW (a) and NS (b) directions for the nine aftershocks

    图  5   窦圌山9次余震东西向 (a) 和南北向 (b) 傅里叶谱谱比FSR及其平均值比较

    Figure  5.   Comparison of Fourier spectral ratios and its average values for the nine aftershocks at EW (a) and NS (b) directions

    图  6   窦圌山台阵记录到汶川地震9次余震坡脚、坡顶测点质点运动轨迹图

    Figure  6.   Particle motion trajectory diagrams at the foot and top of the slope for the nine aftershocks

    图  7   不同分解角度下9次余震坡顶/坡脚测点峰值加速度放大系数

    Figure  7.   PGA amplification coefficient at different decomposition angles for the nine aftershocks at the top/foot of the slope

    图  8   坡脚位置9次余震东西向和南北向傅里叶谱比较

    Figure  8.   Comparison of EW and NS direction Fourier spectra of the nine aftershocks at the foot of the slope

    9   9次余震不同分解角度下坡顶/坡脚测点傅里叶谱谱比FSR分布云图

    9.   Cloud plots of the FSR of the top and foot slope measure points at different decomposition angles of the nine aftershocks

    9   9次余震不同分解角度下坡顶/坡脚测点傅里叶谱谱比FSR分布云图

    9.   Cloud plots of the FSR of the top and foot slope measure points at different decomposition angles of the nine aftershocks

    表  1   窦圌山观测台阵观测到的汶川MS8.0地震的9次余震信息

    Table  1   Information of nine aftershocks of Douchuan mountain observation array

    序号MS震中距/km东经/°北纬/°方位角/°序号MS震中距/km东经/°北纬/°方位角/°
    15.046.65104.9032.321163.527.55104.6232.10321
    24.630.67104.5632.0931174.124.35104.6232.06314
    36.1118.28105.4732.823183.422.00104.8632.1013
    45.924.08104.6432.0731995.432.83104.5932.14322
    55.226.83104.6732.12331
    注:方位角为震中位置相对于山体坡顶测点的角度。
    下载: 导出CSV

    表  2   9次余震坡顶/坡脚测点各分解角度峰值加速度PGA放大系数

    Table  2   PGA amplification factor for the decomposition angles of the nine aftershocks at the top/foot of the slope measurement points

    分解角度/° PGA放大系数
    余震1 余震2 余震3 余震4 余震5 余震6 余震7 余震8 余震9
    10 0.765 0.767 1.048 0.881 1.148 1.620 0.704 0.721 1.051
    20 0.722 0.697 1.016 0.901 1.159 1.744 0.820 0.745 0.904
    30 0.671 0.761 0.910 0.907 1.170 1.747 0.912 0.777 0.796
    40 0.697 0.836 0.801 0.841 1.176 1.394 0.984 0.822 0.709
    50 0.711 0.913 0.825 0.783 1.041 1.072 0.895 0.851 0.624
    60 0.773 1.015 0.852 0.864 0.903 0.832 0.836 0.843 0.521
    70 0.888 1.163 0.843 0.948 0.770 0.629 0.791 0.828 0.459
    80 0.998 1.278 0.791 1.053 0.695 0.592 0.784 0.893 0.451
    90 1.095 1.375 0.739 1.172 0.754 0.579 0.844 1.020 0.453
    100 1.196 1.418 0.723 1.334 0.747 0.579 0.901 1.098 0.456
    110 1.154 1.446 0.786 1.323 0.712 0.580 0.851 1.120 0.465
    120 1.045 1.471 0.860 1.262 0.680 0.580 0.792 1.141 0.484
    130 0.981 1.554 0.937 1.239 0.644 0.582 0.737 1.165 0.549
    140 0.930 1.375 1.049 1.268 0.668 0.680 0.683 1.191 0.687
    150 0.893 1.228 1.079 1.331 0.717 0.895 0.627 1.081 0.852
    160 0.863 1.091 1.075 1.320 0.772 1.188 0.621 0.898 0.879
    170 0.834 0.976 1.064 1.206 0.812 1.372 0.638 0.743 0.919
    180 0.801 0.870 1.057 0.964 1.017 1.493 0.659 0.682 1.114
    下载: 导出CSV
  • 巴振宁,吴孟桃,梁建文. 2019. 坡体几何参数与弹性模量对岩质斜坡地震动力响应的影响:IBEM求解[J]. 岩石力学与工程学报,38(8):1578–1592.

