水温微动态形成的水热动力学 与地热动力学机制

车用太, 何案华, 鱼金子

车用太, 何案华, 鱼金子. 2014: 水温微动态形成的水热动力学 与地热动力学机制. 地震学报, 36(1): 106-117. DOI: 10.3969/j.issn.0253-3782.2014.01.009.
引用本文: 车用太, 何案华, 鱼金子. 2014: 水温微动态形成的水热动力学 与地热动力学机制. 地震学报, 36(1): 106-117. DOI: 10.3969/j.issn.0253-3782.2014.01.009.
Che Yongtai, He Anhua, Yu Jinzi. 2014: Mechanisms of water-heat dynamics and earth-heat dynamics of well water temperature micro-behavior. Acta Seismologica Sinica, 36(1): 106-117. DOI: 10.3969/j.issn.0253-3782.2014.01.009.
Citation: Che Yongtai, He Anhua, Yu Jinzi. 2014: Mechanisms of water-heat dynamics and earth-heat dynamics of well water temperature micro-behavior. Acta Seismologica Sinica, 36(1): 106-117. DOI: 10.3969/j.issn.0253-3782.2014.01.009.

水温微动态形成的水热动力学 与地热动力学机制

基金项目: 国家自然科学基金(41104051)资助.
详细信息
    通讯作者:

    车用太, e-mail: che@ies.ac.cn

  • 中图分类号: P315.72+3

Mechanisms of water-heat dynamics and earth-heat dynamics of well water temperature micro-behavior

  • 摘要: 以井-含水层热系统分析为基础, 结合井水温度(水温)动态观测到的实际结果, 提出了水温微动态形成的两类基本机制, 即水热动力学机制与地热动力学机制. 水热动力学机制指井水温度的动态是由于水流动产生的热对流引起的变化; 地热动力学机制指井区岩土中大地热流作用或热传导引起的井水温度变化. 结果表明, 多数同震响应是水热动力学机制下生成的水温微动态; 水温的震后效应或变化则多是热传导或深部热流变化引起的, 属于地热动力学机制下生成的水温微动态. 少数水温微动态特征较为复杂, 多是源于井-含水层系统中包含有多个水文地质特征差异明显的含水层, 尚不能简单地用水热或地热动力学机制予以解释.
    Abstract: On the basis of analysis on heat system of well-aquifer, combining with practical observation results of well water temperature behaviors, two mechanisms of water-heat dynamics and earth-heat dynamics of well water temperature micro-behavior are presented. The mechanism of water-heat dynamics is that the well water temperature micro-behavior originates from heat transport related to moving of water flow. The mechanism of earth-heat dynamics is that the well water temperature micro-behavior originates from heat flow or heat transfer in the earth. Results show that most coseismic responses of water temperature in a well are micro-behaviors produced under water-heat dynamics mechanism, whereas post-seismic effects or changes of water temperature in a well are micro-behaviors caused by heat conduction or change of deep heat flow, and belong to earth-heat dynamics mechanism. The characteristics of a few micro-behaviors of water temperature in a well are more complicated, which is due to existence of multilayer aquifers in a well-aquifer system. And the hydrogeological characteristics of these aquifers are more obviously different, which cannot be yet explained under the mechanisms of water-heat or earth-heat dynamics.
  • 图  1   非自流井-含水层中热系统示意图

    Figure  1.   Sketch of heat system in non-artesian well-aquifer

    图  2   塔院井井孔地层柱状图(a)及其30-190m深度段水温梯度曲线(b)(引自杨竹转,2011)

    Figure  2.   Columnar section for the well Tayuan (a) and its water-temperature gradient in depth of 30-190m (b) (after Yang,2011)

    图  3   塔院井6个深度上观测到的水温潮汐及其与水位潮汐对比图(引自杨竹转,2011)

    Figure  3.   Tide of water temperature and comparison with tide of water level at six depths in the well Tayuan (after Yang,2011)

    图  4   井水位与水温同震响应组合关系多样性的水热动力学机制解释

    虚线为井水温度的原梯度线; 实线为同震响应后井水位变化引起的水温梯度线变化(a) 井水位振荡时,井筒上半部水温上升,下半部水温下降; (b) 水温梯度值为正时,井水位上升,井水温上升; (c)水温梯度值为正时,井水位下降,井水温下降;(d) 水温梯度值为负时,井水位上升,井水温下降; (e)水温梯度值为负时,井水位下降, 井水温上升

