汶川地震河流阶地建筑物的震害机制研究

熊文, 王伟, 杨研科, 徐凯放, 赵宁康, 曹子昂, 李昀松

熊文,王伟,杨研科,徐凯放,赵宁康,曹子昂,李昀松. 2024. 汶川地震河流阶地建筑物的震害机制研究. 地震学报,46(0):1−16. DOI: 10.11939/jass.20240079
引用本文: 熊文,王伟,杨研科,徐凯放,赵宁康,曹子昂,李昀松. 2024. 汶川地震河流阶地建筑物的震害机制研究. 地震学报,46(0):1−16. DOI: 10.11939/jass.20240079
Xiong W,Wang W,Yang Y K,Xu K F,Zhao N K,Cao Z,Li Y S. 2024. Study on the seismic damage mechanism of buildings on the river terrace in Wenchuan earthquake. Acta Seismologica Sinica46(0):1−16. DOI: 10.11939/jass.20240079
Citation: Xiong W,Wang W,Yang Y K,Xu K F,Zhao N K,Cao Z,Li Y S. 2024. Study on the seismic damage mechanism of buildings on the river terrace in Wenchuan earthquake. Acta Seismologica Sinica46(0):1−16. DOI: 10.11939/jass.20240079

汶川地震河流阶地建筑物的震害机制研究

基金项目: 中国地震局地震科技星火计划项目(XH23062A)资助
详细信息
    作者简介:

    熊文,硕士研究生在读,主要从事地震反应分析研究,e-mail:1090531391@qq.com

    通讯作者:

    王伟,博士,副教授,主要从事强震动观测和强地面运动研究,e-mail:wwwiem@163.com

  • 中图分类号: P315.9

Study on the seismic damage mechanism of buildings on the river terrace in Wenchuan earthquake

  • 摘要:

    基于2008年汶川MS8.0地震现场的震害调查资料,揭示了河流阶地地形对建筑物震害分布的影响规律。阶地前缘冲洪积层较厚区域的建筑物遭受了严重的破坏,而阶地后缘坡积层较薄区域则相对受损较轻,总体上呈现出前缘震害显著大于后缘的特征。为研究该震害特征的机制,利用FLAC3D有限差分软件构建三维阶地模型,模拟分析其在脉冲荷载作用下的地震动响应。计算结果表明:各级阶地前缘的地震动水平均要显著高于后缘,同时随上覆土层增厚,加速度峰值、相对持时值、反应谱平台值以及放大系数均呈现上升趋势。而随阶地级数的减小,峰值、持时和反应谱特征周期却呈下降趋势,且级数的增加还会显著增强地震动低频成分的放大效应。因此阶地级数与上覆土层厚度是影响地震动响应的关键因素,高阶地和厚覆盖土层区域对地震动的放大效应更强,从而导致建筑物破坏严重。

    Abstract:

    The seismic ground motion topographic effect, as an important research content in the field of seismic engineering, the study of the mechanism of complex terrain on the ground motion characteristics can provide basis for engineering seismic defense.A large number of post-earthquake site investigations have shown that the complexity of local terrain has a significant impact on the distribution of seismic damage, especially the irregular terrain can change the intensity and spectral characteristics of ground motion. As a type of local irregular topography widely found in nature, the unique geometric shape of river terraces can cause complex scattering and diffraction of seismic waves, resulting in differences of ground motion in its local areas, and then affecting the seismic damage degree of surrounding buildings.

    Based on the on-site seismic damage investigation data of the river terraces in Wenchuan MS8.0 earthquake in 2008, it was found that buildings in the area with thicker alluvial at the front edge of the terrace suffered serious damage, while those in the area with thinner slope deposit at the rear edge of the terrace suffered relatively less damage. In general, the seismic damage at the front edge was significantly greater than that at the rear edge. At the same time, in order to study the mechanism of this seismic damage feature, the river terraces were selected as the research object, and the FLAC3D finite difference software was used to establish three-dimensional river terrace analysis models with different thicknesses of overburden soil layers, simulating and calculating the ground motion response under impulse loading, further revealing the influence law and internal mechanism of river terrace topography on ground motion characteristics and the distribution of seismic damage to buildings.

