Characteristics of shear-wave splitting for the 2013 Lushan MS7.0 earthquake sequence
-
摘要: 本文测定了2013年4月20日芦山MS7.0地震震源区及其附近台站的S波分裂参数,包括快波偏振方向和慢波延迟时间,最终得到了40个台站的S波分裂结果.结果显示:在地震主破裂区内观测到的快波优势取向为NE向,与余震分布的长轴方向一致;位于双石—大川断裂以西台站的快波偏振优势方向为NW向,与区域最大主压应力轴方向一致;位于荥经断裂附近台站的快波偏振优势方向为NW向,与该断裂走向一致.快波偏振优势方向随时间的变化结果显示:主震前位于地震破裂区附近的TQU和BAX台站的快波偏振优势方向均呈NE向;主震后TQU台站的快波偏振优势方向为近EW向,而BAX台站的快波偏振优势方向则不突出,反映出芦山地震主震前快波偏振方向受控于龙门山断裂带,而主震后受构造应力场的作用更加明显.此外,各台站的慢波延迟时间为1.25—5.40ms/km,在余震覆盖密集区域,台站的慢波延迟时间均大于3.0ms/km,反映出震源区的各向异性程度较强.芦山主震后,各台站的延迟时间随时间变化持续减小,反映出震源区地壳应力随余震活动逐渐减小.Abstract: This paper measured the shear-wave splitting parameters, the polarization direction of fast shear-wave and the time delay of slow shear-wave, by using the seismic data recorded by the stations in the focal region and its adjacent areas of the MS7.0 Lushan earthquake on April 20, 2013. And then the shear-wave splitting results from 40 seismic stations were obtained, which indicates the crustal anisotropy in the studied area. The results show that the dominant polarization directions of fast shear-waves are in NE in the rupture zone, which is consistent with the strike of the major axis of aftershocks distribution. The dominant polarization directions of fast shear-waves in the west of Shuangshi--Dachuan fault are in NW in agreement with the directions of the regional principal compressive stress. And the dominant polarization directions of fast shear-waves, near Yingjing fault are in NW, which is consistent with the strike of Yingjing fault. It is also shown that the dominant polarization directions of fast shear-waves at the stations TQU and BAX around the rupture zone are in NE direction before the main shock, and the dominant polarization directions at the station TQU are almost in EW after the main shock, and the variation of polarization directions before and after the main shock is not obvious at the station BAX, which indicates the polarization directions of fast shear-waves are controlled by Longmenshan fault zone before the main shock, and mainly affected by tectonic stress field after the main shock. Furthermore, the time delay of slow shear-wave is in the range of 1.25—5.40 ms/km for all the stations, but more than 3.0 ms/km in the region with dense aftershocks coverage, reflecting strong anisotropy in the source area. After the main shock, the delay time decreased continuously, suggesting the stress field became stable gradually in the source region.
-
-
图 1 研究区内主要断裂和芦山主震、余震及地震台站分布图
F1:大邑—名山断裂;F2:双石—大川断裂;F3:盐井—五龙断裂;F4:金汤弧形断裂;F5:荥经断裂;F6:大渡河断裂
Figure 1. Distribution of the main faults,main shock(star)and aftershocks(black dots) of Lushan earthquake sequence and seismic stations in the studied area
F1:Dayi-Mingshan fault;F2:Shuangshi-Dachuan fault;F3:Yanjing-Wulong fault;F4:Jintang arc fault;F5:Yingjing fault;F6:Daduhe fault. Red and blue triangles represent the permanent and portable stations,respectively
图 2 S波分裂过程分析实例
(a),(b),(c)分别为TQU,L5530和SANJ台站记录的地震.第一行为三分量地震波形图,两虚线间的波形用 来绘制质点偏振图,Δ为震中距,d为震源深度;第二行为截取的部分波形质点振动图,S1和S2分别为快、慢波到时,两根短线间隔为0.01 s;第三行为快(F)、慢(S)波波形图,两虚线分别标记快、慢波到时
Figure 2. Examples for the process analysis of shear-wave splitting
