大地震孕育过程中的浑沌特征
-
摘要: 众所周知,大地震的孕育和发展不仅是非常复杂的物理过程,而且是时间不可逆的非线性动力学过程.根据上述观点探讨了海城和唐山大地震发生前、后的地震活动特征.同时还在实验室条件下研究了岩石失稳破裂前,声发射序列的信息维特征.初步结果表明:大震发生前地震活动存在着浑沌行为,有一个低维吸引子.主震后地震活动表现为一种高维的类随机行为.某些震群结果类似于震后的情况.在信息维研究中,发现岩石失稳破裂前和某些(海城与唐山)大震发生前都有一个降维过程,且有较宽的无标度区.临近失稳前,无标度区变窄,信息维升高.
-
-
[1] 安镇文、王林瑛、朱传镇,1989.大震前后地震活动的时空分维特征.地震学报,11, 251——258.
[2] 陈颙. 1989.地震的红肿假说与降维现象.八十年代中国地球物理学进展,56——61.学术书刊出版社、北京.
[3] 傅承义,1989.地震预测工作的一些反思,八十年代中国地球物理学进展,1——4.学术书刊出版社,北京.
[4] 罗久理、刘冬燕,1990.地震活动究竟是浑沌现象还是确定性的?大自然探索,1, 26——31.
[5] Caputo, J. G.,Malraison, B. and Atten, P., 1986. Determination of attractor dimension and entropy for varions flows: In:G. Mayer——Kress (editor),.Dirrensions and Entropies in Chaotic Svstems, 180一190. Springer Verlag, Berlin.
[6] Fraser, A. M. and Swinney, H. L.,1986. Independent coordinates for strange attractors from mutual informstion. Phvs. Rev.,A 33, 1134——1140.
[7] Grassberger, P. and Proccacia, 1.,1984. Dimension and entropies of strange attractors from a fluctuating dynamics approach. Physics,13D, 34——54.
[8] Grassberger, P.,1986. Estimating the fractal dimensions and entropies of strange attractors. In: A. V. Holden, (editor ),Chans. 291——311. Manchester University Press, UK
[9] Hirata, T.,Satoh. T.、Ito, K.,1987. Fractal structure of spatial distribution of microfracturing in rock. Genplays. J. R. astr. Soc, 90. 369——374.
[10] Horowitz, F. G.,1988. Nonlinear friction and chaos in seismicity: Speculations about a geometric framwork for predicting earthquake. EOS, 69, 1437.
[11] Kagan, Y. Y. and Knopoff, L.,1980. Spatial distribution of earthquakes: the two——point correlation function. J. Geeophys. Res. , 62, 303——320.
[12] Scholz, C. H.,1989. Global perspectives of Chaos. Nature, 338, 459——460.
[13] Takens, F., 1981. Lecture Notes in Math, 898. Springer, Heidelberg——New York.
[14] Weiss, N. O., 1987. Diagnosis of dynamical systems with Ouctuating parameters. Proc. R. Soc. Loud, A413, 5——8.
[15] Wyss, M., 1990. Seismic cycle not so simple. Nature, 345, 290.[1] 安镇文、王林瑛、朱传镇,1989.大震前后地震活动的时空分维特征.地震学报,11, 251——258.
[2] 陈颙. 1989.地震的红肿假说与降维现象.八十年代中国地球物理学进展,56——61.学术书刊出版社、北京.
[3] 傅承义,1989.地震预测工作的一些反思,八十年代中国地球物理学进展,1——4.学术书刊出版社,北京.
[4] 罗久理、刘冬燕,1990.地震活动究竟是浑沌现象还是确定性的?大自然探索,1, 26——31.
[5] Caputo, J. G.,Malraison, B. and Atten, P., 1986. Determination of attractor dimension and entropy for varions flows: In:G. Mayer——Kress (editor),.Dirrensions and Entropies in Chaotic Svstems, 180一190. Springer Verlag, Berlin.
[6] Fraser, A. M. and Swinney, H. L.,1986. Independent coordinates for strange attractors from mutual informstion. Phvs. Rev.,A 33, 1134——1140.
[7] Grassberger, P. and Proccacia, 1.,1984. Dimension and entropies of strange attractors from a fluctuating dynamics approach. Physics,13D, 34——54.
[8] Grassberger, P.,1986. Estimating the fractal dimensions and entropies of strange attractors. In: A. V. Holden, (editor ),Chans. 291——311. Manchester University Press, UK
[9] Hirata, T.,Satoh. T.、Ito, K.,1987. Fractal structure of spatial distribution of microfracturing in rock. Genplays. J. R. astr. Soc, 90. 369——374.
[10] Horowitz, F. G.,1988. Nonlinear friction and chaos in seismicity: Speculations about a geometric framwork for predicting earthquake. EOS, 69, 1437.
[11] Kagan, Y. Y. and Knopoff, L.,1980. Spatial distribution of earthquakes: the two——point correlation function. J. Geeophys. Res. , 62, 303——320.
[12] Scholz, C. H.,1989. Global perspectives of Chaos. Nature, 338, 459——460.
[13] Takens, F., 1981. Lecture Notes in Math, 898. Springer, Heidelberg——New York.
[14] Weiss, N. O., 1987. Diagnosis of dynamical systems with Ouctuating parameters. Proc. R. Soc. Loud, A413, 5——8.
[15] Wyss, M., 1990. Seismic cycle not so simple. Nature, 345, 290.
计量
- 文章访问数: 1588
- HTML全文浏览量: 36
- PDF下载量: 139