WSQ-1型电涡流自记水管倾斜仪的研制

刘长恩, 钟菊林

刘长恩, 钟菊林. 1984: WSQ-1型电涡流自记水管倾斜仪的研制. 地震学报, 6(1): 111-120.
引用本文: 刘长恩, 钟菊林. 1984: WSQ-1型电涡流自记水管倾斜仪的研制. 地震学报, 6(1): 111-120.
LIU CHANGEN, ZHONG JULIN h. 1984: DEVELOPMENT OF THE WSQ-1 EDDY CURRENT TYPE AUTOMATIC RECORDING WATER- TUBE TILTMETER. Acta Seismologica Sinica, 6(1): 111-120.
Citation: LIU CHANGEN, ZHONG JULIN h. 1984: DEVELOPMENT OF THE WSQ-1 EDDY CURRENT TYPE AUTOMATIC RECORDING WATER- TUBE TILTMETER. Acta Seismologica Sinica, 6(1): 111-120.

WSQ-1型电涡流自记水管倾斜仪的研制

DEVELOPMENT OF THE WSQ-1 EDDY CURRENT TYPE AUTOMATIC RECORDING WATER- TUBE TILTMETER

  • 摘要: 为了连续记录地壳长期倾斜运动和进行固体潮的观测研究,我们设计制造了 WSQ-1型电涡流自记水管倾斜仪.该仪器缸体采用浮子--横臂结构,并在设计中考虑了温度补偿.为本仪器专门研制的 WQB-B-1000型电涡流位移变换器是一种非接触式传感器,它具有灵敏度高、动态范围宽、稳定性好、对浮子导向要求低等优点.这种传感器的采用,简化了仪器结构,并保证了整机的良好性能.仪器输出两缸体的水位差与水位和信号,前者即测得的倾斜信号,而后者不仅作为整机稳定性指示,而且在利用位于水管中央的标定器进行标定时作为标定信号.测试和试记录证明,仪器格值优于5.10-9rad/mm(水管长度30m),测量水位差范围1mm(不需调整),平均漂移优于310-9rad/日,记录固体潮因子精度达0.003(M2波,88天).
    Abstract: The WSQ-1 Type Automatic Recording Water-Tube Tiltmenter is designed for continuous recording of secular ground tilt and earth tide observation.The tiltmeter has a float-arm structure. Temperature compensation has been taken into consideration in the design. The WQB-B-1000 type Electro-Eddy-current displacement transducer specially developed for the tiltmefer is a non-contact transducer with high sensibility, wide dynamic range and high stability and less requisites in direction guiding of the float. The transducer not only simplifies the structure of the tiltmeter but also ensures its good quality. The tiltmeter output represents the water level difference and sum in the two water vessels. The difference gives the tilt signals which are to be measured while the sum indicates not only of the stability of the tiltmenter but also act as signal when the it is calibrated by means of a calibrator fixed at the center of the water tube. Actual test results show that the scale value of the WQS-1 tiltmeter is better than 510-9 rad/mm (when the water tube is 30 meters long), average zero drift is better than 310-9 rad/day, measuring range is 1mm (no readjustment needed) and the accuracy of measurement of the tidal factor r reaches 0.003 (M2. 88 davs).
  • 地震是构造应力作用下岩体突然断裂和错动所致。在这个过程中,随着应力的不断加载,地壳介质的物性参数也不断变化。及至孕震晚期,震源区应力相对集中的地壳介质的电性结构会发生变化,从而引起大地电场的变化(毛桐恩等,1999),这种地电场变化已在多次中强地震前观测到,属于中短期异常(Varotsos,Alexopoulos,1984黄清华,刘涛,2006马钦忠,2008田山等,2009安张辉等,2017席继楼,2019)。但由于电磁环境复杂,有效的地震电信号经常被淹没在各种干扰中,使得震前异常电信号提取面临较大困难。目前常规使用的地震电信号提取方法有长短极距比值法(田山等,2009)、极化方位计算法(毛桐恩等,1999)、常规波形分析法(钱复业,赵玉林,2005)、频谱分析法(范莹莹等,2010)等,利用上述方法处理1975年海城MS7.3地震、2006年文安MS5.1地震、2008年汶川MS8.0地震、2013年芦山MS7.0地震和2017年九寨沟MS7.0地震等多次中强地震的观测资料时,均提取到与地震有关的地电场异常变化,但这些方法在异常提取、机理解释和抗干扰性方面还存在一定的局限。因此在复杂电磁环境中提取相对较弱的地震电磁信号,亟需将数学、信号处理与地震电磁物理过程相结合,才能更好地降低或消除地电场数据中干扰成分对预测的影响(黄清华,2005)。