    Ba Z N,Wu M T,Liang J W. 2019. Influence of geometric parameters and elastic modulus on seismic dynamic response of rock slopes by IBEM[J]. Chinese Journal of Rock Mechanics and Engineering,38(8):1578–1592 (in Chinese).

    薄景山,李琪,齐文浩,王玉婷,赵鑫龙,张毅毅. 2021. 场地条件对地震动和震害影响的研究进展与建议[J]. 吉林大学学报(地球科学版),51(5):1295–1305.

    Bo J S,Li Q,Qi W H,Wang Y T,Zhao X L,Zhang Y Y. 2021. Research progress and discussion of site condition effect on ground motion and earthquake damage[J]. Journal of Jilin University (Earth Science Edition),51(5):1295–1305 (in Chinese).

    胡聿贤,孙平善,章在墉,田启文. 1980. 场地条件对震害和地震动的影响[J]. 地震工程与工程振动,试刊(1):34–41.

    Hu Y X,Sun P S,Zhang Z Y,Tian Q W. 1980. Effects of site conditions on earthquake damage and ground motion[J]. Earthquake Engineering and Engineering Dynamics,T(1):34–41 (in Chinese).

    李小军,廖振鹏,关慧敏. 1995. 粘弹性场地地形对地震动影响分析的显式有限元-有限差分方法[J]. 地震学报,17(3):362–369.

    Li X J,Liao Z P,Guan H M. 1995. An explicit finite element-finite difference method for the analysis of viscoelastic field topography on ground motion[J]. Acta Seismologica Sinica, 17 (3):362−369 (in Chinese).

    梁建文,张彦帅,Lee V W. 2006. 平面SV波入射下半圆凸起地形地表运动解析解[J]. 地震学报,28(3):238–249. doi: 10.3321/j.issn:0253-3782.2006.03.003

    Liang J W,Zhang Y S,Lee V W. 2006. Surface motion of a semi-cylindrical hill for incident plane SV waves:Analytical solution[J]. Acta Seismologica Sinica,28(3):238–249 (in Chinese).

    刘晶波. 1996. 局部不规则地形对地震地面运动的影响[J]. 地震学报,18(2):239–245.

    Liu J B. 1996. The influence of local irregular terrain on seismic ground motion[J]. Acta Seismologica Sinica,18(2):239–245 (in Chinese).

    荣棉水,李小军,吕悦军,尤红兵. 2009. 粘弹性浅圆弧形山谷地形对地震动谱特性的影响[J]. 地震研究,32(1):40–45. doi: 10.3969/j.issn.1000-0666.2009.01.008

    Rong M S,Li X J,Lü Y J,You H B. 2009. Effect of viscoelastic local canyon on the spectrum property of ground motion[J]. Journal of Seismological Research,32(1):40–45 (in Chinese).

    孙崇绍,闵祥仪,周民都. 2011. 陇南山区局部地形对地震动强度的影响[J]. 西北地震学报,33(4):331–335.

    Sun C S,Min X Y,Zhou M D. 2011. Influence of local topography on ground motion in mountain region of southern Gansu Province[J]. Northwestern Seismological Journal,33(4):331–335 (in Chinese).

    唐晖,李小军,李亚琦. 2012. 自贡西山公园山脊地形场地效应分析[J]. 振动与冲击,31(8):74–79. doi: 10.3969/j.issn.1000-3835.2012.08.015

    Tang H,Li X J,Li Y Q. 2012. Site effect of topograghy on ground motions of Xishan park of Zigong city[J]. Journal of Vibration and Shock,31(8):74–79 (in Chinese).

    王海云,谢礼立. 2010. 自贡市西山公园地形对地震动的影响[J]. 地球物理学报,53(7):1631–1638. doi: 10.3969/j.issn.0001-5733.2010.07.014

    Wang H Y,Xie L L. 2010. Effects of topography on ground motion in the Xishan park,Zigong city[J]. Chinese Journal of Geophysics,53(7):1631–1638 (in Chinese).