    For the same level terrace, the peak values of the horizontal and vertical acceleration and the 90% energy duration all show an upward trend with the increase of the overlying soil thickness, reaching the maximum value at the front edge of the terrace and the transition point with the steep slope. Meanwhile, the ground motion level at the front edge of each terrace is significantly higher than that at the rear edge. As the terrace grade decreases, the peak values of the horizontal and vertical acceleration and the 90% energy duration at the corresponding area also gradually decrease. Similarly, the trend of the Fourier spectrum amplitude and ratio at different monitoring points on the same level terrace is basically consistent, but the amplitude and ratio increase gradually as the monitoring point approaches the edge of the terrace facing the steep slope and the front edge of the area with increased soil thickness.As the terrace grade increases (the terrain height rises), the natural frequency of the structure increases accordingly, thereby significantly enhancing the amplification effect of low-frequency ground motion. The characteristic period value, platform value, and platform amplification coefficient in the standard response spectrum of seismic acceleration for different monitoring points are all affected by the terrace grade and overlying soil thickness. The Tg value decreases gradually as the terrace grade decreases; the platform value increases as the overlying soil thickness at the front edge of the terrace increases; however, the platform amplification coefficient β value decreases as the terrace grade increases, and the amplification coefficient at the front edge of the terrace is significantly larger than that at the rear edge.

    River terraces have a significant impact on the propagation of ground motion and the degree of seismic damage to buildings. The change of the thickness of the overlying soil layer leads to different distributions of building damage by affecting the amplification of ground motion, while the number of terrace grades exacerbates or mitigates the seismic damage by affecting the spectral characteristics and overall level of ground motion.Therefore, the number of terrace grades and overlying soil thickness are the key factors affecting ground motion response, and the amplification effect of ground motion is stronger in high terrace and thick covering soil layer, which leads to serious damage of buildings.

  • 图  1   南坝镇阶地前缘房屋倒塌严重

    Figure  1.   The houses at the front edge of the terrace in Nanba Town collapsed seriously

    图  2   南坝镇阶地后缘房屋基本完好

    Figure  2.   The houses at the rear edge of the terraces in Nanba Town were basically intact

    图  3   蓥华镇建筑物破坏点调查分布图

    Figure  3.   Distribution map of building damage points investigated in Yinghua Town

    图  4   蓥华镇阶地后缘民房基本完好

    Figure  4.   The houses at the rear edge of the terrace in Yinghua Town were basically intact

    图  5   阶地前缘蓥峰实业工厂建筑物破坏严重

    Figure  5.   The buildings of the Yingfeng Industrial Factory at the front edge of the terrace were severely damaged

    图  6   小鱼洞镇河流阶地地形剖面图

    Figure  6.   Topographic profile of the river terrace in Xiaoyudong Town

    图  7   小鱼洞镇建筑物破坏点调查分布图

    Figure  7.   Distribution map of building damage points investigated in Xiaoyudong Town

    图  8   小鱼洞镇阶地前缘房屋破坏严重

    Figure  8.   The houses at the front edge of the terrace in Xiaoyudong Town were seriously damaged

    图  9   罗阳村山前阶地后缘房屋基本完好

    Figure  9.   The houses at the rear edge of the mountain terrace in Luoyang Village were basically intact

    图  10   河流阶地模型

    Figure  10.   River terrace model

    图  11   脉冲函数

    Figure  11.   Pulse function

    图  12   脉冲函数傅里叶谱

    Figure  12.   Fourier spectrum of pulse funct

    图  13   阶地模型加速度等值线云图

    Figure  13.   Cloud map of acceleration contour lines for the terrace model

    图  14   阶地模型监测点剖面加速度分布云图

    Figure  14.   Cloud map of acceleration distribution in the monitoring point profile for the terrace model

    图  15   阶地模型地表各监测点加速度峰值变化

    Figure  15.   Changes of peak acceleration at each monitoring points on the surface of the terrace model

    图  16   阶地模型地表各监测点90%能量持时变化

    Figure  16.   Changes of 90% energy time-holding at each monitoring points on the surface of the terrace model

    图  17   各级阶地的加速度傅里叶谱

    Figure  17.   Fourier spectrum of acceleration for terraces at all levels

    图  18   各级阶地的傅里叶谱比图

    Figure  18.   Fourier spectrum ratio for terraces at all levels

    图  19   测点#36加速度规准反应谱曲线

    Figure  19.   Response spectrum curve of acceleration gauge at measuring point #36