(a)-(c)are three earthquakes recorded by station TQU,L5530 and SANJ,respectively. The first line represents the three-component waveforms. Two vertical dashed lines mark the scope of waveform shown in polarization figure. Δ represents the epicentral distance,d represents the focal depth. The second line represents the trails of particle of the cut waveform. S1 and S2 represent the arrival time of fast shear-wave and slow shear-wave,the time interval between two short lines is 0.01 s. The third line represents the waveforms of fast wave and slow wave. The two vertical dashed lines represent the arrival time of slow shear-wave and fast shear-wave in turn,respectively
图 5 3个固定台站的快波偏振方向等面积投影玫瑰图
蓝色和红色分别表示芦山主震前、后的快波偏振方向
Figure 5. The homolographic projection rose diagrams of the polarization directions of the fast shear-wave for the three permanent stations
The blue and red represent the polarization directions of fast shear-wave before and after Lushan main shock,respectively
表 1 40个台站的快波偏振方向
Table 1 The polarization directions of fast shear-waves for forty stations
编号 台站 观测时段 快波偏振优势 方向/° 快波偏振优势 方向标准差/° 有效记录条数 1 L131 2013-04-21—2013-06-09 79 26 169 2 L132 2013-04-21—2013-06-09 55 17 151 120 25 18 3 L134 2013-04-21—2013-06-08 54 15 488 4 L135 2013-04-22—2013-05-03 58 13 229 148 28 14 5 L136 2013-04-23—2013-06-11 46 19 14 6 L5530 2013-04-23—2013-06-05 132 23 47 7 L5531 2013-04-22—2013-05-02 48 14 11 8 L5533 2013-04-23—2013-05-22 150 19 133 9 BAX 2011-02-01—2014-07-31 814 10 TQU 2009-09-01—2014-07-31 91 27 891 11 MDS 2008-05-01—2014-07-31 57 10 187 12 GZA 2008-05-01—2014-07-31 147 9 198 13 AJWA 2013-06-25—2014-07-31 75 16 10 14 BABU 2013-06-25—2014-07-31 137 14 11 57 17 6 15 CYUT 2013-06-25—2014-07-31 82 20.4 12 167 5 3 16 DACH 2013-06-25—2014-07-31 24 14 9 17 DARY 2013-06-25—2014-07-31 105 18 11 18 FXGU 2013-06-25—2014-07-31 46 10 7 94 0 1 19 HEMN 2013-06-25—2014-07-31 38 12 5 20 LCGO 2013-06-25—2014-07-31 9 21 LIES 2013-06-25—2014-07-31 100 14 19 22 LING 2013-06-25—2014-07-31 57 13 302 23 LLAN 2013-06-25—2014-07-31 87 18 95 24 LMEN 2013-06-25—2014-07-31 93 28 180 25 LOND 2013-06-25—2014-07-31 142 19 76 35 15 8 26 LUSA 2013-06-25—2014-07-31 72 19 138 27 MINL 2013-06-25—2014-07-31 178 13 40 28 MUJI 2013-06-25—2014-07-31 35 10 25 29 SANJ 2013-06-25—2014-07-31 63 30 SUSI 2013-06-25—2014-07-31 52 12 297 31 TAIP 2013-06-25—2014-07-31 24 10 82 32 TTSA 2013-06-25—2014-07-31 40 13 12 105 6 3 33 WANG 2013-06-25—2014-07-31 46 11 21 162 8 7 34 WEJI 2013-06-25—2014-07-31 5 35 WOLN 2013-06-25—2014-07-31 55 29 67 36 XIGO 2013-06-25—2014-07-31 175 12 20 37 XINL 2013-06-25—2014-07-31 50 12 5 38 YANJ 2013-06-25—2014-07-31 150 16 333 39 ZHLI 2013-06-25—2014-07-31 71 29 52 40 ZISG 2013-06-25—2014-07-31 136 26 50 -
常利军, 丁志峰, 王椿镛. 2010. 2010年玉树7.1级地震震源区横波分裂的变化特征[J]. 地球物理学报, 53(11): 2613-2619. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201011012.htm Chang L J, Ding Z F, Wang C Y. 2010. Variations of shear wave splitting in the 2010 Yushu MS7.1 earthquake region[J]. Chinese Journal of Geophysics, 53(11): 2613-2619 (in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201011012.htm
