庐江地热温泉1号井水氡远场强震震后效应及机理分析

方震, 黄显良, 汪小厉, 杨源源, 倪红玉, 张彬

方震, 黄显良, 汪小厉, 杨源源, 倪红玉, 张彬. 2020: 庐江地热温泉1号井水氡远场强震震后效应及机理分析. 地震学报, 42(6): 732-744. DOI: 10.11939/jass20200005
引用本文: 方震, 黄显良, 汪小厉, 杨源源, 倪红玉, 张彬. 2020: 庐江地热温泉1号井水氡远场强震震后效应及机理分析. 地震学报, 42(6): 732-744. DOI: 10.11939/jass20200005
Fang Zhen, Huang Xianliang, Wang Xiaoli, Yang Yuanyuan, Ni Hongyu, Zhang Bin. 2020: The post seismic effect of far-field strong earthquakes of water radon and its mechanism analysis for L01 well of Lujiang geothermal hot spring. Acta Seismologica Sinica, 42(6): 732-744. DOI: 10.11939/jass20200005
Citation: Fang Zhen, Huang Xianliang, Wang Xiaoli, Yang Yuanyuan, Ni Hongyu, Zhang Bin. 2020: The post seismic effect of far-field strong earthquakes of water radon and its mechanism analysis for L01 well of Lujiang geothermal hot spring. Acta Seismologica Sinica, 42(6): 732-744. DOI: 10.11939/jass20200005

庐江地热温泉1号井水氡远场强震震后效应及机理分析

基金项目: 国家自然科学基金(41404036)、地震科技星火计划(XH18021Y,XH19020)和震情跟踪专项(2020010304)共同资助
详细信息
    通讯作者:

    黄显良: e-mail:hxl818@sina.com

  • 中图分类号: P315.72+3

The post seismic effect of far-field strong earthquakes of water radon and its mechanism analysis for L01 well of Lujiang geothermal hot spring

  • 摘要: 庐江地热温泉1号井位于郯庐断裂带上,水氡测项出现远场强震震后效应现象。通过收集郯庐断裂带安徽段沿线9个主要地震观测井、地热温泉井和地表水样品,检测水样的阴阳离子和同位素,对比分析庐江地热温泉井地下水的来源深度,研究其震后效应及机理。结果表明:地热温泉井水化学类型复杂,温泉井L01,L03,L07和SC井的Cl浓度较高、${{\rm{HCO}}_3^ - }$/Cl${{\rm{SO}}_4^{2 - }}$/Cl浓度比值较低,体现出地下热水径流交替作用强烈,L11井有较大比例的冷水混入,L03井有较浅的热源埋深。庐江地热温泉井和舒城井的水样具有明显的壳源特征,L01井和SC井地表出露温度最高、L01井循环深度最深,由Na-K-Mg三角图估算L01井循环深度达12 km,反映出较多的深部构造活动信息。分析认为庐江地热温泉1号井以垂向补给方式为主,具有较深的热源埋深,远场强震的地震波引起较弱的区域构造活动,改变了深部热源的补给量,从而引起水氡上升的同震响应现象。
    Abstract: The Lujiang geothermal hot spring well No.1 is located on the Tanlu fault zone, where hydro-radon response to teleseism were observed. Nine geochemistry samples from the observation wells, geothermal hot spring wells and surface water along Anhui section of Tanlu fault zone were collected. The potential triggering mechanism was studied by analyzing the anion and isotope contents, as well as the source depth of the retrieved samples. The results show that the hydrochemical type is complex. The concentrations of Cl within L01, L03, L07 and SC wells are high, whereas the concentration ratios of ${\rm{HCO}}_3^ -$/ Cl and ${\rm{SO}}_4^{2 - }$/Cl are low, implying a strong interaction between the surface water and underground hot water, The L11 well has a large proportion of mixed cold water, and the depth of a heat source is low for L03. Water samples from Lujiang and Shucheng hot spring wells might come from crust, having moreinformation of deep tectonic activities, since the L01 and SC have the highest surface temperature and circulation depth of L01 is the deepest. The estimated depth is 12 km by calculating the Na-K-Mg concentrations. In addition, the results indicate that Lujiang geothermal hot spring well No.1 is dominated by vertical recharge and has a deeper heat source. Seismic waves could have caused weak regional tectonic activities, which change the supply of deep heat source, and cause the high hydro-radon concentrations observed.
  • 图  1   庐江地震台1号地热温泉井水氡曲线图

    Figure  1.   Radon change of L01 geothermal hot spring well in Lujiang seismic station

