Relationship between seismicity and crustal thermal structure in North China
-
摘要: 本文应用双差定位法对2009—2015年华北地区发生的地震进行了重新定位, 共得到6225次地震的精确定位结果. 结果显示, 重定位后的小震更加集中分布于断裂附近, 震源深度多为5—15 km. 利用基于三维分形磁化模型的中心点法获得了华北地区的居里点深度并计算了磁性层的平均地温梯度, 进而利用随温度变化的热导率一维稳态热传导方程获得了华北地区的地壳温度结构. 结果显示: ① 除张渤地震带中东部地区以外, 大多数地震均发生在地温梯度较小的地方; ② 1966年邢台MS7.2地震和1976年唐山MS7.8地震均发生在地温梯度较小的地方, 二者发生的温度约为200℃—300℃; ③ 大多数M≥2.0地震发生的温度为100℃—500℃, M≥4.0地震发生的温度多为200℃—400℃. 这些温度与实验室地壳岩石脆-塑性变形过渡区的温度测量值相当, 表明华北地区的地震多发生在地壳脆-塑性变形过渡区.Abstract: This study relocates 6225 earthquakes recorded in North China during 2009 to 2015 using the double-difference location algorithm. The result shows that the relocated earthquakes are more concentrated around the faults and most focal depths range between 5 and 15 km. Then the Curie-point depths are estimated by using the centroid spectral method based on 3D fractal magnetization model, and the average thermal gradients of the magnetic layer are calculated. Furthermore, crustal temperatures are estimated based on the 1D steady thermal conduction equation with temperature-dependent conductivities. Our results show that most of the earthquakes occurred in the regions with low thermal gradients except for those in the central-eastern part of the Zhangjiakou-Bohai seismic zone. Both the 1966 MS7.2 Xingtai earthquake and 1976 MS7.8 Tang-shan earthquake occurred in the low thermal gradient regions with estimated tem-peratures ranging between 200℃ and 300℃. The evaluated temperature range for most of the earthquakes with M≥2.0 is between 100℃ and 500℃, and the temperature range is between 200℃ and 400℃ for large earthquakes with M≥4.0. All these temperatures are in line with that of the crustal brittle-ductile transition observed in laboratory studies, suggesting that most earthquakes in North China occurred in the crustal brittle-ductile transition zone.
-
-
图 1 研究区构造及震中分布图
黑色三角形为地震台站,蓝色圆点为原始地震目录震中,红色星号分别为1966年邢台MS7.2地震(徐锡伟等,2000)和1976年唐山MS7.8地震(王健,2001),红色框为地震重定位范围
Figure 1. Map of tectonics and epicenters distribution in the studied region
Black triangles are seismic stations,blue dots are initial epicenters from the catalogue. Red stars represent the 1966 MS7.2 Xingtai earthquake(Xu et al,2000)and 1976 MS7.8 Tangshan earthquake(Wang,2001). Red lines limit the region for relocation in this study
图 2 华北地震重定位结果
(a)为重定位后的震中分布,紫线为研究区东、 西部速度模型分界线,红线为3条剖面位置; (b)和(c)分别为重定位后沿纬度和经度方向的震中分布侧面图;(d)和(e)分别为重定位前和重定位后的震源深度统计图;(f)为速度模型
Figure 2. Relocation results of earthquakes in North China
(a)is epicenters distribution after relocation,purple line is the boundary between the eastern and western parts of different velocity models used in this study,red lines are locations of three profiles;(b)and(c)are side views of focal depths along the latitude and longitude directions after relocation,respectively;(d)and(e)are histograms of focal depths before and after relocation,respectively;(f)show velocity models,red and black lines represent western and eastern velocity models,respectively
-
郭震, 陈永顺, 殷伟伟. 2015. 背景噪声面波与布格重力异常联合反演: 山西断陷带三维地壳结构[J]. 地球物理学报, 58(3): 821-831. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201503012.htm Guo Z, Chen Y S, Yin W W. 2015. Three-dimensional crustal model of Shanxi graben from 3D joint inversion of ambient noise surface wave and Bouguer gravity anomalies[J]. Chinese Journal of Geophysics, 58(3): 821-831 (in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201503012.htm