常利军, 丁志峰, 王椿镛. 2015. 2013年芦山MS7.0 地震震源区横波分裂的变化特征[J]. 中国科学: 地球科学, 45(2): 161-168. Chang L J, Ding Z F, Wang C Y. 2014. Variations of shear wave splitting in the 2013 Lushan MS7.0 earthquake region[J]. Science China Earth Sciences, 57(9): 2045-2052. doi: 10.1007/s11430-014-4866-8
陈天长, 李志君, 张润生, 杜国光, 彭万星. 1995. 1989年6月9日石棉5.2级地震后横波分裂的时间变化[J]. 地震学报, 17(1): 52-61. http://www.dzxb.org/stat/ShowHtml?ContentID=27744 Chen T C, Li Z J, Zhang R S, Du G G, Peng W X. 1995. Temporal changes in shear wave splitting after the M=5.2 Shimian earthquake of June 9, 1989[J]. Acta Seismologica Sinica, 8(1): 65-75. doi: 10.1007/BF02650998
丁志峰, 武岩, 王辉, 周晓峰, 李桂银. 2008. 2008年汶川地震震源区横波分裂的变化特征[J]. 中国科学: D辑, 38(12): 1600-1604. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200812013.htm Ding Z F, Wu Y, Wang H, Zhou X F, Li G Y. 2008. Variations of shear wave splitting in the 2008 Wenchuan earthquake region[J]. Science in China: Series D, 51(12): 1712-1716. doi: 10.1007/s11430-008-0141-1
房立华, 吴建平, 王未来, 吕作勇, 王长在, 杨婷. 2013. 四川芦山MS7.0级地震及其余震序列重定位[J]. 科学通报, 58(20): 1901-1909. Fang L H, Wu J P, Wang W L, Lü Z Y, Wang C Z, Yang T. 2013. Relocation of the mainshock and aftershock sequences of MS7.0 Sichuan Lushan earthquake[J]. Chinese Science Bulletin, 58(28/29): 3451-3459.
高原, 郑斯华, 周蕙兰. 1999. 唐山地区快剪切波偏振图像及其变化[J]. 地球物理学报, 42(2): 228-232. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX199902011.htm Gao Y, Zheng S H, Zhou H L. 1999. Polarization patterns of fast shear wave in Tangshan region and their variations[J]. Chinese Journal of Geophysics, 42(2): 228-232 (in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX199902011.htm
刘杰, 易桂喜, 张致伟, 官致君, 阮祥, 龙锋, 杜方. 2013. 2013年4月20日四川芦山M7.0级地震介绍[J]. 地球物理学报, 56(4): 1404-1407. Liu J, Yi G X, Zhang Z W, Guan Z J, Ruan X, Long F, Du F. 2013. Introduction to the Lushan, Sichuan M7.0 earthquake on 20 April 2013[J].Chinese Journal of Geophysics, 56(4): 1404-1407 (in Chinese).
刘莎, 吴朋, 杨建思, 苏金蓉. 2014. 吉林省前郭地区地震各向异性的初步探讨[J]. 地球物理学报, 57(7): 2088-2098. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201407006.htm Liu S, Wu P, Yang J S, Su J R. 2014. Preliminary study of seismic anisotropy in Qianguo area, Jilin Province[J]. Chinese Journal of Geophysics, 57(7): 2088-2098 (in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201407006.htm
吕坚, 王晓山, 苏金蓉, 潘林山, 李正, 尹利文, 曾新福, 邓辉. 2013. 芦山7.0级地震序列的震源位置与震源机制解特征[J]. 地球物理学报, 56(5): 1753-1763. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201305034.htm Lü J, Wang X S, Su J R, Pan L S, Li Z, Yin L W, Zeng X F, Deng H. 2013. Hypocentral location and source mechanism of the MS7.0 Lushan earthquake sequence[J]. Chinese Journal of Geophysics, 56(5): 1753-1763 (in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201305034.htm
孟文, 陈群策, 吴满路, 李国岐, 秦向辉, 丰成君. 2013. 龙门山断裂带现今构造应力场特征及分段性研究[J]. 地球物理学进展, 28(3): 1150-1160. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201303005.htm Meng W, Chen Q C, Wu M L, Li G Q, Qin X H, Feng C J. 2013. Research on segmentation and characteristic of tectonic stress field of Longmenshan fault zone[J].Progress in Geophysics, 28(3): 1150-1160 (in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201303005.htm
