Mechanisms of water-heat dynamics and earth-heat dynamics of well water temperature micro-behavior
-
摘要: 以井-含水层热系统分析为基础, 结合井水温度(水温)动态观测到的实际结果, 提出了水温微动态形成的两类基本机制, 即水热动力学机制与地热动力学机制. 水热动力学机制指井水温度的动态是由于水流动产生的热对流引起的变化; 地热动力学机制指井区岩土中大地热流作用或热传导引起的井水温度变化. 结果表明, 多数同震响应是水热动力学机制下生成的水温微动态; 水温的震后效应或变化则多是热传导或深部热流变化引起的, 属于地热动力学机制下生成的水温微动态. 少数水温微动态特征较为复杂, 多是源于井-含水层系统中包含有多个水文地质特征差异明显的含水层, 尚不能简单地用水热或地热动力学机制予以解释.Abstract: On the basis of analysis on heat system of well-aquifer, combining with practical observation results of well water temperature behaviors, two mechanisms of water-heat dynamics and earth-heat dynamics of well water temperature micro-behavior are presented. The mechanism of water-heat dynamics is that the well water temperature micro-behavior originates from heat transport related to moving of water flow. The mechanism of earth-heat dynamics is that the well water temperature micro-behavior originates from heat flow or heat transfer in the earth. Results show that most coseismic responses of water temperature in a well are micro-behaviors produced under water-heat dynamics mechanism, whereas post-seismic effects or changes of water temperature in a well are micro-behaviors caused by heat conduction or change of deep heat flow, and belong to earth-heat dynamics mechanism. The characteristics of a few micro-behaviors of water temperature in a well are more complicated, which is due to existence of multilayer aquifers in a well-aquifer system. And the hydrogeological characteristics of these aquifers are more obviously different, which cannot be yet explained under the mechanisms of water-heat or earth-heat dynamics.
-
-
图 4 井水位与水温同震响应组合关系多样性的水热动力学机制解释
虚线为井水温度的原梯度线; 实线为同震响应后井水位变化引起的水温梯度线变化(a) 井水位振荡时,井筒上半部水温上升,下半部水温下降; (b) 水温梯度值为正时,井水位上升,井水温上升; (c)水温梯度值为正时,井水位下降,井水温下降;(d) 水温梯度值为负时,井水位上升,井水温下降; (e)水温梯度值为负时,井水位下降, 井水温上升
Figure 4. Explanation of several combination relations of coseismic response of water level and water temperature by using water-heat dynamic mechanism where dashed line denotes original gradient of water temperature,solid line denotes the gradient of water temperature resulted from change in water level after coseismic response
(a) If water level oscillates,water temperature rises in upper half of a well and drops in lower half of the well; (b) If the gradient of water temperature in a well is positive,water level rises, water temperature also rises; (c) If the gradient of water temperature in a well is positive,water level drops,water temperature also drops; (d) If the gradient of water temperature in a well is negative,water level rises,water temperature drops; (e) If the gradient of water temperature in a well is negative,while water level drops,water temperature rises
图 5 汶川MS8.0地震的3个典型的水温同震响应及震后效应记录图
(a) 同震下降-震后恢复型; (b) 同震上升-震后高值型; (c) 同震下降-震后低值型
Figure 5. Three recordings of typical coseismic response to the Wenchuan MS8.0 earthquake and post-seismic change of water temperature in some wells
(a) Coseismic response drops,post-seismic effect is resumable (Mengyin well,Shandong Province);(b) Coseismic response rises,post-seismic effect keeps on a high value (Nanxi well,Sichuan Province); (c) Coseismic response drops,post-seismic effect keeps on a lower value (Zhouzhi well,Shanxi Province)