何国幸, 胡玉禄, 魏嘉, 赵琳. 2009. 华北地温场特征[J]. 科技信息, (31): 35-36. http://www.cnki.com.cn/Article/CJFDTOTAL-KJXX200931647.htm He G X, Hu Y L, Wei J, Zhao L. 2009. Geothermal characteristics in North China[J]. Science and Technology Information, (31): 35-36 (in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-KJXX200931647.htm
李红光, 王利亚, 孙刚, 张鹤翔, 李伟华. 2015. 华北地区中小地震重新定位和地震活动特征研究[J]. 地震, 35(1): 28-37. http://www.cnki.com.cn/Article/CJFDTOTAL-DIZN201501004.htm Li H G, Wang L Y, Sun G, Zhang H X, Li W H. 2015. Seismicity characterized by relocation of small to moderate earthquakes in North China[J]. Earthquake, 35(1): 28-37 (in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-DIZN201501004.htm
李乐, 陈棋福, 陈颙. 2007. 首都圈地震活动构造成因的小震精定位分析[J]. 地球物理学进展, 22(1): 24-34. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ200701002.htm Li L, Chen Q F, Chen Y. 2007. Relocated seismicity in big Beijing area and its tectonic implication[J]. Progress in Geophysics, 22(1): 24-34 (in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ200701002.htm
刘光勋, 阎凤忠. 1995. 从山西地震带看大同—阳高地震[J]. 山西地震, (1): 3-6. http://www.cnki.com.cn/Article/CJFDTOTAL-SXDZ501.000.htm Liu G X, Yan F Z. 1995. Understanding the Datong-Yanggao earthquake based on Shanxi seismic zone[J]. Earthquake Research in Shanxi, (1): 3-6 (in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-SXDZ501.000.htm
唐有彩, 冯永革, 陈永顺, 周仕勇, 宁杰远, 魏松峤, 李鹏, 俞春泉, 范文渊, 王海洋. 2010. 山西断陷带地壳结构的接收函数研究[J]. 地球物理学报, 53(9): 2102-2109. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201009011.htm Tang Y C, Feng Y G, Chen Y S, Zhou S Y, Ning J Y, Wei S Q, Li P, Yu C Q, Fan W Y, Wang H Y. 2010. Receiver function analysis at Shanxi rift[J]. Chinese Journal of Geophysics, 53(9): 2102-2109 (in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201009011.htm
王健. 2001. 1976年唐山地震成因解释的一个新模式[J]. 地震学报, 23(5): 552-557. http://www.dzxb.org/Magazine/Show?id=26983 Wang J. 2001. A new model on the cause of Tangshan earthquakes in 1976[J]. Acta Seismologica Sinica, 23(5): 552-557 (in Chinese). http://www.dzxb.org/Magazine/Show?id=26983
徐锡伟, 于贵华, 王峰, 顾梦林, 孙振国, 刘保金, 尤惠川. 2000. 1966年邢台地震群的发震构造模型: 新生断层形成?先存活断层摩擦粘滑?[J]. 中国地震, 16(4): 364-378. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGZD200004007.htm Xu X W, Yu G H, Wang F, Gu M L, Sun Z G, Liu B J, You H C. 2000. Seismogenic model for the 1966 Xingtai earthquakes-nucleation of new-born fault or strick-slip of pre-existing fault?[J]. Earthquake Research in China, 16(4): 364-378 (in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-ZGZD200004007.htm
于湘伟, 陈运泰, 张怀. 2010a. 京津唐地区中小地震重新定位[J]. 地震学报, 32(3): 257-269. http://www.dzxb.org/Magazine/Show?id=28767 Yu X W, Chen Y T, Zhang H. 2010a. Relocation of earthquakes in Beijing-Tianjin-Tangshan region with double-difference tomography technique[J]. Acta Seismologica Sinica, 32(3): 257-269 (in Chinese). http://www.dzxb.org/Magazine/Show?id=28767
于湘伟, 张怀, 陈运泰. 2010b. 华北地区地震重新定位结果分析[J]. 大地测量与地球动力学, 30(2): 29-33. http://www.cnki.com.cn/Article/CJFDTOTAL-DKXB201002008.htm Yu X W, Zhang H, Chen Y T. 2010b. Analysis of relocated earthquakes in North China region[J]. Journal of Geodesy and Geodynamics, 30(2): 29-33 (in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-DKXB201002008.htm