    图  2   庐江地震台1号地热温泉井远场强震辅助测项变化曲线图

    Figure  2.   Auxiliary test item change for far field strong earthquakes of L01 geothermal hot spring well in Lujiang seismic station

    图  3   断裂、温泉采样点及对应的地震分布图

    F1:嘉山—庐江断裂;F2:池河—太湖断裂;F3:朱顶—石门山断裂;F4:五河—合肥断裂

    Figure  3.   Locations of faults,sampling sites and earthquakes that caused hydrological changes

    F1:Jiashan-Lujiang fault;F2:Chihe-Taihu fault;F3:Zhuding-Shimenshan fault;F4:Wuhe-Hefei fault

    图  4   主要离子的派珀三线图

    Figure  4.   Piper graph of major ions

    图  5   水样中氯离子与钠离子浓度、离子比例及SiO2浓度的变化关系

    Figure  5.   Plots of sodium concentration,ion ratios,silicon dioxide versuschloridion concentration in these water samples

    图  6   水样的氢氧稳定同位素与大气降水线的关系图

    Figure  6.   Relationship between hydrogen and oxygen isotopes in water samples and meteoric water line

    图  7   水样的氦同位素测值

    Figure  7.   Helium isotope of water sample

    图  8   水样的3He/4He和4He/20Ne比值图

    Figure  8.   3He/4He and 4He/20Ne ratios of water sample

    图  9   水样Na-K-Mg三角图

    Figure  9.   Na-K-Mg triangular diagram of the water samples

    表  1   庐江地震台1号地热温泉井水氡远场强震异常及对应地震

    Table  1   Radon abnormal changes triggered by teleseism for the L01 geothermal hot spring well within Lujiang seismic station and its corresponding earthquakes

    远场强震异常
    类型
    异常
    幅度
    异常滞后
    时间/d
    震中距/km其它测项异常持续
    时间/d
    对应地震时间间
    隔/d
    发震日期地点MS发震日期发震
    地点
    MS
    1999−09−21集集7.6上升16%0 879水位上升
    水温下降
    3671999−12−30利辛4.1100
    2004−12−26印尼8.7上升38%1839001852005−11−26九江5.7325
    2008−05−12汶川8.0上升25%81233水位上升
    水温下降
    1352009−04−06肥东3.5329
    2011−03−11日本9.0上升24%02473水位上升
    水温下降
    2452011−06−17桐城3.7 98
    下载: 导出CSV

    表  2   水样测试结果

    Table  2   Test results of water samples

    样品名编号PHρ/(mg·L−1水化学类型
    TDSK+Na+Ca2+Mg2+Fe3+ClSO42−HCO3NO3SiO2
    1号井 L01 7.00 1078.60 69.23 277.22 24.42 0.12 0.01 52.23 570.90 95.14 8.4 55.65 Na-SO4
    3号井 L03 7.10 545.40 3.35 153.25 22.83 0.15 0.10 57.48 213.50 107.61 4.8 24.75 Na-SO4-HCO3-Cl
    7号井 L07 7.00 994.25 17.51 288.83 20.38 0.29 0.05 50.49 215.40 107.55 8.2 47.94 Na-SO4
    11号井 L11 7.20 300.15 2.42 93.22 5.62 0.07 0.12 17.96 81.03 129.13 6.0 20.72 Na-HCO3-SO4
    庐江水库 LR 9.49 1.16 9.48 14.96 2.56 6.15 27.05 36.61 17.80 Ca-Na-HCO3-SO4
    舒城站 SC 7.00 1398.40 21.06 319.26 100.60 0.21 0.03 51.49 931.30 37.23 7.45 58.71 Na-Ca-SO4
    巢湖井 CH 11.58 32.81 585.25 5.03 6.03 1457.77 Ca-SO4
    五河井 WH 7.87 0.82 52.81 45.32 18.24 17.97 45.36 395.39 0.08 Na-Ca-Mg-HCO3
    女山井 NS 8.18 2.77 89.91 12.73 10.83 17.80 2.57 292.88 0.77 Na-HCO3
    注:“—”表示低于检测限,ρ表示物质的浓度。
    下载: 导出CSV

