SV波入射下地形条件对大跨刚构桥地震响应的影响

王蕾1,2)赵成刚1)屈铁军3)

王蕾1,2)赵成刚1)屈铁军3). 2008: SV波入射下地形条件对大跨刚构桥地震响应的影响. 地震学报, 30(3): 307-314.
引用本文: 王蕾1,2)赵成刚1)屈铁军3). 2008: SV波入射下地形条件对大跨刚构桥地震响应的影响. 地震学报, 30(3): 307-314.

SV波入射下地形条件对大跨刚构桥地震响应的影响

  • 摘要: 计算了SV波在3种角度入射下两座山峰及其间自由场地的时程响应, 并以此作为两座山峰之间大跨桥的桥台及桥墩基础处的多点地震输入.这种地震输入考虑了行波传播效应和地形效应的综合影响. 然后基于多点激励下桥梁地震响应分析方法, 计算了地形条件下总长440 m的高墩连续刚构桥的墩顶位移及墩底内力, 并与忽略地形条件仅考虑行波效应时结构的响应进行了对比分析. 该结果可为建于复杂地形条件下结构的抗震设计提供参考.
  • 我国是一个多震国家,尤其是近年来我国进入了地震高发期(胡敏章等,2019)。地震在带来直接灾害的同时,还会激发大量的次生地质灾害。特别是在山地区域,由地震激发的山体滑坡、泥石流等地质灾害将造成重大的生命财产损失,例如2008年汶川MS8.0地震就激发了海量的地震滑坡,造成重大人员伤亡和严重的房屋建筑损毁(Yuan et al,20102013)。在所有这些地震滑坡中,土质滑坡占据了不小的比例。因此,研究土坡地震响应规律对科学防震减灾具有重要的理论和实用价值,而开展对土坡地震响应研究工作的核心之一便是地震动参数的选取问题。

    王秀英等(2010)研究了地震动参数与汶川地震诱发山体滑坡之间的关系,认为峰值加速度(peak ground acceleration,缩写为PGA)与诱发崩滑之间存在明显的正相关性;张郁山和赵凤新(2011)在地震动峰值位移(peak ground displacement,缩写为PGD)对单自由度体系非线性动力反应的影响研究中得出了地震动峰值位移对体系弹塑性速度及位移的影响;李小军(2013)进一步分析了新一代中国地震动参数区划图中考虑场地条件的地震动参数调整结果和变化特征;杜修力等(20152018)对地震动峰值位移对高拱坝和地下结构地震反应的响应影响作出了相应的研究,探寻了高拱坝和地下结构的地震响应与地震动峰值位移的变化关系;而陈冲等(2017)研究了地震动峰值加速度作用下含水边坡稳定性关系,认为在含水情况下,随输入峰值加速度的增大,滑动面向坡内大幅移动,由浅层破坏转变为深层破坏;张江伟等(2018)对地震动参数对土坡地震响应的影响权重进行了研究,得出地震动各参数对坡体变形位移的影响相关性。纵观目前地震动参数对边坡响应的影响规律的研究,可以看出,针对地震动峰值特征参数影响土坡地震响应的对比性研究较少。本文拟针对地震动峰值加速度(PGA)、峰值速度(PGV)和峰值位移(PGD)三个地震动峰值特征参数来研究其对土坡响应的影响规律。为此,随机选取100条含有不同PGA,PGV和PGD的实际地震动纪录,研究三个峰值特征参数对边坡动力响应的影响规律和相关性,以期为土坡地震响应研究中地震动参数选取问题提供参考依据。

    随机选取100条来自太平洋地震研究中心数据库中不同地震的原始记录,通过对每条地震动进行基线校正、积分来获取其PGA,PGV以及PGD。经统计,100条地震动的PGA的范围为0.004 1—1.225 9 g,PGV的范围为0.378—112.376 cm/s,PGD的变化范围为0.035 3—35.674 5 cm。对三种地震动峰值参数对边坡的地震响应的表现情况进行对比研究。图1-3给出了前三条地震动M1—M3的加速度、速度、位移时程曲线。