    王铭锋,郑傲,章文波. 2017. 局部山体地形对强地面运动的影响研究[J]. 地球物理学报,60(12):4655–4670. doi: 10.6038/cjg20171210

    Wang M F,Zheng A,Zhang W B. 2017. Effect of local mountain topography on strong ground motion[J]. Chinese Journal of Geophysics,60(12):4655–4670 (in Chinese).

    王伟. 2011. 地震动的山体地形效应[D]. 哈尔滨:中国地震局工程力学研究所:105−110.

    Wang W. 2011. Effect of Hill Topography on Ground Motion[D]. Harbin:Institute of Engineering Mechanics,China Earthquake Administration:105−110 (in Chinese).

    王伟,刘必灯,刘欣,杨明亮,周正华. 2015. 基于汶川MS8.0地震强震动记录的山体地形效应分析[J]. 地震学报,37(3):452–462. doi: 10.11939/j.issn:0253-3782.2015.03.008

    Wang W,Liu B D,Liu X,Yang M L,Zhou Z H. 2015. Analysis on the hill topography effect based on the strong ground motion records of Wenchuan MS8.0 earthquake[J]. Acta Seismologica Sinica,37(3):452–462 (in Chinese).

    王伟,刘必灯,刘培玄,王振宇,刘欣. 2016. 基于台阵记录的局部场地条件地震动效应分析[J]. 地震学报,38(2):307–317. doi: 10.11939/jass.2016.02.014

    Wang W,Liu B D,Liu P X,Wang Z Y,Liu X. 2016. Analyses on the effect of the local site conditions on the strong motion based on the array records[J]. Acta Seismologica Sinica,38(2):307–317 (in Chinese).

    姚凯,卢大伟,刘旭宙,周民都,闵祥仪. 2009. 利用汶川余震流动观测资料探讨地形对峰值加速度的影响[J]. 西北地震学报,31(1):46–50.

    Yao K,Lu D W,Liu X Z,Zhou M D,Min X Y. 2009. Using observational data from the aftershocks of Wenchuan great earthquake to study the influence of geography on peak ground acceleration[J]. Northwestern Seismological Journal,31(1):46–50 (in Chinese).

    袁晓铭,廖振鹏. 1996. 任意圆弧形凸起地形对平面SH波的散射[J]. 地震工程与工程振动,16(2):1–13.

    Yuan X M,Liao Z P. 1996. Scattering of plane SH waves by a cylindrical hill of circular-arc cross-section[J]. Earthquake Engi neering and Engineering Vibration,16(2):1–13 (in Chinese).

    章文波,谢礼立,郭明珠. 2001. 利用强震记录分析场地的地震反应[J]. 地震学报,23(6):604–614. doi: 10.3321/j.issn:0253-3782.2001.06.006

    Zhang W B,Xie L L,Guo M Z. 2001. Estimation on site-amplification from different methods using strong motion data obtained in Tangshan,China[J]. Acta Seismologica Sinica,23(6):604–614 (in Chinese).

    章小龙,李小军,周正华,陈国兴,彭小波. 2017. 三维复杂山谷地形SV波垂直输入地震反应分析[J]. 地球物理学报,60(7):2779–2790. doi: 10.6038/cjg20170723

    Zhang X L,Li X J,Zhou Z H,Chen G X,Peng X B. 2017. The seismic response analysis of three-dimensional canyon complex topography under incident SV seismic waves[J]. Chinese Journal of Geophysics,60(7):2779–2790 (in Chinese).

    周港圣,周游,周正华,魏来,魏鑫,沈欣茹,陈珍. 2022. 山脊地形效应的强震动观测研究[J]. 地震工程学报,44(5):1110–1116.

    Zhou G S,Zhou Y,Zhou Z H,Wei L,Wei X,Shen X R,Chen Z. 2022. Topographic effect of ridge terrains based on strong motion observation data[J]. China Earthquake Engineering Journal,44(5):1110–1116 (in Chinese).