    表  3   样品同位素测试结果

    Table  3   Isotope test results of water samples

    样品名编号δDδ18O3He/4HeHe/10−64He/20Ne
    1号井 L01 −64.122 6‰ −10.046 6‰ 2.03×10−7 5333.3 123.39
    3号井 L03 −60.521 3‰ −9.210 6‰ 2.06×10−7 554.0 18.16
    7号井 L07 −60.486 0‰ −9.163 3‰
    11号井 L11 −62.305 4‰ −9.768 2‰ 1.60×10−7 841.5 46.18
    庐江水库 LR −34.043 3‰ −6.371 5‰
    舒城站 SC −62.986 7‰ −9.821 5‰ 5.85×10−7 1867.8 107.29
    巢湖井 CH −57.945 3‰ −8.591 0‰ 1.70×10−6 45.0 2.66
    五河井 WH −45.847 5‰ −6.832 3‰ 4.09×10−7 17.4 1.06
    女山井 NS −49.814 2‰ −7.322 2‰
    注:“−”表示未检测,氦含量指在气体中的体积比。
    下载: 导出CSV
  • 车用太,鱼金子,刘五洲. 1997. 水氡异常的水动力学机制[J]. 地震地质,19(4):353–357.

    Che Y T,Yu J Z,Liu W Z. 1997. The hydrodynamic mechanism of water radon anomaly[J]. Seismology and Geology,19(4):353–357 (in Chinese).

    陈大庆,刘耀炜,杨选辉,刘永铭. 2007. 远场大震的水位、水温同震响应及其机理研究[J]. 地震地质,29(1):122–132. doi: 10.3969/j.issn.0253-4967.2007.01.011

    Chen D Q,Liu Y W,Yang X H,Liu Y M. 2007. Co-seismic water level,temperature responses of some wells to far-field strong earthquakes and their mechanisms[J]. Seismology and Geology,29(1):122–132 (in Chinese).

    方震,孙盼盼,李军辉,李玲利,汪丹丹,王远. 2015. 2012年10月后皖27井水位下降成因分析[J]. 地震,36(2):85–93.

    Fang Z,Sun P P,Li J H,Li L L,Wang D D,Wang Y. 2015. Cause of groundwater level decreases in Wan-27 well since October 2012[J]. Earthquake,36(2):85–93 (in Chinese).

    高维明,郑朗荪. 1991. 郯庐断裂带的活断层分段与潜在震源区的划分[J]. 中国地震,7(1):87–91.

    Gao W M,Zheng L S. 1991. Active fault segmentation and the identification of potential seismic zones along the Tanlu fault[J]. Earthquake Research in China,7(1):87–91 (in Chinese).

    蒋海昆,杨马陵,孙学军,吕坚,闫春恒,吴琼,宋金,赵勇,黄国华,张华,姚红,牟建英,李金,曲均浩. 2011. 暴雨触发局部地震活动的一个典型例子:2010年6月广西凌云—凤山交界3级震群活动[J]. 地球物理学报,54(10):2606–2619. doi: 10.3969/j.issn.0001-5733.2011.10.018

    Jiang H K,Yang M L,Sun X J,Lü J,Yan C H,Wu Q,Song J,Zhao Y,Huang G H,Zhang H,Yao H,Mu J Y,Li J,Qu J H. 2011. A typical example of locally triggered seismicity in the boundary area of Lingyun and Fengshan following the large rainfall event of June 2010[J]. Chinese Journal of Geophysics,54(10):2606–2619 (in Chinese).

    李学礼, 孙占学, 刘金辉. 2010. 水文地球化学[M].第3版. 北京: 原子能出版社: 94–97.

    Li X L, Sun Z X, Liu J H. 2010. Hydrogeochemistry[M]. 3th Edition. Beijing: Atomic Energy Press: 94–97 (in Chinese).

    刘耀炜, 杨选辉, 刘永铭, 马玉川, 滕荣荣. 2005. 2004年印度尼西亚苏门答腊8.7级大地震及其对中国大陆地区的影响[M]. 北京: 地震出版社: 131–258.

    Liu Y W, Yang X H, Liu Y M, Ma Y C, Teng R R. 2005. The Indonesia Sumatra Earthquake with Magnitude 8.7 and Its Effect in Chinas Mainland [M]. Beijing: Seismological Press: 131–258 (in Chinese).

    刘耀炜,任宏微,张磊,付虹,孙小龙,何德强,余怀忠,周志华,张国盟. 2015. 鲁甸6.5级地震地下流体典型异常与前兆机理分析[J]. 地震地质,37(1):307–318. doi: 10.3969/j.issn.0253-4967.2015.01.024

    Liu Y W,Ren H W,Zhang L,Fu H,Sun X L,He D Q,Yu H Z,Zhou Z H,Zhang G M. 2015. Underground fluid anomalies and the precursor mechanisms of the Ludian MS6.5 earthquake[J]. Seismology and Geology,37(1):307–318 (in Chinese).