    图  20   阶地监测点反应谱Tg值和Amax值变化趋势

    Figure  20.   Change trend of Tg and Amax values for response spectra at terrace monitoring points

    图  21   阶地监测点反应谱β放大系数变化趋势

    Figure  21.   Change trend of β amplification coefficient for response spectrum at terrace monitoring points

    表  1   计算模型岩土体物理力学参数

    Table  1   Physical and mechanical parameters of rock and soil mass for the calculation model

    岩土类型密度(kg/m3体积模量(GPa)剪切模量(GPa)粘聚力(MPa)内摩擦角(°)
    粉质黏土18500.1600.0740.02325
    砂岩24875.9706.0102.06040
    下载: 导出CSV

    表  2   阶地模型地表监测点规准反应谱参数

    Table  2   Standard response spectrum parameters of surface monitoring points in the terrace model

    监测点号T0(s)Tg(s)Sa(m/s2β监测点号T0(s)Tg(s)Sa(m/s2β
    10.100.401.9630.940200.100.252.7501.240
    20.100.402.0130.949210.100.253.4251.357
    30.100.402.0500.927220.100.254.2001.318
    40.100.402.1250.889230.100.254.2501.050
    50.100.402.2880.890240.100.254.3881.174
    60.100.402.7001.276250.100.252.3251.348
    70.100.403.0381.318260.100.252.4751.394
    80.100.403.4501.177270.100.202.5001.396
    90.100.403.8381.178280.100.202.4631.368
    100.100.404.1251.183290.100.202.4501.350
    110.100.403.5131.157300.100.202.4751.346
    120.100.352.1631.188310.100.202.6001.381
    130.100.352.1001.144320.100.202.9751.530
    140.100.352.0881.139330.100.203.5381.703
    150.100.352.0751.125340.100.204.0501.806
    160.100.302.1131.127350.100.204.4501.522
    170.100.302.1131.107360.100.204.6001.232
    180.100.302.2001.133370.100.204.6751.226
    190.100.302.2501.095
    下载: 导出CSV
  • 董俊,赵成刚. 2005. 三维半球形凹陷饱和土场地对平面P波散射问题的解析解[J]. 地球物理学报,48(3):680–688. doi: 10.3321/j.issn:0001-5733.2005.03.028

    Dong J,Zhao C G. 2005. An analytic solution for the diffraction of plane P-wave by three-dimensional hemispherical canyons in a fluid-saturated porous media half space[J]. Chinese Journal of Geophysics,48(3):680–688. (in Chinese).

    高玉峰,代登辉,张宁. 2021. 河谷地形地震放大效应研究进展与展望[J]. 防灾减灾工程学报,41(4):734–752.

    Gao Y F,Dai D H,Zhang N. 2021. Progress and prospect of topographic amplification effects of seismic wave in canyon sites[J]. Journal of Disaster Prevention and Mitigation Engineering,41(4):734–752. (in Chinese).

    高玉峰,代登辉,张宁. 2022. 翡翠河谷地震动地形效应解析分析[J]. 地震学报,44(1):40–49.

    Gao Y F,Dai D H,Zhang N. 2022. Analytical study on the topographic effect on ground motion of Feitsui[J]. Acta Seismologica Sinica,41(4):734–752. (in Chinese).

    韩铮. 2006. 半球形凹陷谷场地对Rayleigh波的三维散射[J]. 山西建筑,32(3):52–53. doi: 10.3969/j.issn.1009-6825.2006.03.032

    Han Z. 2006. Three-dimensional scattering of Rayleigh waves in hemispherical canyon[J]. Shanxi Architecture,32(3):52–53. (in Chinese).

    何颖,于琴,刘中宪. 2019. 考虑散射效应沉积河谷空间相关多点地震动模拟[J]. 岩土力学,40(7):2739–2747.

    He Y,Yu Q,Liu Z X. 2019. Simulation of multi-point spatially correlated earthquake ground motions of sedimentary valleys considering scattering effect[J]. Rock and Soil Mechanics,40(7):2739–2747. (in Chinese).