张广伟, 雷建设, 谢富仁, 郭永霞, 兰从欣. 2011. 华北地区小震精定位及构造意义[J]. 地震学报, 33(6): 699-714. http://www.dzxb.org/Magazine/Show?id=28711 Zhang G W, Lei J S, Xie F R, Guo Y X, Lan C X. 2011. Precise relocation of small earthquakes occurred in North China and its tectonic implication[J]. Acta Seismologica Sinica, 33(6): 699-714 (in Chinese). http://www.dzxb.org/Magazine/Show?id=28711
赵博, 高原, 石玉涛. 2013. 用双差定位结果分析华北地区的地震活动[J]. 地震, 33(1): 12-21. http://www.cnki.com.cn/Article/CJFDTOTAL-DIZN201301003.htm Zhao B, Gao Y, Shi Y T. 2013. Relocation of small earthquakes in North China using double difference algorithm[J]. Earthquake, 33(1): 12-21 (in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-DIZN201301003.htm
朱艾斓, 徐锡伟, 胡平, 周永胜, 林元武, 陈桂华, 甘卫军. 2005. 首都圈地区小震重新定位及其在地震构造研究中的应用[J]. 地质论评, 51(3): 268-274. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200503008.htm Zhu A L, Xu X W, Hu P, Zhou Y S, Lin Y W, Chen G H, Gan W J. 2005. Relocation of small earthquakes in Beijing area and its implication to seismotectonics[J]. Geological Review, 51(3): 268-274 (in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200503008.htm
An M J, Shi Y L. 2007. Three-dimensional thermal structure of the Chinese continental crust and upper mantle[J]. Science in China: Series D, 50(10): 1441-1451. doi: 10.1007/s11430-007-0071-3
Bansal A R, Gabriel G, Dimri V P, Krawezyk C M. 2011. Estimation of depth to bottom of magnetic sources by a modified centroid method for fractal distribution of sources: An application to aeromagnetic data in Germany[J]. Geophysics, 76(3): L11-L22. doi: 10.1190/1.3560017
Bonner J L, Blackwell D D, Herrin E T. 2003. Thermal constraints on earthquake depths in California[J]. Bull Seismol Soc Am, 93(6): 2333-2354. doi: 10.1785/0120030041
Bouligand C, Glen J M G, Blakely R J. 2009. Mapping Curie temperature depth in the western United States with a fractal model for crustal magnetization[J]. J Geophys Res, 114(B11): B11104. doi: 10.1029/2009JB006494
Chen W P, Molnar P. 1983. Focal depths of intracontinental and intraplate earthquakes and their implications for the thermal and mechanical properties of the lithosphere[J]. J Geophys Res, 88(B5): 4183-4214. doi: 10.1029/JB088iB05p04183
Cho I, Kuwahara Y. 2013. Constraints on the three-dimensional thermal structure of the lower crust in the Japanese Islands[J]. Earth Planets Space, 65(8): 855-861. doi: 10.5047/eps.2013.01.005
Connard G, Couch R, Gemperle M. 1983. Analysis of aeromagnetic measurements from the Cascade Range in central Oregon[J]. Geophysics, 48(3): 376-390. doi: 10.1190/1.1441476
Fedi M, Quarta T, DeSantis A. 1997. Inherent power-law behavior of magnetic field power spectra from a Spector and Grant ensemble[J]. Geophysics, 62(4): 1143-1150. doi: 10.1190/1.1444215
Frost B R, Shive P N. 1986. Magnetic mineralogy of the lower continental crust[J]. J Geophys Res, 91(B6): 6513-6521. doi: 10.1029/JB091iB06p06513
Furlong K P, Atkinson S M. 1993. Seismicity and thermal structure along the northern San Andreas fault system, California, USA[J]. Tectonophysics, 217(1/2): 23-30. http://cn.bing.com/academic/profile?id=2009628524&encoded=0&v=paper_preview&mkt=zh-cn
Gao G M, Kang G F, Li G Q, Bai C H. 2015. Crustal magnetic anomaly in the Ordos region and its tectonic implica-tions[J]. J Asian Earth Sci, 109: 63-73. doi: 10.1016/j.jseaes.2015.04.033
