随机有限断层法模拟中强地震近场强震动的参数影响研究

高阳, 潘华, 汪素云

高阳, 潘华, 汪素云. 2014: 随机有限断层法模拟中强地震近场强震动的参数影响研究. 地震学报, 36(4): 698-710. DOI: 10.3969/j.issn.0253-3782.2014.04.015
引用本文: 高阳, 潘华, 汪素云. 2014: 随机有限断层法模拟中强地震近场强震动的参数影响研究. 地震学报, 36(4): 698-710. DOI: 10.3969/j.issn.0253-3782.2014.04.015
Gao Yang, Pan Hua, Wang Suyun. 2014: Effect of parameters on near-fault ground-motion simulations for moderate-strong earthquakes by stochastic finite-fault method. Acta Seismologica Sinica, 36(4): 698-710. DOI: 10.3969/j.issn.0253-3782.2014.04.015
Citation: Gao Yang, Pan Hua, Wang Suyun. 2014: Effect of parameters on near-fault ground-motion simulations for moderate-strong earthquakes by stochastic finite-fault method. Acta Seismologica Sinica, 36(4): 698-710. DOI: 10.3969/j.issn.0253-3782.2014.04.015

随机有限断层法模拟中强地震近场强震动的参数影响研究

基金项目: 大型先进压水堆核电站国家科技重大专项(2011ZX06002-010)资助.
详细信息
    通讯作者:

    潘华, E-mail:panhua.mail@163.com

  • 中图分类号: P315.9

Effect of parameters on near-fault ground-motion simulations for moderate-strong earthquakes by stochastic finite-fault method

  • 摘要: 介绍了模拟地震动时程的随机有限断层法及近年来对该方法的改进,改进后的随机有限断层法适合模拟中强地震;比较了不同场地方位角的中强地震近场地震动时程与平均伪加速度反应谱(PSA);定量分析了中强地震近场地震动模拟结果的参数敏感性. 结果表明:不同场地方位角的中强地震近场PSA在短周期部分差别较大;应力降是模型中最重要的参数,其对反应谱短周期部分影响最大;几何扩散系数对PSA的整体影响也较为明显. 将随机有限断层法应用到工程安全性评价工作中时,应当重点关注对反应谱短周期部分影响较大的应力降和该区域的几何扩散系数,同时要调查该区域优势场地方位角的分布,更加合理地控制中强地震近场强震动的模拟.
    Abstract: This paper described stochastic finite-fault method and related improvements which have been widely used in simulating acceleration time histories. The improved method is more suitable for the simulation of moderate-strong earthquakes. And then we compared the time histories and average PSA (pseudo-acceleration response spectra) of near-fault moderate-strong earthquakes for different site azimuths so as to analyze parametric sensitivity quantitatively to near-fault ground-motion simulations for moderate-strong earthquakes using the revised program. The results show that PSA values are apparenly different at short period for different site azimuths, and stress drop is the most important model parameter, which controls response spectra at short period. In addition, the geometric-spreading coefficient has a significant impact on PSA. Therefore, in order to get more accurate simulations for the near-fault moderate-strong earthquakes we should focus on stress drop and geometric-spreading coefficient which have great influence on PSA values at short period when applying stochastic finite-fault method to the seismic safety evaluation of moderate earthquakes. And the distribution of dominating site azimuths is another factor which should also be considered in this situation.
  • 图  1   随机有限断层模型示意图 (引自 Beresnev,Atkinson,1997)

    Figure  1.   Sketch of stochastic finite-fault model(after Beresnev,Atkinson,1997)

    图  2   断层地表投影及场点示意图(断层距Rrup=10 km)

    Figure  2.   Sketch of fault surface projection and sites location (Rrup=10 km)

    图  3   不同场地方位角ϕ2的加速度时程对比图震源位于走向反方向的断层上边界顶点,MW=5.5,Rrup=10 km,δ=50°

    Figure  3.   Comparison of acceleration time histories for different site azimuths ϕ2Hypocenter is located at the upper corner of the fault opposite to strike direction,MW=5.5,Rrup=10 km,δ=50°

    图  4   不同场地方位角ϕ2的平均伪加速度反应谱(PSA)对比图指定场地方位角下对10个随机震源伪加速度反应谱取平均的结果. MW=5.5,Rrup=10 km,δ=50°

    Figure  4.   Comparison of average PSA values for different site azimuths ϕ2The curve is average result of 10 r and om hypocenter pseudo-acceleration response spectra for a given site azimuth,MW=5.5,Rrup=10 km,δ=50°