    图  1  地震动M1的加速度 (a)、速度 (b)、位移 (c) 时程曲线
    Figure  1.  Acceleration (a),velocity (b),displacement (c) time history curves of ground motion M1
    图  2  地震动M2的加速度 (a)、速度 (b)、位移 (c) 时程曲线
    Figure  2.  Acceleration (a),velocity (b),displacement (c) time history curves of ground motion M2
    图  3  地震动M3的加速度 (a)、速度 (b)、位移 (c) 时程曲线
    Figure  3.  Acceleration (a),velocity (b),displacement (c) time history curves of ground motion M3

    在模拟、计算土坡的动力响应时,采用动力平衡方程,即

    $${\boldsymbol{M}}\ddot {\boldsymbol{u}} {\text{+}} {\boldsymbol{C}}\dot {\boldsymbol{u}} {\text{+}} {\boldsymbol{Ku}} {\text{=}} {\boldsymbol{F}}{\text{(}}t{\text{)}}{\text{,}}$$ (1)

    式中,M为结构的质量矩阵,C为结构的阻尼矩阵,K为结构的刚度矩阵,${\ddot{\boldsymbol u}}$为结构的加速度列阵,${\dot{\boldsymbol u}}$为结构的速度列阵,u为结构的位移列阵,Ft)为结构的节点荷载列阵。

    对于求解地震作用下的动力问题,动力荷载就是地震荷载,于是求解边坡地震动力稳定性问题的基本力学运动方程可写为

    $$ {\boldsymbol{M}}\ddot {\boldsymbol{u}} {\text{+}} {\boldsymbol{C}}\dot {\boldsymbol{u}} {\text{+}} {\boldsymbol{Ku}} {\text{=}} - {\boldsymbol{M}}{\ddot {\boldsymbol{u}}_g}{\text{(}}t{\text{)}}{\text{.}} $$ (2)

    地震是一种随时间变化的复杂荷载,边坡岩土体在地震作用下往往会进入弹塑性状态,这时便无法得到解析解,解析方法也不再适用,但通过数值计算可以得到结构动力反应的数值解。在有限元模拟软件ABAQUS中分为隐式和显式两种算法,其中隐式算法是以Newmark-β法为基础,而显式模块则采用中心差分法来解决动力学问题,这些方法的中心思想是假定结构在每一个微小时间步内呈现线弹性反应,然后通过在时域内逐步积分求解。本文采用隐式算法。

    建立如图4所示的土质边坡模型,长为170 m,宽为70 m,边坡坡角为37°,模型坡高30 m,坡顶后缘长80 m。从坡顶至坡脚均匀设置P1P2P3P4P5 5个观测点(图4)用于记录边坡在地震动作用下各峰值特征参数的变化情况。假定模型材料为均质材料,表1为边坡土体的物理、力学参数。本构模型为理想的弹塑性本构模型,土坡地震模拟计算中采用摩尔-库仑强度准则,式(3)(4)为摩尔-库仑强度准则的相关公式。模型底部采用静态边界条件,侧面设置粘弹性边界,阻尼采用瑞雷阻尼形式(胡聿贤,2006)。