表 1 水热动力学机制下井水温度变化特征
Table 1 Characteristics of water temperature variation in a well under water-heat dynamics mechanism
含水层内的变化 井-含水层间水流运动 井筒内水流
运动方向井水位
变化井水温变化 正梯度 负梯度 地下水补排
关系变化补给量增多或排泄量减小
排泄量增多或补给量减少含水层地下水→井水
井水→含水层地下水向上
向下上升
下降上升
下降下降
上升变形破坏与孔
隙压力变化被压缩使孔压增大
被拉张或破裂使孔压减小含水层地下水→井水
井水→含水层地下水向上
向下上升
下降上升
下降下降
上升表 2 塔院井6个深度上水温潮汐基本特征比较
Table 2 Basic features of water temperature tide at six depths of the well Tayuan
观测深度/m 日潮差/℃ 观测日期 月相 公历 农历 48 0 2008-04-04—08 二月廿八至三月初三 朔 85 0 2008-08-12—16 七月十二至十六 望 130 0.0005 2008-01-11—15 十二月初四至初八 上弦 178 0.0007 2007-12-21—25 十一月十二至十六 望 184 0.0035 2008-11-12—16 十月十五至十九 望 187 0.0020 2008-11-26—30 十月廿九至十一月初三 朔 表 3 汶川MS8.0地震水温与水位同震响应的组合类型
Table 3 Combination types of coseismic response of water temperature and water level of Wenchuan MS8.0 earthquake
响应形态 井数 井数百分比 组合类型 水位 水温 A 振荡 下降 19 19.6% B 振荡 上升 10 10.3% C 上升 上升 23 23.7% D 上升 下降 17 17.5% E 下降 下降 18 18.6% F 下降 上升 10 10.3% 表 4 常见岩石的导热系数
Table 4 Heat conductivity of common rocks
岩浆岩导热系数/(×4.23 mW·m-1·K-1) 变质岩导热系数/(×4.23 mW·m-1·K-1) 花岗岩 闪长岩 安山岩 玄武岩 石英岩 大理岩 千枚岩 页岩 2.09—3.10 1.85—2.10 1.10 1.87 1.60—4.80 2.60—3.20 1.94—2.66 2.16 沉积岩导热系数/(×4.23 mW·m-1·K-1) 砂岩 砾岩 石灰岩 白云岩 凝灰岩 1.1—2.6 1.8 1.88 0.94—4.3 0.61—1.37 表 5 川03井3个不同深度水温的汶川地震同震响应与震后效应特征比较
Table 5 Characteristics of coseismic response to Wenchuan MS8.0 earthquake and post-seismic change of water temperature at three depths of the well Chuan03
传感器置深/m 同震响应 震后效应 说明 形态 幅度/(10-2 ℃) 形态 持续时间/d 395 振荡 1.96 缓降 >3.5 水温持续下降,水位持续上升 595 急升 2.36 缓降—转平 1.5 水温在高值上稳定 765 缓升 0.76 缓升 >3.5 水温持续上升 表 6 川03井3个不同深度水温的潮汐效应特征比较
Table 6 Tide response of water temperature at three depths of the well Chuan3
传感器置深/m 形态显示 日潮差/(10-2 ℃) 水位潮汐关系 395 很明显 2.64 相位一致,关系密切 595 较明显 0.83 相位基本一致,有关系 765 不明显 ? 关系不明显 -
车用太, 刘成龙, 鱼金子. 2008. 井水温度微动态及其形成机制[J]. 地震, 28 (4): 20-28 Che Y T, Liu C L, Yu J Z. 2008. Micro-behavior of well temperature and its mechanism[J]. Earthquake, 28 (4): 20-28 (in Chinese)
陈大庆, 刘耀炜, 杨选辉, 刘永铭. 2007. 远场大震的水位、 水温同震响应及其机理研究[J]. 地震地质, 29 (1): 122-130. Chen D Q, Liu Y W, Yang X H, Liu Y M. 2007. Co-seismic water level, temperature responses of some wells to far-field strong earthquakes and their mechanisms[J]. Seismology and Geology, 29 (1): 122-130 (in Chinese)
程建, 王多义, 李得力, 庞河清, 王帅成, 李军. 2010. 汶川大地震"远端效应"[J]. 成都理工大学学报: 自然科学版, 37 (2): 155-159 Cheng J, Wang D Y, Li D L, Pang H Q, Wang S C, Li J. 2010. Research on the "endpoint effect": On the geothermal anomaly in Longquanyi, Chengdu, China[J]. Journal of Chengdu University of Technology: Science & Technology Edition, 37 (2): 155-159 (in Chinese)
付子忠. 1988. 地热动态观测与地热前兆[G]//地质构造与地壳应力(1). 北京: 地震出版社: 1-8. Fu Z Z. 1988. The observation and earth-thermal precursor[G]//Thesis on Geological Tectonic and Stress in Earth Crust (1). Beijing: Seismological Press: 1-8 (in Chinese).
高文学, 蒋凤亮, 高庆华, 张业成, 朱克文. 2000. 地球化学异常[M]. 北京: 地震出版社: 163-174. Gao W X, Jiang F L, Gao Q H, Zhang Y C, Zhu K W. 2000. The Anomalies of Geochemistry[M]. Beijing: Seismological Press: 163-174 (in Chinese).