    Figure  4.   Explanation of several combination relations of coseismic response of water level and water temperature by using water-heat dynamic mechanism where dashed line denotes original gradient of water temperature,solid line denotes the gradient of water temperature resulted from change in water level after coseismic response

    (a) If water level oscillates,water temperature rises in upper half of a well and drops in lower half of the well; (b) If the gradient of water temperature in a well is positive,water level rises, water temperature also rises; (c) If the gradient of water temperature in a well is positive,water level drops,water temperature also drops; (d) If the gradient of water temperature in a well is negative,water level rises,water temperature drops; (e) If the gradient of water temperature in a well is negative,while water level drops,water temperature rises

    图  5   汶川MS8.0地震的3个典型的水温同震响应及震后效应记录图

    (a) 同震下降-震后恢复型; (b) 同震上升-震后高值型; (c) 同震下降-震后低值型

    Figure  5.   Three recordings of typical coseismic response to the Wenchuan MS8.0 earthquake and post-seismic change of water temperature in some wells

    (a) Coseismic response drops,post-seismic effect is resumable (Mengyin well,Shandong Province);(b) Coseismic response rises,post-seismic effect keeps on a high value (Nanxi well,Sichuan Province); (c) Coseismic response drops,post-seismic effect keeps on a lower value (Zhouzhi well,Shanxi Province)

    图  6   青海省德令哈干井中地温对汶川MS8.0地震的同震响应及震后效应曲线

    Figure  6.   Recordings of coseismic response to the Wenchuan MS8.0 earthquake and post-seismic change of earth temperature in a dry well,Delingha,Qinghai Province

    图  7   四川西昌川03井3个不同深度上水温微动态(a)、 井孔水文地质特征(b)和井水温度梯度变化(c)图

    Figure  7.   Micro-behavior of water temperature at three depths (a),hydrogeological characteristic of well hole (b) and change in gradient of water temperature (c) in the well Chuan03,Xichang,Sichuan Province

    表  1   水热动力学机制下井水温度变化特征

    Table  1   Characteristics of water temperature variation in a well under water-heat dynamics mechanism

    含水层内的变化 井-含水层间水流运动井筒内水流
    运动方向
    井水位
    变化
    井水温变化
    正梯度负梯度
    地下水补排
    关系变化
    补给量增多或排泄量减小
    排泄量增多或补给量减少
    含水层地下水→井水
    井水→含水层地下水
    向上
    向下
    上升
    下降
    上升
    下降
    下降
    上升
    变形破坏与孔
    隙压力变化
    被压缩使孔压增大
    被拉张或破裂使孔压减小
    含水层地下水→井水
    井水→含水层地下水
    向上
    向下
    上升
    下降
    上升
    下降
    下降
    上升
    下载: 导出CSV

    表  2   塔院井6个深度上水温潮汐基本特征比较

    Table  2   Basic features of water temperature tide at six depths of the well Tayuan

    观测深度/m日潮差/℃观测日期月相
    公历农历
    4802008-04-04—08二月廿八至三月初三
    8502008-08-12—16七月十二至十六
    1300.00052008-01-11—15十二月初四至初八上弦
    1780.00072007-12-21—25十一月十二至十六
    1840.00352008-11-12—16十月十五至十九
    1870.00202008-11-26—30十月廿九至十一月初三
    下载: 导出CSV

    表  3   汶川MS8.0地震水温与水位同震响应的组合类型

    Table  3   Combination types of coseismic response of water temperature and water level of Wenchuan MS8.0 earthquake

    响应形态井数井数百分比
    组合类型水位水温
    A振荡下降1919.6%
    B振荡上升1010.3%
    C上升上升2323.7%
    D上升下降1717.5%
    E下降下降1818.6%
    F下降上升1010.3%
    下载: 导出CSV

    表  4   常见岩石的导热系数

    Table  4   Heat conductivity of common rocks

    岩浆岩导热系数/(×4.23 mW·m-1·K-1)变质岩导热系数/(×4.23 mW·m-1·K-1)
    花岗岩闪长岩安山岩玄武岩石英岩大理岩千枚岩页岩
    2.09—3.101.85—2.101.101.871.60—4.802.60—3.201.94—2.662.16
    沉积岩导热系数/(×4.23 mW·m-1·K-1)
    砂岩砾岩石灰岩白云岩凝灰岩
    1.1—2.61.81.880.94—4.30.61—1.37
    下载: 导出CSV