    图  4  边坡模型示意图
    Figure  4.  Schematic diagram of slope model
    表  1  边坡土体参数
    Table  1.  Parameters for soil slop
    参数密度
    /(kg·m−3
    弹性模量
    /MPa
    泊松比黏聚力
    /kPa
    内摩擦角
    数值 2070 90.8 0.3 13.99 25
    下载: 导出CSV 
    | 显示表格
    $$ \left\{ \begin{array}{l} {\tau _{{n}}} {\text{=}} \dfrac{1}{2}{\text{(}}{\sigma _1} {\text{-}} {\sigma _3}{\text{)}}\cos \phi{\text{,}} \\ {\sigma _n} {\text{=}} \dfrac{1}{2}{\text{(}}{\sigma _1} {\text{+}} {\sigma _3}{\text{)}} {\text{+}} \dfrac{1}{2}{\text{(}}{\sigma _1} {\text{-}} {\sigma _3}{\text{)}}\sin \phi {\text{,}} \end{array} \right. $$ (3)
    $$ f {\text{=}} \frac{1}{2}{\text{(}}{\sigma _1} {\text{-}} {\sigma _3}{\text{)}} {\text{+}} \frac{1}{2}{\text{(}}{\sigma _1} {\text{+}} {\sigma _3}{\text{)}}\sin \phi {\text{-}} C\cos \phi {\text{=}} 0{\text{,}} $$ (4)

    式中,σnτn分别为滑移面上的正应力和切应力,σ1为最大主应力,σ3为最小主应力,C为土的黏聚力,$\phi$为内摩擦角,f为屈服函数。

    将所选取的地震动原始数据进行基线矫正处理后作为模拟实验的数据进行数值模拟分析。由于篇幅限制,本文仅列出土坡在地震动M1,M2,M3作用下的变形云图(图5)。

    图  5  土坡在地震动M1 (a),M2 (b),M3 (c)作用下的变形云图
    Figure  5.  Deformation nephograms of soil slope under ground motion of M1 (a),M2 (b),M3 (c)

    收集并计算P1P5各点地震响应结果,选取每条地震动所对应观测点的最终变形位移作为模拟实验的代表数据,结合每条地震动数据中所包含的特征参数信息绘制散点图,通过图像可以直观地显示出地震动各峰值特征参数对边坡地震响应的影响规律。

    收集分析P1P5 5个观测点在不同地震动作用下的最大位移数据,研究其与PGA,PGV,PGD三个地震动峰值参数的变化规律,图610所示为各参数与边坡5个观测点最大位移的变化规律。

    图  6  P1点变形位移随PGA (a),PGV (b),PGD (c)的变化
    Figure  6.  Variation of P1 displacement with PGA (a),PGV (b),PGD (c)
    图  7  P2点变形位移随PGA (a),PGV (b),PGD (c)的变化
    Figure  7.  Variation of P2 displacement with PGA (a),PGV (b),PGD (c)
    图  8  P3点变形位移随PGA (a),PGV (b),PGD (c)的变化
    Figure  8.  Variation of P3 displacement with PGA (a),PGV (b),PGD (c)
    图  9  P4点变形位移随PGA (a),PGV (b),PGD (c)的变化
    Figure  9.  Variation of P4 displacement with PGA (a),PGV (b),PGD (c)
    图  10  P5点变形位移随PGA (a),PGV (b),PGD (c)的变化
    Figure  10.  Variation of P5 displacement with PGA (a),PGV (b),PGD (c)

    图610可以看出,各峰值特征参数与土坡变形都有较好的相关性,随着PGA,PGV,PGD的增大,坡体变形位移响应也相应增大,各峰值特征参数对于边坡变形的图像都呈现正相关的趋势。分别比较PGA,PGV,PGD三个地震动峰值特征参数与土坡同一点的位移变化曲线可以得出:PGV与土坡变形的线性关系最为明显,说明其能更好地反映土坡在地震作用下的变形响应规律;PGA,PGD与土坡变形的线性关系稍弱,但仍具有较好的正相关性。通过对图像进行线性拟合,PGV与土坡变形的相关系数最高,对比PGA,PGD的线性关系,PGD的相关系数更高,其相关性稍优于PGA。