    周红,高孟潭,俞言祥. 2010. SH波地形效应特征的研究[J]. 地球物理学进展,25(3):775–782. doi: 10.3969/j.issn.1004-2903.2010.03.005

    Zhou H,Gao M T,Yu Y X. 2010. A study of topographical effect on SH waves[J]. Progress in Geophysics,25(3):775–782 (in Chinese).

    周正华,王玉石,王伟,王宇欢,刘泉,杨程. 2009. 汶川MS8.0地震中的山脊地形效应:自贡西山公园典型事例[C]//纪念汶川地震一周年地震工程与减轻地震灾害研讨会论文集. 成都:中国建筑学会,中国地震学会:58−64.

    Zhou Z H,Wang Y S,Wang W,Wang Y H,Liu Q,Yang C. 2009. Ridge topography effect in Wenchuan MS8.0 earthquake:Typical examples of Xishan park in Zigong[C]//Collection of Seminar on Earthquake Engineering and Earthquake Disaster Reduction to Commemorate the First Anniversary of Wenchuan Earthquake. Chengdu:Architectural Society of China,China Earthquake Society:58−64 (in Chinese).

    Bard P Y,Tucker B E. 1985. Underground and ridge site effects:A comparison of observation and theory[J]. Bull Seismol Soc Am,75(4):905–922. doi: 10.1785/BSSA0750040905

    Bonamassa O,Vidale J E. 1991. Directional site resonances observed from aftershocks of the 18 October 1989 Loma Prieta earthquake[J]. Bull Seismol Soc Am,81(5):1945–1957.

    Bouchon M. 1973. Effect of topography on surface motion[J]. Bull Seismol Soc Am,63(2):615–632. doi: 10.1785/BSSA0630020615

    Bouchon M,Barker J S. 1996. Seismic response of a hill:The example of Tarzana,California[J]. Bull Seismol Soc Am,86(1A):66–72. doi: 10.1785/BSSA08601A0066

    Çelebi M. 1987. Topographical and geological amplifications determined from strong-motion and aftershock records of the 3 March 1985 Chile earthquake[J]. Bull Seismol Soc Am,77(4):1147–1167. doi: 10.1785/BSSA0770041147

    Çelebi M. 1991. Topographical and geological amplification:Case studies and engineering implications[J]. Struct Saf,10(1/2/3):199–217.

    Geli L,Bard P Y,Jullien B. 1988. The effect of topography on earthquake ground motion:A review and new results[J]. Bull Seismol Soc Am,78(1):42–63. doi: 10.1785/BSSA0780010042

    Kurita T,Annaka T,Takahashi S,Shimada M,Suehiro T. 2005. Effect of irregular topography on strong ground motion amplification[J]. J Japan Assoc Earthq Eng,5(3):1–11.

    Pedersen H,Le Brun B,Hatzfeld D,Campillo M,Bard P Y. 1994. Ground-motion amplitude across ridges[J]. Bull Seismol Soc Am,84(6):1786–1800. doi: 10.1785/BSSA0840061786

    Tessmer E,Kosloff D. 1994. 3-D elastic modeling with surface topography by a Chebychev spectral method[J]. Geophysics,59(3):464–473. doi: 10.1190/1.1443608

    Vidale J E,Bonamassa O,Houston H. 1991. Directional site resonances observed from the 1 October 1987 Whittier Narrows,California,earthquake and the 4 October aftershock[J]. Earthq Spectra,7(1):107–125. doi: 10.1193/1.1585616

    Vincenzo D G. 2017. Instantaneous polarization analysis of ambient noise recordings in site response investigations[J]. Geophys J Int,210(1):443–464.

    Wong H L,Trifunac M D. 1974. Scattering of plane SH waves by a semi-elliptical canyon[J]. Earthq Eng Struct Dyn,3(2):157–169. doi: 10.1002/eqe.4290030205

图(10)  /  表(2)
计量
  • 文章访问数:  128
  • HTML全文浏览量:  32
  • PDF下载量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-21
  • 修回日期:  2024-05-20
  • 网络出版日期:  2024-07-03
  • 刊出日期:  2024-07-14

目录

/

返回文章
返回