    梁建文,李方杰,顾晓鲁. 2005. Rayleigh波在浅圆凹陷地形附近的散射:高频解答[J]. 地震工程与工程振动,25(5):26–31.

    Liang J W,Li F J,Gu X L. 2005. Scattering of Rayleigh waves by a shallow circular canyon:high-frequency solution[J]. Earthquake Engineering and Engineering Vibration,25(5):26–31. (in Chinese).

    林皋,关飞. 1990. 用边界元研究地震波在不规则地形处的散射问题[J]. 大连理工大学学报,30(2):145–152.

    Lin G,Guan F. 1990. Scattering of seismic waves at irregular topographies by boundary element method[J]. Journal of Dalian University of Technology,30(2):145–152. (in Chinese).

    刘晶波. 1996. 局部不规则地形对地震地面运动的影响[J]. 地震学报,18(2):239–245.

    Liu J B. 1996. The impact of local irregular topography on seismic ground motion[J]. Acta Seismologica Sinica,18(2):239–245. (in Chinese).

    李伟华,赵成刚. 2003. 圆弧形凹陷饱和土场地对平面P波散射问题的解析解[J]. 地球物理学报,46(4):539–546. doi: 10.3321/j.issn:0001-5733.2003.04.017

    LI W H,Zhao C G. 2003. An analytical solution for the diffraction of plane P-waves by circular cylindrical canyons in a fluid-saturated porous media half space[J]. Chinese Journal of Geophysics,46(4):539–546. (in Chinese).

    李平,刘红帅,薄景山,李孝波,于晓辉. 2016. 汶川MS8.0地震河谷地形对汉源县城高烈度异常的影响[J]. 地球物理学报,59(1):174–184.

    Li P,Liu H S,Bo J S,Li X B,Yu X H. 2016. Effects of river valley topography on anomalously high intensity in the Hanyuan town during the Wenchuan MS8.0 earthquake[J]. Chinese Journal of Geophysics,59(1):174–184. (in Chinese).

    李平,薄景山,李孝波,肖瑞杰. 2016. 安宁河河谷及邛海地区土层场地对地震动的放大作用[J]. 岩土工程学报,38(2):362–369.

    Li P,Bo J S,Li X B,Xiao R J. 2016. Amplification effect of soil sites on ground motion in Anning River valley and Qionghai Lake area[J]. Chinese Journal of Geotechnical Engineering,38(2):362–369. (in Chinese).

    曲国胜,黄建发,李小军,张晓东,宁宝坤,李亦纲. 2008. 南亚(巴基斯坦)地震灾害分布及成因分析[J]. 震灾防御技术,3(1):85–94. doi: 10.3969/j.issn.1673-5722.2008.01.011

    Qu G S,Huang J F,Li X J,Zhang X D,Ning B K,Li Y G. 2008. The Hazard Assessment and Analysis of Pakistan Earthquake in 2005[J]. Technology for Earthquake Disaster Prevention,3(1):85–94. (in Chinese).

    沈欣茹,郝冰,李远东,陈珍,周正华. 2023. 河谷地形对地震动的影响分析[J]. 地震学报,45(4):706–16.

    Shen X R,Hao B,Li Y D,Chen Z,Zhou Z H. 2023. The influence of valley topography on ground motion[J]. Chinese Journal of Geophysics,45(4):706–16. (in Chinese).

    孙纬宇,汪精河,严松宏,欧尔峰,梁庆国. 2019. SV波斜入射下河谷地形地震动分布特征分析[J]. 振动与冲击,8(20):237–243+265.

    Sun W Y,Wang J H,Yan S H,Ou E F,Liang G Q. 2019. Characteristic analysis of ground motions of a canyon topography under obliquely incident SV waves[J]. Journal of Vibration and Shock,8(20):237–243+265. (in Chinese).

    王铭锋,郑傲,章文波. 2017. 局部山体地形对强地面运动的影响研究[J]. 地球物理学报,60(12):4655–4670. doi: 10.6038/cjg20171210

    Wang M F,Zheng A,Zhang W B. 2017. Effect of local mountain topography on strong ground motion[J]. Chinese Journal of Geophysics,60(12):4655–4670. (in Chinese).

    王伟. 2011. 地震动的山体地形效应[D]. 哈尔滨:中国地震局工程力学研究所,10−14.