    而对比同一个地震动峰值参数对于不同边坡观测点位移的图像可以看出,各峰值参数对不同观测点的变化规律图像都比较一致。

    不同的地震动强度指标反应出的边坡地震响应程度有所不同,在边坡稳定性评价中,如何选择合理的强度指标是能否突出反应边坡地震响应程度的关键。

    上节内容就PGA,PGV和PGD三个地震动峰值特征参数对土坡地震响应的影响程度进行了分析。为了进一步进行参数优化选择,作者对比分析了各土坡地震响应与地震动峰值特征参数的相关性,表2显示了土坡地震位移响应与PGA,PGV,PGD的相关系数ρ。相关性系数ρ的计算方法如式(5)所示,将第n条地震动的某一地震动强度指标值记为In,采用有限元法计算边坡模型在第n条地震动输入下的边坡最大地震响应值Rn,重复上述步骤,得到所有地震动记录的Rn及其对应的In,将所有地震动的计算结果绘制在R-I坐标系中,并通过式(5)计算得到RI之间的相关系数ρ,即

    表  2  地震动峰值特征参数和边坡地震响应的相关系数
    Table  2.  The correlation coefficients between peak ground motion characteristic parameters and slope seismic responses
    监测点位移相关系数 ρ
    PGAPGVPGD
    P1位移0.8730.9840.925
    P2位移0.8740.9780.922
    P3位移0.8630.9820.926
    P4位移0.8610.9800.928
    P5位移0.8690.9820.931
    下载: 导出CSV 
    | 显示表格
    $$\rho {\text{=}} \frac{{\displaystyle\sum\limits_{{{n}} {\text{=}} 1}^{100} {{\text{(}}{R_n} {\text{-}} \overline R }{\text{)}}{\text{(}}{I_n} {\text{-}} {\overline {I\;}}{\text{)}}}}{{\sqrt {\displaystyle\sum\limits_{{{n}} {\text{=}} 1}^{100} {{\text{(}}{R_n} {\text{-}} \overline R } {{\text{)}}^2}} \sqrt {\displaystyle\sum\limits_{{{n}} {\text{=}} 1}^{100} {{{{\text{(}}{I_n} {\text{-}} {\overline {I\;}}{\text{)}}}^2}} } }}{\text{.}}$$ (5)

    表2中地震动峰值特征参数与边坡地震响应的相关性计算结果可以得出:PGV与边坡各监测点响应的相关性最高,相关系数介于0.978—0.984,平均值为0.981;而PGD的相关性略小于PGV,相关系数介于0.922—0.931,平均值为0.926;在三个地震动峰值特征参数中,PGA的相关性最小,相关系数介于0.861—0.874,平均值为0.868。对比结果显示,PGV可以作为最优参数进行考虑,但是其它参数仍可作为辅助参数进行综合对比研究。

    通过计算分析土坡在100条随机地震动作用下的响应,探讨了PGA,PGV和PGD三个峰值特征参数土坡变形的影响规律和相关性,能够得出以下结论:① 对于土坡坡面的变形位移响应,与其相关性最高的特征参数为PGV,其次是PGD,最后是PGA,且三者与土坡变形位移都具有较好的正相关性;② PGA由于其获取的便利性以及工程运用的广泛性,可以作为描述地震动强弱的合理参数;③ PGD能够直接反应地震幅度对结构所造成的影响。综上所述,在关于土坡地震响应的研究中,可以选择PGV作为研究参数进行分析,也可以结合其它两个特征参数对分析结果进行综合考量。

    值得指出的是,本文工作基于二维均质土坡模型展开,尚存在一定的局限性。在今后的研究中,可以针对三维模型分析或是进行动力试验,以便更好地为实际工程服务。

  • 期刊类型引用(1)

    1. 禹海涛,李晶,王祺. 软土隧道基于地震响应的输入地震动排序. 地震学报. 2022(01): 123-131 . 本站查看

    其他类型引用(3)

计量
  • 文章访问数:  1409
  • HTML全文浏览量:  626
  • PDF下载量:  51
  • 被引次数: 4
出版历程
  • 发布日期:  2008-06-22

目录

/

返回文章
返回