Extraction of anomalous earthquake activity from the Haicheng seismicity window and estimation of prediction ability
-
摘要: 一个时间序列可以分解为趋势周期(含季节周期)部分和不规则随机部分.趋势周期部分是序列的潜在部分,它反映了增长、下降和周期影响的长期变动规律,具有确定性或可预测性;不规则随机部分包含残差、突然等因素引起的突变量,具有不可预测性. 当趋势周期部分被确定后,它可通过计算得到.本文研究了1975年海城MS7.3地震孕育、发生的断裂构造背景,合理地确立地震窗的范围来选取地震资料. 在此基础上,对海城地震窗地震月频次时间序列进行分解,采用自回归单整移动平均(ARIMA)模型确定了趋势周期部分,并计算得到了不规则随机部分;分析了不规则随机部分中的突变量异常特征对华北地区MS6.0和地震窗附近MS5.0以上地震的反应. 结果表明, 该异常特征具有较高预测效能, 对地震预测有较好参考价值.
-
关键词:
- 地震窗 地震断层 地震活动异常 预报效能
Abstract: An original time series signal can be decomposed into a trend-cycle, including seasonal cycle, component and an irregular component. The trend-cycle part is defined as underlying level of the series, and is a manifestation of medium-long term variation influenced by fluctuation and cycles referring to generally deterministic or predictable change of a series. The irregular component contains the residual variation and random abrupt changes, etc., being unpredictable. Knowing the trend-cycle component, the irregular part can be calculated. Based on the investigation of the faults associated with the 1975 Haicheng MS7.3 earthquake, this study reasonably determined the area window of the Haicheng earthquake series. Then the time series of monthly earthquakes in the Haicheng seismicity window was decomposed. The trend-cycle component of the series was determined using ARIMA (atuo regression integrated moving average) model and the irregular variation was also extracted. The reaction of the anomalous abrupt variation to the MSge;6.0 earthquakes in North China and MSge;5.0 earthquakes near the seismicity window was analyzed. The result shows that the anomaly of abrupt seismicity variation may be taken as an indicator with prediction ability. This is of significance in earthquake prediction. -
-
姜秀娥,张国民,单锦芬,王惠敏. 1989. “地震窗”在地震预报中的应用[G]//国家地震局科技监测司编. 地震预报方法实用化研究文集(地震学专辑). 北京: 学术书刊出版社: 296——311.
陆远忠,李胜乐,邓志辉,潘怀文,车时,李志雄. 2002. 基于GIS的地震分析预报系统[M]. 成都: 成都地图出版社: 11——72.
许绍燮. 1989. 地震预报能力评价[G]//国家地震局科技监测司编. 地震预报方法实用化研究文集(地震学专辑). 北京: 学术书刊出版社: 586——590.
薛丁,曹刚,纪建国. 2007. 河北邢台余震窗地震活动对华北地区6级以上地震的预测反应[J]. 山西地震, (2): 13——15.
张培震,邓起东,张国民,马瑾,甘卫军,闵伟,毛凤英,王琪. 2003. 中国大陆的强震活动与活动地块[J]. 中国科学: D辑,33(S1): 12——20.
Akaike H. 1973. Information theory and an extension of the maximum likelihood principle[C]//Petrov B N, Csaki F eds. 2nd International Symposium on Information Theory. Budapest: Akademiai Kiado: 267——281.
Barndorff——Nielsen O, Schou G. 1973. On the parametrization of autoregressive models by partial autocorrelations[J]. J Multivariate Anual,3(3): 408——419.
Bartlett M S. 1946. On the theoretical specification of sampling properties of autocorrelated time series[J]. J R Stat Soc,B8(27): 20——47.
Box G,Pierce D. 1970. Distribution of residual autocorrelations in ARIMA time series models[J]. J Am Stat Assoc,65(332): 1509——1526.
Box G P E, Jenkis G M. 1978. Time Series Analysis: Forecasting and Contro[M]. San Francisco: San Francisco Press: 20——79.
Dickey D,Fuller W. 1979. Distribution of the estimators for autoregressive time series with a unit root[J]. J Am Stat Assoc,74(336): 427——431.
Divine D V, Polzehl J, Godtliebsen F. 2008. A propagation——separation approach to estimate the autocorrelation in a time——series[J]. Nonlinear Processes Geophysics,15(4): 591——599.
Findley D F, Monsell B C, Bell W R, Otto M C, Chen B C. 1998. New capabilities and methods of the X——12——ARIMA seasonal adjustment program[J]. Journal of Business and Economic Statistics,16(2): 127——177.
Fischer B. 1995. Decomposition of Time Series: Comparing Different Methods in Theory and Practice[R]. Eurostat Working Group Document: 20——96.
Hamilton J. 1994. Time Series Analysis[M]. Princeton: Princeton University Press: 20——95.
Harvey A. 1989. Structural Time Series and the Kalman Filter,Forecasting[M]. Cambridge: Cambridge Univ Press: 20——90.
Ramsey F L. 1974. Characterization of the partial autocorrelation function[J]. Annals of Statistics,2(6): 1296——1301.
Said S E, Dickey D A. 1984. Testing for unit roots in autoregressivemoving average models of unknown order[J]. Biometrika,71(3): 599——608.
Schwarz G. 1978. Estimating dimension of a model[J]. Ann Stat,6(2): 461——464.