    表  5   川03井3个不同深度水温的汶川地震同震响应与震后效应特征比较

    Table  5   Characteristics of coseismic response to Wenchuan MS8.0 earthquake and post-seismic change of water temperature at three depths of the well Chuan03

    传感器置深/m同震响应震后效应说明
    形态幅度/(10-2 ℃) 形态持续时间/d
    395振荡1.96缓降>3.5水温持续下降,水位持续上升
    595急升2.36缓降—转平1.5水温在高值上稳定
    765缓升0.76缓升>3.5水温持续上升
    下载: 导出CSV

    表  6   川03井3个不同深度水温的潮汐效应特征比较

    Table  6   Tide response of water temperature at three depths of the well Chuan3

    传感器置深/m形态显示日潮差/(10-2 ℃)水位潮汐关系
    395很明显2.64相位一致,关系密切
    595较明显0.83相位基本一致,有关系
    765不明显关系不明显
    下载: 导出CSV
  • 车用太, 刘成龙, 鱼金子. 2008. 井水温度微动态及其形成机制[J]. 地震, 28 (4): 20-28

    Che Y T, Liu C L, Yu J Z. 2008. Micro-behavior of well temperature and its mechanism[J]. Earthquake, 28 (4): 20-28 (in Chinese)

    陈大庆, 刘耀炜, 杨选辉, 刘永铭. 2007. 远场大震的水位、 水温同震响应及其机理研究[J]. 地震地质, 29 (1): 122-130.

    Chen D Q, Liu Y W, Yang X H, Liu Y M. 2007. Co-seismic water level, temperature responses of some wells to far-field strong earthquakes and their mechanisms[J]. Seismology and Geology, 29 (1): 122-130 (in Chinese)

    程建, 王多义, 李得力, 庞河清, 王帅成, 李军. 2010. 汶川大地震"远端效应"[J]. 成都理工大学学报: 自然科学版, 37 (2): 155-159

    Cheng J, Wang D Y, Li D L, Pang H Q, Wang S C, Li J. 2010. Research on the "endpoint effect": On the geothermal anomaly in Longquanyi, Chengdu, China[J]. Journal of Chengdu University of Technology: Science & Technology Edition, 37 (2): 155-159 (in Chinese)

    付子忠. 1988. 地热动态观测与地热前兆[G]//地质构造与地壳应力(1). 北京: 地震出版社: 1-8.

    Fu Z Z. 1988. The observation and earth-thermal precursor[G]//Thesis on Geological Tectonic and Stress in Earth Crust (1). Beijing: Seismological Press: 1-8 (in Chinese).

    高文学, 蒋凤亮, 高庆华, 张业成, 朱克文. 2000. 地球化学异常[M]. 北京: 地震出版社: 163-174.

    Gao W X, Jiang F L, Gao Q H, Zhang Y C, Zhu K W. 2000. The Anomalies of Geochemistry[M]. Beijing: Seismological Press: 163-174 (in Chinese).

    李美, 康春丽, 李志雄, 荆风, 薛艳, 闫伟. 2010. 汶川MS8.0地震前地表潜热通量异常[J]. 地震, 30 (3): 64-71

    Li M, Kang C L, Li Z X, Jing F, Xue Y, Yan W. 2010. Abnormal surface latent heat flux prior to the Wenchuan MS8.0 earthquake[J]. Earthquake, 30 (3): 64-71 (in Chinese)

    刘耀炜. 2009. 动力加载作用与地下水物理动态过程研究[D]. 北京: 中国地质大学(北京): 68-73

    Liu Y W. 2009. Dynamic Loading and Physical Dynamics Process of Groundwater[D]. Beijing: China University of Geosciences (Beijing): 68-73 (in Chinese)

    马玉川. 2010. 井水温度潮汐效应及其应变响应能力研究[D]. 北京: 中国地震局地壳应力研究所: 26-28.

    Ma Y C. 2010. Tidally Induced Water Temperature Changes in Boreholes[D]. Beijing: Institute of Crustal Dynamics, China Earthquake Administration: 26-28 (in Chinese).