    图  5   不同场地方位角ϕ2的加速度时程对比图震源位于走向反方向的断层上边界顶点. MW=5.5,Rrup=10 km,δ=90°

    Figure  5.   Comparison of acceleration time histories for different site azimuths ϕ2Hypocenter is located at the upper corner of the fault opposite to strike direction,MW=5.5,Rrup=10 km,δ=90°

    图  6   不同场地方位角ϕ2的平均伪加速度反应谱(PSA)对比图指定场地方位角下对10个随机震源伪加速度反应谱取平均的结果. MW=5.5,Rrup=10 km,δ=90°

    Figure  6.   Comparison of average PSA values for different site azimuths ϕ2The curve is average result of 10 r and om hypocenter pseudo-acceleration response spectra for a given site azimuth,MW=5.5,Rrup=10 km,δ=90°

    图  7   不同参数的平均伪加速度反应谱(PSA)对比图(MW=5.5,Rrup=10 km)

    Figure  7.   Comparison of average PSA values for different parameters(MW=5.5,Rrup=10 km)

    图  8   平均伪加速度反应谱(PSA)与参数变化幅度关系(MW=5.5,Rrup=10 km,ϕ2=90°)

    Figure  8.   Variation amplitude relations between average PSA values and parameters(MW=5.5,Rrup=10 km,ϕ2=90°)

    表  1   模拟地震动使用的参数

    Table  1   Parameters used in ground motion simulations

    下载: 导出CSV

    表  2   参数变化方案

    Table  2   Parameters variation scenarios

    下载: 导出CSV

    表  3   参数与平均PSA变化幅度对应表(ϕ2=90°)

    Table  3   Variation amplitude of parameters and corresponding average PSA values(ϕ2=90°)

    下载: 导出CSV
  • 高阳 , 潘华, 汪素云. 2013. 中强地震近场强震动的随机有限断层模型参数影响研究[J]. 国际地震动态, (11): 45-46.

    Gao Y, Pan H, Wang S Y. 2013. Parameters sensitivity of stochastic finite-fault model for moderate earthquakes near-fault ground motions[J]. Recent Development in World Seismology, (11): 45-46 (in Chinese).

    李明, 谢礼立, 翟长海, 杨永强. 2009. 近断层地震动区域的划分[J]. 地震工程与工程振动, 29 (5): 20-25.

    Li M, Xie L L, Zhai C H, Yang Y Q. 2009. Scope division of near-fault ground motion[J]. Journal of Earthquake Engineering and Engineering Vibration, 29 (5): 20-25 (in Chinese).

    李启成, 景立平. 2009. 随机点源方法和随机有限断层方法模拟地震动的比较[J]. 世界地震工程, 25 (1): 6-11.

    Li Q C, Jing L P. 2009. The comparison between stochastic point-source method and stochastic finite-fault method[J]. World Earthquake Engineering, 25 (1): 6-11 (in Chinese).

    石玉成, 陈厚群, 李敏, 卢育霞. 2005. 随机有限断层法合成地震动的研究与应用[J]. 地震工程与工程振动, 25 (4): 18-23.

    Shi Y C, Chen H Q, Li M, Lu Y X. 2005. The study and application of stochastic finite faults method in ground motion synthesizing[J]. Journal of Earthquake Engineering and Engineering Vibration, 25 (4): 18-23 (in Chinese).

    孙晓丹, 陶夏新, 王国新, 刘陶钧. 2009. 地震动随机合成中与震源谱相关的动力学拐角频率[J]. 地震学报, 31 (5): 537-543.

    Sun X D, Tao X X, Wang G X, Liu T J. 2009. Dynamic corner frequency in source spectral model for stochastic synthesis of ground motion[J]. Acta Seismologica Sinica, 31 (5): 537-543 (in Chinese).

    陶夏新, 陈富, 孙晓丹. 2012. 强地震动随机合成中震源谱模型的改进[J]. 岩土工程学报, 34 (3): 504-507.

    Tao X X, Chen F, Sun X D. 2012. Improvement of source spectrum model for synthesis of strong ground motion[J]. Chinese Journal of Geotechnical Engineering, 34 (3): 504-507 (in Chinese).

    王国新. 2001. 强地震动衰减研究[D]. 哈尔滨: 中国地震局工程力学研究所: 64-77.