姜秀娥,张国民,单锦芬,王惠敏. 1989. “地震窗”在地震预报中的应用[G]//国家地震局科技监测司编. 地震预报方法实用化研究文集(地震学专辑). 北京: 学术书刊出版社: 296——311.
陆远忠,李胜乐,邓志辉,潘怀文,车时,李志雄. 2002. 基于GIS的地震分析预报系统[M]. 成都: 成都地图出版社: 11——72.
许绍燮. 1989. 地震预报能力评价[G]//国家地震局科技监测司编. 地震预报方法实用化研究文集(地震学专辑). 北京: 学术书刊出版社: 586——590.
薛丁,曹刚,纪建国. 2007. 河北邢台余震窗地震活动对华北地区6级以上地震的预测反应[J]. 山西地震, (2): 13——15.
张培震,邓起东,张国民,马瑾,甘卫军,闵伟,毛凤英,王琪. 2003. 中国大陆的强震活动与活动地块[J]. 中国科学: D辑,33(S1): 12——20.
Akaike H. 1973. Information theory and an extension of the maximum likelihood principle[C]//Petrov B N, Csaki F eds. 2nd International Symposium on Information Theory. Budapest: Akademiai Kiado: 267——281.
Barndorff——Nielsen O, Schou G. 1973. On the parametrization of autoregressive models by partial autocorrelations[J]. J Multivariate Anual,3(3): 408——419.
Bartlett M S. 1946. On the theoretical specification of sampling properties of autocorrelated time series[J]. J R Stat Soc,B8(27): 20——47.
Box G,Pierce D. 1970. Distribution of residual autocorrelations in ARIMA time series models[J]. J Am Stat Assoc,65(332): 1509——1526.
Box G P E, Jenkis G M. 1978. Time Series Analysis: Forecasting and Contro[M]. San Francisco: San Francisco Press: 20——79.
Dickey D,Fuller W. 1979. Distribution of the estimators for autoregressive time series with a unit root[J]. J Am Stat Assoc,74(336): 427——431.
Divine D V, Polzehl J, Godtliebsen F. 2008. A propagation——separation approach to estimate the autocorrelation in a time——series[J]. Nonlinear Processes Geophysics,15(4): 591——599.
Findley D F, Monsell B C, Bell W R, Otto M C, Chen B C. 1998. New capabilities and methods of the X——12——ARIMA seasonal adjustment program[J]. Journal of Business and Economic Statistics,16(2): 127——177.
Fischer B. 1995. Decomposition of Time Series: Comparing Different Methods in Theory and Practice[R]. Eurostat Working Group Document: 20——96.
Hamilton J. 1994. Time Series Analysis[M]. Princeton: Princeton University Press: 20——95.
Harvey A. 1989. Structural Time Series and the Kalman Filter,Forecasting[M]. Cambridge: Cambridge Univ Press: 20——90.
Ramsey F L. 1974. Characterization of the partial autocorrelation function[J]. Annals of Statistics,2(6): 1296——1301.
Said S E, Dickey D A. 1984. Testing for unit roots in autoregressivemoving average models of unknown order[J]. Biometrika,71(3): 599——608.
Schwarz G. 1978. Estimating dimension of a model[J]. Ann Stat,6(2): 461——464.
-
期刊类型引用(10)
1. 任雪梅,李文君,罗国富. 1970年以来“固原窗”M_L≥3.0地震活动增强现象及震兆意义. 华南地震. 2022(03): 58-64 . 百度学术
2. 张琳琳,聂晓红. 2021年3月24日拜城M_S5.4地震前拜城地震窗异常分析. 内陆地震. 2022(04): 297-302 . 百度学术
3. 罗恒之,曾宪伟,卫定军,罗国富,司学芸,李新艳. 2017年内蒙古阿拉善左旗5.0级地震震前异常总结. 地震地磁观测与研究. 2020(05): 183-191 . 百度学术
4. 张琳琳,敖雪明. 基于Molchan模型的乌恰地震窗预测效能评价. 内陆地震. 2019(01): 8-13 . 百度学术
5. 钱蕊,王亮,张志宏,杨士超,夏彩韵. 辽宁海城地震窗开窗指标及效能分析. 防灾减灾学报. 2019(03): 84-91 . 百度学术
6. 张琳琳,敖雪明. 新疆天山地震窗口网的进一步研究. 内陆地震. 2018(01): 33-42 . 百度学术
7. 王霞,宋美琴. 大同窗地震活动频次和应变能特征. 中国地震. 2017(02): 328-337 . 百度学术
8. 张琳琳,敖雪明,聂晓红. 2017年精河6.6级、库车5.7级地震前“库米什地震窗”异常特征分析. 中国地震. 2017(04): 721-727 . 百度学术
9. Li Yutong,Zhang Bo,Wang Liang,Li Tongxia. The Precursory Significance of Cumulative Slip of Repeating Earthquake Sequences Prior to Moderately Strong Earthquakes— A Case Study of Four Remarkable Earthquake Sequences of HaichengXiuyan. Earthquake Research in China. 2016(01): 22-32 . 必应学术
10. 李宇彤,张博,王亮,李彤霞. 地震序列中重复地震的累积滑动量对后续中强地震的前兆意义——以辽宁海城-岫岩地区4个显著地震序列为例. 中国地震. 2015(02): 235-244 . 百度学术
其他类型引用(0)
计量
- 文章访问数: 1521
- HTML全文浏览量: 514
- PDF下载量: 217
- 被引次数: 10