石玉涛, 高原, 张永久, 王辉, 姚志祥. 2013. 松潘—甘孜地块东部、 川滇地块北部与四川盆地西部的地壳剪切波分裂[J]. 地球物理学报, 56(2): 481-494. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201302011.htm Shi Y T, Gao Y, Zhang Y J, Wang H, Yao Z X. 2013. Shear-wave splitting in the crust in eastern Songpan-Garzê block, Sichuan-Yunnan block and western Sichuan basin[J]. Chinese Journal of Geophysics, 56(2): 481-494 (in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201302011.htm
苏金蓉, 郑钰, 杨建思, 陈天长, 吴朋. 2013. 2013年4月20日四川芦山M7.0级地震与余震精确定位及发震构造初探[J]. 地球物理学报, 56(8): 2636-2644. Su J R, Zheng Y, Yang J S, Chen T C, Wu P. 2013. Accurate locating of the Lushan, Sichuan M7.0 earthquake on 20 April 2013 and its aftershocks and analysis of the seismogenic structure[J]. Chinese Journal of Geophysics, 56(8): 2636-2644 (in Chinese).
吴晶, 高原, 陈运泰, 黄金莉. 2007. 首都圈西北部地区地壳介质地震各向异性特征初步研究[J]. 地球物理学报, 50(1): 209-220. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200701026.htm Wu J, Gao Y, Chen Y T, Huang J L. 2007. Seismic anisotropy in the crust in northwestern capital area of China[J].Chinese Journal of Geophysics, 50(1): 209-220 (in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200701026.htm
徐锡伟, 陈桂华, 于贵华, 程佳, 谭锡斌, 朱艾斓, 闻学泽. 2013. 芦山地震发震构造及其与汶川地震关系讨论[J]. 地学前缘, 20(3): 11-20. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201303002.htm Xu X W, Chen G H, Yu G H, Cheng J, Tan X B, Zhu A L, Wen X Z. 2013. Seismogenic structure of Lushan earthquake and its relationship with Wenchuan earthquake[J]. Earth Science Frontiers, 20(3): 11-20 (in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201303002.htm
张培震, 徐锡伟, 闻学泽, 冉勇康. 2008. 2008年汶川8.0级地震发震断裂的滑动速率、 复发周期和构造成因[J]. 地球物理学报, 51(4): 1066-1073. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200804017.htm Zhang P Z, Xu X W, Wei X Z, Ran Y K. 2008. Slip rates and recurrence intervals of the Longmenshan active fault zone, and tectonic implications for the mechanism of the May 12 Wenchuan earthquake, 2008, Sichuan, China[J]. Chinese Journal of Geophysics, 51(4): 1066-1073 (in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200804017.htm
张勇, 许力生, 陈运泰. 2013. 芦山4·20地震破裂过程及其致灾特征初步分析[J]. 地球物理学报, 56(4): 1408-1411. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201304037.htm Zhang Y, Xu L S, Chen Y T. 2013. Rupture process of the Lushan 4·20 earthquake and preliminary analysis on the disaster-causing mechanism[J]. Chinese Journal of Geophysics, 56(4): 1408-1411 (in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201304037.htm
张永久, 高原, 石玉涛, 程万正. 2008. 四川区域地震台网的剪切波分裂研究[J]. 地震学报, 30(2): 123-134. http://www.dzxb.org/stat/ShowHtml?ContentID=26348 Zhang Y J, Gao Y, Shi Y T, Cheng W Z. 2008. A study on S wave splitting using waveform data from Sichuan regional seismic network[J]. Acta Seismologica Sinica, 30(2): 123-134 (in Chinese). http://www.dzxb.org/stat/ShowHtml?ContentID=26348
赵博, 高原, 黄志斌, 赵旭, 李大虎. 2013. 四川芦山MS7.0地震余震序列双差定位、 震源机制及应力场反演[J]. 地球物理学报, 56(10): 3385-3395. Zhao B, Gao Y, Huang Z B, Zhao X, Li D H. 2013. Double difference relocation, focal mechanism and stress inversion of Lushan MS7.0 earthquake sequence[J]. Chinese Journal of Geophysics, 56(10): 3385-3395 (in Chinese).