    刘颖超,刘凯,孙颖,刘久荣,刘宗明. 2015. 北京市地热水地球化学特征[J]. 南水北调与水利科技,13(2):324–329.

    Liu Y C,Liu K,Sun Y,Liu J R,Liu Z M. 2015. Geochemical characteristics of geothermal water in Beijing[J]. South-to-North Water Transfers and Water Science &Technology,13(2):324–329 (in Chinese).

    龙政强,孙学军,姚宏,刘双庆,谢夜玉,韦旭鸿. 2014. 有流体参与作用下的震源参数特征:以广西凌云凤山震群、龙滩库区地震为例[J]. 华北地震科学,32(4):10–16. doi: 10.3969/j.issn.1003-1375.2014.04.003

    Long Z Q,Sun X J,Yao H,Liu S Q,Xie Y Y,Wei X H. 2014. Characteristics seismic source parameters under the influence of fluid:Taking Guangxi Lingyun Fengshan earthquake swarm,Longtan reservoir earthquakes as examples[J]. North China Earthquake Science,32(4):10–16 (in Chinese).

    石耀霖,曹建玲,马丽,尹宝军. 2007. 唐山井水温的同震变化及其物理解释[J]. 地震学报,29(5):265–273.

    Shi Y L,Cao J L,Ma L,Yin B J. 2007. Tele-seismic coseismic well temperature changes and their interpretation[J]. Acta Seismologica Sinica,29(5):265–273 (in Chinese).

    苏鹤军,张慧,史杰. 2010. 祁连山断裂带中东段地下水地球化学特征研究[J]. 西北地震学报,32(2):122–128.

    Su H J,Zhang H,Shi J. 2010. Research on the hydrogeochemical characteristics of groundwater in the mid-eastern segment of Qilianshan faults zone[J]. Northwestern Seismological Journal,32(2):122–128 (in Chinese).

    宋传中,王国强,朱光,欧林果. 1998. 郯庐断裂带桐城—庐江段的构造特征及演化[J]. 安徽地质,8(4):37–40.

    Song C Z,Wang G Q,Zhu G,Ou L G. 1998. The evolution and structural characteristics of Tongcheng-Lujiang section of Tanlu fault zone[J]. Geology of Anhui,8(4):37–40 (in Chinese).

    孙红丽,马峰,蔺文静,刘昭,王贵玲,男达瓦. 2015. 西藏高温地热田地球化学特征及地热温标应用[J]. 地质科技情报,34(3):171–177.

    Sun H L,Ma F,Lin W J,Liu Z,Wang G L,Nan D W. 2015. Geochemical characteristics and geothermometer application in high temperature geothermal field in Tibet[J]. Geological Science and Technology Information,34(3):171–177 (in Chinese).

    孙小龙,刘耀炜. 2008. 塔院井水位和水温的同震响应特征及其机理探讨[J]. 中国地震,24(2):105–115. doi: 10.3969/j.issn.1001-4683.2008.02.002

    Sun X L,Liu Y W. 2008. Characteristics and mechanism of co-seismic responses in the Tayuan well[J]. Earthquake Research in China,24(2):105–115 (in Chinese).

    孙小龙,王广才,邵志刚,司学芸. 2016. 海原断裂带土壤气与地下水地球化学特征研究[J]. 地学前缘,23(3):140–150.

    Sun X L,Wang G C,Shao Z G,Si X Y. 2016. Geochemical characteristics of emergent gas and groundwater in Haiyuan fault zone[J]. Earth Science Frontiers,23(3):140–150 (in Chinese).

    陶月潮, 张军, 孙盼盼, 汪世仙, 陶媛. 2010. 安徽水氡震后效应及机理分析[C]//中国地球物理学会第二十六届年会暨中国地震学会第十三次学术大会. 北京: 中国学术期刊电子出版社: 152.

    Tao Y C, Zhang J, Sun P P, Wang S X, Tao Y. 2020. The mechanism analysis and reflecting after earthquake of radon in Anhui[C]//The 26th Annual Meeting of Chinese Geophysical Society and the 13th Academic Conference of Seismological Society of China. Beijing: China Academic Journal Electronic Publishing House: 152 (in Chinese).