    任雅琼, 陈顺云, 马瑾. 2012. 依兰-伊通断裂带地表温度变化分析[J]. 地震学报, 34 (5): 698-705

    Ren Y Q, Chen S Y, Ma J. 2012. Variation of land surface temperature in Yilan-Yitong fault zone of northeastern China[J]. Acta Seismologica Sinica, 34 (5): 698-705 (in Chinese)

    石耀霖, 曹建玲, 马丽, 尹宝军. 2007. 唐山井水温的同震变化及其物理解释[J]. 地震学报, 29 (3): 265-273

    Shi Y L, Cao J L, Ma L, Yin B J. 2007. Tele-seismic coseismic well temperature changes and their interpretation[J]. Acta Seismologica Sinica, 29 (3): 265-273 (in Chinese)

    史浙明, 王广才, 刘成龙, 梅建昌, 王金维, 方慧娜. 2013. 三峡井网地下水位的同震响应及其含水层参数关系[J]. 科学通报, 58 (25): 3080-3087.

    Shi Z M, Wang G C, Liu C L, Mei J C, Wang J W, Fang H N. 2013. Co-seismic response of groundwater level in the Three Gorges well network and its relationship to aquifer parameters[J]. Chinese Sci Bull, 58 (25): 3080-3087 (in Chinese).

    王成喜, 邓斌, 朱利东. 2009. 四川省青川县东河口地震遗址公园发现温泉及天然气溢出[J]. 地质通报, 28 (7): 991-994.

    Wang C X, Deng B, Zhu L D. 2009. Discovery of hot spring and nature gas exposure spots in Donghekou, Qingchuan County, Sichuan Province, China[J]. Geological Bulletin of China, 28 (7): 991-994 (in Chinese)

    杨竹转. 2011. 地震引起的井水位水温变化及其机理研究[D]. 北京: 中国地震局地质研究所: 70-73

    Yang Z Z. 2011. Variations of Well Water Level and Temperature Caused by Earthquakes and Their Generating Mechanism[D]. Beijing: Institute of Geology, China Earthquake Administration: 70-73 (in Chinese)

    尹宝军. 2010. 唐山井地下水动态特征的研究[D]. 北京: 中国地震局地球物理研究所: 145-150

    Yin B J. 2010. Study on the Fluctuant Characteristics of Underground Water at Tangshan Well[D]. Beijing: Institute of Geophysics, China Earthquake Administration: 145-150 (in Chinese)

    鱼金子, 车用太, 刘五洲. 1997. 井水温度微动态形成的水动力学机制研究[J]. 地震, 17 (4): 389-395

    Yu J Z, Che Y T, Liu W Z. 1997. Preliminary study on hydrodynamic mechanism of microbehavior of water temperature in well[J]. Earthquake, 17 (4): 389-395 (in Chinese)

    鱼金子, 车用太, 刘成龙, 李万明. 2012. 金沙江水网对日本9.0级地震的同震响应及其特征与机制[J]. 地震, 32 (1): 59-69

    Yu J Z, Che Y T, Liu C L, Li W M. 2012. Co-seismic responses of water level and temperature in well of the Jinshajiang groundwater observation network to Japan MS9.0 earthquake: Characteristics and mechanism[J]. Earthquake, 32 (1): 59-69 (in Chinese)

    张永仙, 石耀霖, 张国民. 1991. 流量与水温关系的模型研究及地震水温前兆机制的探讨[J]. 中国地震, 7 (3): 88-94

    Zhang Y X, Shi Y L, Zhang G M. 1991. Model studies on relationship between underflow and its temperature and discussions about mechanism of groundwater temperature precursor[J]. Earthquake Research in China, 7 (3): 88-94 (in Chinese)

    张元生, 郭晓, 钟美娇, 沈文荣, 李稳, 何斌. 2010. 汶川地震卫星热红外亮温异常[J]. 科学通报, 55 (10): 904-910

    Zhang Y S, Guo X, Zhong M J, Shen W R, Li W, He B. 2010. Wenchuan earthquake: Brightness change from satellite infrared information[J]. Chinese Sci Bull, 55 (10): 904-910 (in Chinese)

图(7)  /  表(6)
计量
  • 文章访问数:  581
  • HTML全文浏览量:  271
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-05-08
  • 修回日期:  2013-07-14
  • 发布日期:  2013-12-31

目录

    /

    返回文章
    返回