    Wang G X. 2001. Study on Strong Ground Motion Attenuation[D]. Harbin: Institute of Engineering Mechanics, China Earthquake Administration: 64-77 (in Chinese).

    王晓荣, 易立新, 李鹏. 2011. 利用随机有限断层法计算海河断裂的地震动[J]. 地震研究, 34 (2): 188-193.

    Wang X R, Yi L X, Li P. 2011. Computing the ground motion of the Haihe fault with stochastic finite fault model[J]. Journal of Seismological Research, 34 (2): 188-193 (in Chinese).

    Anderson J G, Hough S E. 1984. A model for the shape of the Fourier amplitude spectrum of acceleration at high frequencies[J]. Bull Seismol Soc Am, 74 (5): 1969-1993.

    Atkinson G M, Boore D. 1995. New ground motion relations for eastern North America[J]. Bull Seismol Soc Am, 85 (1): 17-30.

    Atkinson G M, Boore D. 2006. Earthquake ground-motion prediction equation for eastern North America[J]. Bull Seismol Soc Am, 96 (6): 2181-2205.

    Atkinson G M, Goda K, Assatourians K. 2011. Comparison of nonlinear structural responses for accelerograms simulated from the stochastic finite-fault approach versus the hybrid broadband approach[J]. Bull Seismol Soc Am, 101 (6): 2967-2980.

    Beresnev I A, Atkinson G M. 1997. Modeling finite-fault radiation from the spectrum[J]. Bull Seismol Soc Am, 87 (1): 67-84.

    Beresnev I A, Atkinson G M. 1998. FINSIM: A FORTRAN program for simulating stochastic acceleration time histories from finite faults[J]. Seism Res Lett, 69 (1): 27-32.

    Boore D. 1983. Stochastic simulation of high-frequency ground motion based on seismological models of the radiated spectra[J]. Bull Seismol Soc Am, 73 (6): 1865-1894.

    Boore D. 2003. Simulation of ground motion using the stochastic method[J]. Pure Appl Geophys, 160 (3/4): 635-676.

    Boore D. 2009. Comparing stochastic point-source and finite-source ground-motion simulations: SMSIM and EXSIM[J]. Bull Seismol Soc Am, 99 (6): 3202-3216.

    Hartzell S. 1978. Earthquake aftershocks as Green's functions[J]. Geophys Res Lett, 5 (1): 1-14.

    Hough S E, Anderson J G. 1988. High frequency spectra observed at Anza California: Implications for Q structure[J]. Bull Seismol Soc Am, 78 (2): 692-707.

    Kanamori H, Rivera L. 2004. Static and dynamic scaling relations for earthquakes and their implications for rupture speed and stress drop[J]. Bull Seismol Soc Am, 94 (1): 314-319.

    Motazedian D, Atkinson G M. 2005. Stochastic finite-fault modeling based on a dynamic corner frequency[J]. Bull Seismol Soc Am, 95 (3): 995-1010.

    Roverlli A, Bonamassa O, Cocco M, Dibona M, Mazza S. 1988. Scaling laws and spectral parameters of the ground motion in active extensional areas in Italy[J]. Bull Seismol Soc Am, 78 (2): 530-560.

    Wells D, Coppersmith K. 1994. New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement[J]. Bull Seismol Soc Am, 84 (4): 974-1002.

  • 期刊类型引用(4)

    1. 贾晓辉,曹秀玲,王晓山. 考虑地形效应的随机有限断层法地震动模拟研究. 地震研究. 2024(04): 619-626 . 百度学术
    2. 党鹏飞,刘启方,马完君,王冲. 参数对地震动随机模拟结果的影响分析. 防灾减灾工程学报. 2022(04): 768-777+818 . 百度学术
    3. 梁俊伟,钟菊芳,吴海波,陈功. 基于能量的随机有限断层法研究. 南昌航空大学学报(自然科学版). 2015(02): 10-15+69 . 百度学术
    4. 高阳,潘华,汪素云. 中强地震随机有限断层模型应力降参数的确定方法. 震灾防御技术. 2014(04): 733-747 . 百度学术

    其他类型引用(14)

图(8)  /  表(3)
计量
  • 文章访问数:  677
  • HTML全文浏览量:  296
  • PDF下载量:  37
  • 被引次数: 18
出版历程
  • 收稿日期:  2013-06-30
  • 修回日期:  2013-11-19
  • 发布日期:  2014-06-30

目录

    /

    返回文章
    返回