赵珠, 范军, 郑斯华, 长谷川昭, 堀内茂木. 1997. 龙门山断裂带地壳速度结构和震源位置的精确修定[J]. 地震学报, 19(6): 615-622. http://www.dzxb.org/stat/ShowHtml?ContentID=27610 Zhao Z, Fan J, Zheng S H, Hasegawa A, Horiuchi S. 1997. Crustal structure and accurate hypocenter determination along the Longmenshan fault zone [J]. Acta Seismologica Sinica, 10(6): 761-768. doi: 10.1007/s11589-997-0008-0
Booth D C, Crampin S, Evans R, Roberts G. 1985. Shear-wave polarizations near the North Anatolian fault: I. Evidence for anisotropy-induced shear-wave splitting[J]. Geophys J Int, 83(1): 61-73.
Booth D C, Crampin S, Lovell J H, Chiu J M. 1990.Temporal changes in shear wave splitting during an earthquake swarm in Arkansas[J]. J Geophys Res, 95(B7): 11151-11164. doi: 10.1029/JB095iB07p11151
Chen T C, Booth D C, Crampin S. 1987. Shear-wave polarizations near the North Anatolian fault: III. Observations of temporal changes[J]. Geophys J Int, 91(2): 287-311.
Crampin S. 1978. Seismic-wave propagation through a cracked solid: Polarization as a possible dilatancy diagnostic[J]. Geophys J Int, 53(3): 467-496. doi: 10.1111/gji.1978.53.issue-3
Crampin S. 1981. A review of wave motion in anisotropic and cracked elastic-media[J]. Wave Motion, 3(4): 343-391. doi: 10.1016/0165-2125(81)90026-3
Crampin S, Atkinson B K. 1985. Microcracks in the Earth’s crust[J]. First Break, 3(3): 16-20. http://cn.bing.com/academic/profile?id=2326717426&encoded=0&v=paper_preview&mkt=zh-cn
Crampin S. 1999. Calculable fluid-rock interactions[J]. J Geolog Soc, 156(3): 501-514. doi: 10.1144/gsjgs.156.3.0501
Crampin S, Peacock S. 2005. A review of shear-wave splitting in the compliant crack-critical anisotropic Earth[J]. Wave Motion, 41(1): 59-77. doi: 10.1016/j.wavemoti.2004.05.006
Gao Y, Crampin S. 2003. Temporal variations of shear-wave splitting in field and laboratory studies in China[J]. J Appl Geophys, 54(3): 279-287. http://cn.bing.com/academic/profile?id=2133619354&encoded=0&v=paper_preview&mkt=zh-cn
Gao Y, Crampin S. 2008. Shear-wave splitting and earthquake forecasting[J]. Terra Nova, 20(6): 440-448. doi: 10.1111/ter.2008.20.issue-6
Nuttli O. 1961. The effect of the Earth’s surface on the S wave particle motion[J]. Bull Seismol Soc Am, 51(2): 237-246. http://cn.bing.com/academic/profile?id=2326940296&encoded=0&v=paper_preview&mkt=zh-cn
Shih X R, Meyer R P, Schneider J F. 1989. An automated, analytical method to determine shear-wave splitting[J].Tectonophysics, 165(1/2/3/4): 271-278. http://cn.bing.com/academic/profile?id=1966410883&encoded=0&v=paper_preview&mkt=zh-cn
Tadokoro K, Ando M. 2002. Evidence for rapid fault healing derived from temporal changes in S wave splitting[J]. Geophys Res Lett, 29(4): 6-1-6-4. http://cn.bing.com/academic/profile?id=1987513733&encoded=0&v=paper_preview&mkt=zh-cn
Volti T, Crampin S. 2003. A four-year study of shear-wave splitting in Iceland: 1. Background and preliminary analysis[J]. Geolog Soc Lond Spec Publ, 212(1): 117-133. doi: 10.1144/GSL.SP.2003.212.01.08