    王涛,张洁茹,刘笑,姚龙. 2013. 南京大气降水氧同位素变化及水汽来源分析[J]. 水文,33(4):25–31. doi: 10.3969/j.issn.1000-0852.2013.04.005

    Wang T,Zhang J R,Liu X,Yao L. 2013. Variations of stable isotopes in precipitation and water vapor sources in Nanjing area[J]. Journal of China Hydrology,33(4):25–31 (in Chinese).

    向阳,孙小龙,杨朋涛. 2017. 新疆阿克陶MS6.7地震引起的新10井水位同震响应研究[J]. 地震学报,39(6):899–909.

    Xiang Y,Sun X L,Yang P T. 2017. Coseismic response of water level in Xin 10 well caused by MS6.7 Akto,Xinjiang,earthquake[J]. Acta Seismologica Sinica,39(6):899–909 (in Chinese).

    鱼金子,车用太,刘五洲. 1997. 井水温度微动态形成的水动力学机制研究[J]. 地震,17(4):389–396.

    Yu J Z,Che Y T,Liu W Z. 1997. Preliminary study on hydrodynamic mechanism of microbehavior of water temperature in well[J]. Earthquake,17(4):389–396 (in Chinese).

    朱光,王道轩,刘国生,宋传中,徐嘉炜,牛漫兰. 2001. 郯庐断裂带的伸展活动及其动力学背景[J]. 地质科学,36(3):269–278. doi: 10.3321/j.issn:0563-5020.2001.03.002

    Zhu G,Wang D X,Liu G S,Song C Z,Xu J W,Niu M L. 2001. Extensional activities along the Tan-lu fault zone and its geodynamics setting[J]. Chinese Journal of Geology,36(3):269–278 (in Chinese).

    张磊,刘耀炜,孙小龙,方震. 2014. 基于水化学和物理方法的井水位异常分析[J]. 地震地质,36(2):513–522. doi: 10.3969/j.issn.0253-4967.2014.02.019

    Zhang L,Liu Y W,Sun X L,Fang Z. 2014. A study of water level anomalies using hydrochemical and physical methods[J]. Seismology and Geology,36(2):513–522.

    张磊,刘耀炜,任宏微,郭丽爽. 2016. 氢氧稳定同位素在地下水异常核实中的应用[J]. 地震地质,38(3):721–731. doi: 10.3969/j.issn.0253-4967.2016.03.017

    Zhang L,Liu Y W,Ren H W,Guo L S. 2016. Application of stable oxygen and hydrogen isotopes to the verification of groundwater anomalies[J]. Seismology and Geology,38(3):721–731 (in Chinese).

    赵利飞,尹京苑,韩风银. 2002. 应力调整改变介质渗透性对水位的影响[J]. 地震,22(1):55–60. doi: 10.3969/j.issn.1000-3274.2002.01.009

    Zhao L F,Yin J Y,Han F Y. 2002. Influence of change in osmosis due to stress field adjustment on water level[J]. Earthquake,22(1):55–60 (in Chinese).

    Arnórsson S,Andrésdóttir A. 1995. Proesses controlling the distribution of boron and chlorine in Natural waters in Iceland[J]. Geochim Cosmochim Acta,59(20):4125–4146. doi: 10.1016/0016-7037(95)00278-8

    Ballentine C J,O’Nions R K. 1992. The nature of mantle neon contributions to vienna basin hydrocarbon reservoirs[J]. Earth Planet Sci Lett,113(92):553–567.

    Chen Z,Zhou X C,Du J G,Xie C Y. 2015. Hydrochemical characteristics of hot spring waters in the Kangding district related to the Lushan MS=7.0 earthquake in Sichuan,China[J]. Natural Hazard Earth Sys,15(6):1149–4456. doi: 10.5194/nhess-15-1149-2015

    Claesson L,Skelton A,Graham C M,Dietl C. 2004. Hydrogeochemical changes before and after a major earthquake[J]. Geology,32(8):641–644. doi: 10.1130/G20542.1

    Claesson L,Skelton A,Graham C,Mörth C M. 2007. The timescale and mechanisms of fault sealing and water-rock interaction after an earthquake[J]. Geofluids,7(4):427–440. doi: 10.1111/j.1468-8123.2007.00197.x

    Craig H. 1961. Isotopic variations in meteoric water[J]. Science,133(3465):1702–1703. doi: 10.1126/science.133.3465.1702

    Giggenbach W F. 1988. Geothermal solute equilibria:Derivation of Na-K-Mg-Ca geoindicators[J]. Geochim Cosmochim Ac,52(12):2749–2765. doi: 10.1016/0016-7037(88)90143-3