    Wang W. 2011. Effect of Hill Topography on Ground Motion[D]. Harbin:Institute Of Engineering Mechanics,China Earthquake Administration,10−14. (in Chinese).

    肖文海. 2009. 大型河谷场地地震动特征研究[D]. 哈尔滨:中国地震局工程力学研究所,1.

    Xiao W H. 2009. Research on Ground Motion Characteristic at the Site of Large-scale ValleyD]. Harbin:Institute Of Engineering Mechanics,China Earthquake Administration,1. (in Chinese).

    章小龙,李小军,周正华,陈国兴,彭小波. 2017. 三维复杂山谷地形SV波垂直入射地震反应分析[J]. 地球物理学报,60(7):2779–2790. doi: 10.6038/cjg20170723

    Zhang X L,Li X J,Zhou Z H,Chen G X,Peng X B. 2017. The seismic response analysis of three-dimensional Canyon comples topography under incident SV seismic waves[J]. Chinese Journal of Geophysics,60(7):2779–2790. (in Chinese).

    赵纪生,吴景发,师黎静,王伟. 2009. 汶川地震地表破裂周围建筑物重建的避让距离[J]. 地震工程与工程振动,29(6):96–101.

    Zhao J S,Wu J F,Shi L J,Wang W. 2009. Setback distance determination in reconstruction along the trace of surface rupture caused by MS8.0 Wenchuan earthquake[J]. Earthquake Engineering and Engineering Vibration,29(6):96–101. (in Chinese).

    周国良,李小军,侯春林,李铁萍. 2012. SV波入射下河谷地形地震动分布特征分析[J]. 岩土力学,33(4):1161–1166. doi: 10.3969/j.issn.1000-7598.2012.04.029

    Zhou G L,Li X J,Hou C L,Li T P. 2012. Characteristic analysis of ground motions of canyon topography under incident SV seismic waves[J]. Rock and Soil Mecanics,33(4):1161–1166. (in Chinese).

    Boore D M. 1972. A note on the effect of simple topography on seismic SH waves[J]. Bulletin of the seismological Society of America,62(1):275–284. doi: 10.1785/BSSA0620010275

    Bouckovalas G D,Papadimitriou A G. 2005. Numerical evaluation of slope topography effects on seismic ground motion[J]. Soil Dynamics and Earthquake Engineering,25(7):547–558.

    Frischknecht C,Wagner JJ. 2004. Seismic soil effect in an embanked deep Alpine Valley:A numerical investigation of two-dimensional resonance[J]. Bulletin of the Seismological Society of America,94(1):171–186. doi: 10.1785/0120020158

    Davis L L,West L R. 1973. Observed effects of topography on ground motion[J]. Bulletin of the Seismological Society of America,63(1):283–298. doi: 10.1785/BSSA0630010283

    Gao Y,Zhang N,Li D,Liu H,Cai Y,Wu Y. 2012. Effects of topographic amplification induced by a U-shaped canyon on seismic waves[J]. Bulletin of the Seismological Society of America,102(4):1748–1763.

    Kurita T,Annaka T,Takahashi S,Shimada M,Suehiro T. 2005. Effect of irregular topography on strong ground motion amplification[J]. Journal of Japan Association for Earthquake Engineering,5(3):1–11. doi: 10.5610/jaee.5.3_1

    Liu Z X,Wang D,Liang J W,Wu C Q. 2018. The fast multi-pole indirect BEM for solving high-frequency seismic wave scattering by three-dimensional superficial irregularities[J]. Eng Anal Boun Elem,90:86–99.

    Peng W F,Wang C L,Chen S T,Lee S T. 2009. Incorporating the effects of topographic amplification and sliding areas in the modeling of earthquake-induced landslide hazards,using the cumulative displacement method[J]. Computers &Geosciences,35(5):946–966.

    Tessmer E D,Kosloff D. 1994. 3-D elastic modeling with surface topography by a Chebychev spectral method[J]. Geophysics,59(3):464–473.

图(21)  /  表(2)
计量
  • 文章访问数:  72
  • HTML全文浏览量:  14
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-14
  • 修回日期:  2024-10-17
  • 录用日期:  2024-10-21
  • 网络出版日期:  2025-01-21

目录

    /

    返回文章
    返回