Lei J S, Xie F R, Lan C X, Xing C Q, Ma S Z. 2008. Seismic images under the Beijing region inferred from P and PmP data[J]. Phys Earth Planet Inter, 168(3/4): 134-146. http://cn.bing.com/academic/profile?id=1984230822&encoded=0&v=paper_preview&mkt=zh-cn
Lei J S, Xie F R, Fan Q C, Santosh M. 2013. Seismic imaging of the deep structure under the Chinese volcanoes: An overview[J]. Phys Earth Planet Inter, 224: 104-123. doi: 10.1016/j.pepi.2013.08.008
Li C F, Shi X B, Zhou Z Y, Li J B, Geng J H, Chen B. 2010. Depths to the magnetic layer bottom in the South China Sea area and their tectonic implications[J]. Geophys J Int, 182(3): 1229-1247. doi: 10.1111/j.1365-246X.2010.04702.x
Li C F. 2011. An integrated geodynamic model of the Nankai subduction zone and neighboring regions from geophysical inversion and modeling[J]. J Geodyn, 51(1): 64-80. doi: 10.1016/j.jog.2010.08.003
Li C F, Wang J L, Zhou Z Y, Geng J H, Chen B, Yang F L, Wu J S, Yu P, Zhang X B, Zhang S W. 2012. 3D geophysical characterization of the Sulu-Dabie orogeny and its environs[J]. Phys Earth Planet Inter, 192/193(1): 35-53. http://cn.bing.com/academic/profile?id=2005313853&encoded=0&v=paper_preview&mkt=zh-cn
Li C F, Wang J, Lin J, Wang T T. 2013. Thermal evolution of the North Atlantic lithosphere: New constraints from magnetic anomaly inversion with a fractal magnetization model[J]. Geochem Geophys Geosyst, 14(12): 5078-5105. doi: 10.1002/ggge.v14.12
Li C F, Wang J. 2016. Variations in Moho and Curie depths and heat flow in Eastern and Southeastern Asia[J]. Mar Geophys Res, 37(1): 1-20. doi: 10.1007/s11001-016-9265-4
Liu M, Cui X J, Liu F T. 2004. Cenozoic rifting and volcanism in eastern China: A mantle dynamic link to the Indo-Asian collision?[J]. Tectonophysics, 393(1/2/3/4): 29-42. http://cn.bing.com/academic/profile?id=2093263440&encoded=0&v=paper_preview&mkt=zh-cn
Magistrale H. 2002. Relative contributions of crustal temperature and composition to controlling the depth of earthquakes in southern California[J]. Geophys Res Lett, 29(10): 87-1-87-4. http://cn.bing.com/academic/profile?id=1679827180&encoded=0&v=paper_preview&mkt=zh-cn
Maus S, Barckhause U, Berkenbosch H, Bournas N, Brozena J, Childers V, Dostaler F, Fairhead J D, Finn C, von Frese R R B, Gaina C, Golynsky S, Kuchs R, Luhr H, Milligan P, Mogren S, Müller R D, Olesen O, Pilkington M, Saltus R, Schreckenberger B, Thebault E, Tontini F C. 2009. A 2-arc min resolution Earth Magnetic Anomaly Grid compiled from satellite, airborne, and marine magnetic measurements[J]. Geochem Geophys Geosyst, 10(8): Q08005. http://cn.bing.com/academic/profile?id=1586341875&encoded=0&v=paper_preview&mkt=zh-cn
Meissner R, Strehlau J. 1982. Limits of stresses in continental crusts and their relation to the depth-frequency distribution of shallow earthquakes[J]. Tectonics, 1(1): 73-89. doi: 10.1029/TC001i001p00073
Pilkington M. 2007. Fractal character of oceanic crustal magnetism determined from drill hole measurements[J]. Ind J Mar Sci, 36(2): 97-104. http://nopr.niscair.res.in/bitstream/123456789/19/1/IJMS%2036%282%29%20%282007%29%2097-104.pdf
Ross H E, Blakely R J, Zoback M D. 2006. Testing the use of aeromagnetic data for the determination of Curie depth in California[J]. Geophysics, 71(5): L51-L59. doi: 10.1190/1.2335572
Shimada M. 1992. Confirmation of two types of fracture in granite deformed at temperatures to 300℃[J]. Tectonophy-sics, 211(1/2/3/4): 259-268.