    Ma Y C,Wang G C,Tao Y C. 2018. Hydrological changes induced by distant earthquakes at the Lujiang well in Anhui,China[J]. Pure Appl Geophys,175:2459–2474. doi: 10.1007/s00024-017-1710-z

    Manga M,Beresnev I,Brodsky E E,Elkhoury J. 2012. Changes in permeability caused by transient stresses:Field observations,experiments,and mechanisms[J]. Rev Geophys,50(2):RG2004. doi: 10.1029/2011RG000382

    Nishizawa S,Igarashi G,Sano Y,Shoto E,Tasaka S,Sasaki Y. 1998. Radon,Cl and SO${}_4^{2 - } $ anomalies in hot spring water associated with the 1995 earthquake swarm off the east coast of the Izu Peninsula,central Japan[J]. Appl Geochem,13(1):89–94. doi: 10.1016/S0883-2927(97)00058-9

    Piper A M. 1944. A graphic procedure in the geochemical interpretation of water analysis[J]. Eos Trans Am Geophys Un,25:914–923.

    Ren H W,Liu Y W,Yang D X. 2012. A Preliminary study of post-seismic effects of radon following the MS8.0 Wenchuan earthquake[J]. Radiat Meas,47(1):82–88. doi: 10.1016/j.radmeas.2011.10.005

    Sun X L,Wang G C,Yang X H. 2015. Coseismic response of water level in Changping well,China,to the MW9.0 Tohoku earthquake[J]. J Hydrol,531(3):1028–1039.

    Thomas D. 1988. Geochemical precursors to seismic activity[J]. Pure Appl Geophys,126(1-2):241–266.

    Weingarten M,Ge S M. 2014. Insights into water level response to seismic waves:A 24 year high-fidelity record of global seismicity at Devils Holes[J]. Geophy Res Lett,41:74–80. doi: 10.1002/2013GL058418

    Woith H,Wang R,Maiwald U,Pekdeger A,Zschau J. 2013. On the origin of geochemical anomalies in groundwaters induced by the Adana 1998 earthquake[J]. Chem Geol,339:177–186. doi: 10.1016/j.chemgeo.2012.10.012

  • 期刊类型引用(8)

    1. 田优平,沈平,万永革,唐红亮,康承旭,姚海东,佘旭明,叶世山. 湖南地区应力场定量结果及置信区间分析. 地震研究. 2023(04): 483-490 . 百度学术
    2. Xiaobin Li,Mingpei Jin,Ya Huang,Wenjian Cha,Jun Wang,Sihai Li. Temporal evolution of the focal mechanism consistency of the 2021 Yangbi M_S6.4 earthquake sequence in Yunnan. Earthquake Research Advances. 2022(02): 11-20 . 必应学术
    3. 田优平,唐红亮,康承旭,万永革,黄骥超,姚海东,佘旭明. 综合震源机制解法反演湖南地区构造应力场的初步结果. 地球物理学报. 2020(11): 4080-4096 . 百度学术
    4. 何永锋,李锴,曾乐贵,姚国政,赵克常,张献兵,刘炳灿. 利用全元素矩张量反演方法识别地下核爆炸. 爆炸与冲击. 2018(05): 985-992 . 百度学术
    5. 何永锋,李锴,刘炳灿,姚国政,赵克常,张献兵,曾乐贵. 基于面波数据的地下核爆炸的全元素矩张量反演方法. 爆炸与冲击. 2017(05): 945-950 . 百度学术
    6. 王志铄,王明亮,赵显刚,万娜,马兴全,于浩雨. 太康隆起南缘新郑-太康断裂的新生代活动形迹与地震活动. 地震地质. 2017(01): 117-129 . 百度学术
    7. 孙杰,胡凤英,杨龙翔,阎楷,李源. 2010年10月24日周口太康M_s4.6地震的震源机制解. 地震地磁观测与研究. 2014(Z2): 8-14 . 百度学术
    8. 郑建常,王鹏,林眉,穆娟,徐长朋,李冬梅. 区域全波形反演美国三次中强地震的震源矩张量. 地球物理学进展. 2013(06): 2825-2837 . 百度学术

    其他类型引用(1)

图(9)  /  表(3)
计量
  • 文章访问数:  1762
  • HTML全文浏览量:  808
  • PDF下载量:  97
  • 被引次数: 9
出版历程
  • 收稿日期:  2020-02-03
  • 修回日期:  2020-04-19
  • 网络出版日期:  2020-08-26
  • 发布日期:  2020-11-14

目录

    /

    返回文章
    返回