李美, 康春丽, 李志雄, 荆风, 薛艳, 闫伟. 2010. 汶川MS8.0地震前地表潜热通量异常[J]. 地震, 30 (3): 64-71 Li M, Kang C L, Li Z X, Jing F, Xue Y, Yan W. 2010. Abnormal surface latent heat flux prior to the Wenchuan MS8.0 earthquake[J]. Earthquake, 30 (3): 64-71 (in Chinese)
刘耀炜. 2009. 动力加载作用与地下水物理动态过程研究[D]. 北京: 中国地质大学(北京): 68-73 Liu Y W. 2009. Dynamic Loading and Physical Dynamics Process of Groundwater[D]. Beijing: China University of Geosciences (Beijing): 68-73 (in Chinese)
马玉川. 2010. 井水温度潮汐效应及其应变响应能力研究[D]. 北京: 中国地震局地壳应力研究所: 26-28. Ma Y C. 2010. Tidally Induced Water Temperature Changes in Boreholes[D]. Beijing: Institute of Crustal Dynamics, China Earthquake Administration: 26-28 (in Chinese).
任雅琼, 陈顺云, 马瑾. 2012. 依兰-伊通断裂带地表温度变化分析[J]. 地震学报, 34 (5): 698-705 Ren Y Q, Chen S Y, Ma J. 2012. Variation of land surface temperature in Yilan-Yitong fault zone of northeastern China[J]. Acta Seismologica Sinica, 34 (5): 698-705 (in Chinese)
石耀霖, 曹建玲, 马丽, 尹宝军. 2007. 唐山井水温的同震变化及其物理解释[J]. 地震学报, 29 (3): 265-273 Shi Y L, Cao J L, Ma L, Yin B J. 2007. Tele-seismic coseismic well temperature changes and their interpretation[J]. Acta Seismologica Sinica, 29 (3): 265-273 (in Chinese)
史浙明, 王广才, 刘成龙, 梅建昌, 王金维, 方慧娜. 2013. 三峡井网地下水位的同震响应及其含水层参数关系[J]. 科学通报, 58 (25): 3080-3087. Shi Z M, Wang G C, Liu C L, Mei J C, Wang J W, Fang H N. 2013. Co-seismic response of groundwater level in the Three Gorges well network and its relationship to aquifer parameters[J]. Chinese Sci Bull, 58 (25): 3080-3087 (in Chinese).
王成喜, 邓斌, 朱利东. 2009. 四川省青川县东河口地震遗址公园发现温泉及天然气溢出[J]. 地质通报, 28 (7): 991-994. Wang C X, Deng B, Zhu L D. 2009. Discovery of hot spring and nature gas exposure spots in Donghekou, Qingchuan County, Sichuan Province, China[J]. Geological Bulletin of China, 28 (7): 991-994 (in Chinese)
杨竹转. 2011. 地震引起的井水位水温变化及其机理研究[D]. 北京: 中国地震局地质研究所: 70-73 Yang Z Z. 2011. Variations of Well Water Level and Temperature Caused by Earthquakes and Their Generating Mechanism[D]. Beijing: Institute of Geology, China Earthquake Administration: 70-73 (in Chinese)
尹宝军. 2010. 唐山井地下水动态特征的研究[D]. 北京: 中国地震局地球物理研究所: 145-150 Yin B J. 2010. Study on the Fluctuant Characteristics of Underground Water at Tangshan Well[D]. Beijing: Institute of Geophysics, China Earthquake Administration: 145-150 (in Chinese)
鱼金子, 车用太, 刘五洲. 1997. 井水温度微动态形成的水动力学机制研究[J]. 地震, 17 (4): 389-395 Yu J Z, Che Y T, Liu W Z. 1997. Preliminary study on hydrodynamic mechanism of microbehavior of water temperature in well[J]. Earthquake, 17 (4): 389-395 (in Chinese)
鱼金子, 车用太, 刘成龙, 李万明. 2012. 金沙江水网对日本9.0级地震的同震响应及其特征与机制[J]. 地震, 32 (1): 59-69 Yu J Z, Che Y T, Liu C L, Li W M. 2012. Co-seismic responses of water level and temperature in well of the Jinshajiang groundwater observation network to Japan MS9.0 earthquake: Characteristics and mechanism[J]. Earthquake, 32 (1): 59-69 (in Chinese)
张永仙, 石耀霖, 张国民. 1991. 流量与水温关系的模型研究及地震水温前兆机制的探讨[J]. 中国地震, 7 (3): 88-94 Zhang Y X, Shi Y L, Zhang G M. 1991. Model studies on relationship between underflow and its temperature and discussions about mechanism of groundwater temperature precursor[J]. Earthquake Research in China, 7 (3): 88-94 (in Chinese)
张元生, 郭晓, 钟美娇, 沈文荣, 李稳, 何斌. 2010. 汶川地震卫星热红外亮温异常[J]. 科学通报, 55 (10): 904-910 Zhang Y S, Guo X, Zhong M J, Shen W R, Li W, He B. 2010. Wenchuan earthquake: Brightness change from satellite infrared information[J]. Chinese Sci Bull, 55 (10): 904-910 (in Chinese)