Shimada M. 1993. Lithospheric strength inferred from fracture strength of rocks at high confining pressures and temperatures[J]. Tectonophysics, 217(1/2): 55-64.
Shuey R T, Schellinger D K, Tripp A C, Ai L B. 1977. Curie depth determination from aeromagnetic spectra[J]. Geophys J Int, 50(1): 75-101. doi: 10.1111/j.1365-246X.1977.tb01325.x
Sibson R H. 1982. Fault zone models, heat flow, and the depth distribution of earthquakes in the continental crust of the United States[J]. Bull Seismol Soc Am, 72(1): 151-163.
Sibson R H. 1984. Roughness at the base of the seismogenic zone: Contributing factors[J]. J Geophys Res, 89(B7): 5791-5799. doi: 10.1029/JB089iB07p05791
Tanaka A, Okubo Y, Matsubayashi O. 1999. Curie point depth based on spectrum analysis of the magnetic anomaly data in East and Southeast Asia[J]. Tectonophysics, 306(3/4): 461-470. http://cn.bing.com/academic/profile?id=2015904219&encoded=0&v=paper_preview&mkt=zh-cn
Tanaka A, Ishikawa Y. 2002. Temperature distribution and focal depth in the crust of the northeastern Japan[J]. Earth Planets Space, 54(11): 1109-1113. doi: 10.1186/BF03353310
Tanaka A, Ishikawa Y. 2005. Crustal thermal regime inferred from magnetic anomaly data and its relationship to seismogenic layer thickness: The Japanese islands case study[J]. Phys Earth Planet Inter, 152(4): 257-266. doi: 10.1016/j.pepi.2005.04.011
Tullis J, Yund R A. 1977. Experimental deformation of dry westerly granite[J]. J Geophys Res, 82(36): 5705-5718. doi: 10.1029/JB082i036p05705
Tullis J, Yund R A. 1985. Dynamic recrystallization of feldspar: A mechanism for ductile shear zone formation[J]. Geology, 13(4): 238-241. doi: 10.1130/0091-7613(1985)13<238:DROFAM>2.0.CO;2
Waldhauser F, Ellsworth W L. 2000. A double difference earthquake location algorithm: Method and application to the North Hayward fault, California[J]. Bull Seismol Soc Am, 90(6): 1353-1368. doi: 10.1785/0120000006
Wang J, Li C F. 2015. Crustal magmatism and lithospheric geothermal state of western North America and their implications for a magnetic mantle[J]. Tectonophysics, 638: 112-125. doi: 10.1016/j.tecto.2014.11.002
Yin A. 2000. Mode of Cenozoic east-west extension in Tibet suggesting a common origin of rifts in Asia during the Indo-Asian collision[J]. J Geophys Res, 105(B9): 21745-21759. doi: 10.1029/2000JB900168
Zhao D P. 2004. Global tomographic images of mantle plumes and subducting slabs: Insight into deep Earth dyna-mics[J]. Phys Earth Planet Inter, 146(1/2): 3-34.
Zhao G C, Cawood P A. 2012. Precambrian geology of China[J]. Precambrian Res, 222/223: 13-54. doi: 10.1016/j.precamres.2012.09.017