    近年来,相关学者对大地电场的机理、特征、数值模拟以及大地电场的物理解析等方面进行了深入的研究(黄清华,刘涛,2006叶青等,2007),特别是谭大诚等(20102011201220132019)基于大地电场的潮汐机理,将源于空间电流系和潮汐作用的大地电场与岩体裂隙结构联系起来(陈全等,2019),建立了大地电场的岩体裂隙水(电荷)渗流(移动)模型,并逐步发展出地电场优势方位角分析方法,藉此探寻震中附近的岩体裂隙结构变化。谭大诚等(2019)艾萨等(2020)利用地电场优势方位角分析方法,在近几年的部分中强地震前也提取到了显著的异常信息。尤其是在部分地震前会出现多个场地的优势方位角变化在时间上出现了准同步的异常现象,这也加强了异常信息的信度。此外,地电场优势方位角分析方法机理解释明确,并对一般空间电磁干扰、附近电磁环境干扰等具有一定程度的抗干扰性(辛建村等,2017张波等,2020),故该方法具有较高的可靠性和较好的应用前景。

    2021年5月22日青海省果洛州玛多发生MS7.4地震(34.59°N,98.34°E),震源深度为17 km,震中位于巴颜喀拉地块内部,是一次典型的左旋走滑地震事件,局部兼有正断分量,在地表形成了走向北西—南东、长约70 km的破裂面。该地震是2008年汶川MS8.0地震以来中国大陆发生的震级最大的一次地震,打破了青海地区56个月的M6平静以及10年的M7平静。大武台地电场场地距本次地震震中约172 km,为距震中最近的地球物理场观测台站,但大武台的原始观测资料并未呈显著的地电异常现象。为了探究玛多MS7.4地震前大武台地电场是否存在地震电信号,本文拟利用大地电场优势方位角方法来提取玛多地震前大武台地电场的异常变化,对异常特征进行分析研究,并结合该方法在大武台记录的以往震例中的应用,梳理出强震前地电场优势方位角的异常变化特征,归纳总结该方法在青海地区强震前的异常判定指标,旨在为未来大震前后地电场的观测分析和跟踪研判提供参考依据。

    大武地震台位于青海省果洛藏族自治州玛沁县大武镇,海拔3 800 m,距离镇区3 km。目前大武台有新旧两个地电观测场地,相距约36 km。旧的大武台地电场(以下简称为大武台(旧))地位于台站院内,新的大武台地电场(以下简称为大武台(新))位于甘德县青珍乡的一个草滩,两套地电场台站周围均无高大建筑物、水库、湖泊、河流和大型厂矿等重大环境干扰源,且分别位于东昆仑断裂带两侧约10 km和25 km (图1),而东昆仑活动断裂带是一条规模巨大、构造活动十分强烈的全新世活动断裂,自1900年以来沿该断裂带已发生了10余次M7强震,最大地震为1947年3月果洛达日M7.7地震。

    图  1  玛多MS7.4地震震中及附近地电场台站分布
    Figure  1.  Location of the epicenter of Maduo MS7.4 earthquake and distribution of the geoelectric stations

    大武台地电场(旧)使用ZD9A-2B地电场仪,采用“多方向、多极距”方法进行观测,布极方式为“L”型,分别为NS,EW和NE三个测向的长、短极距共六道测线,线路采用绝缘铠装电缆以地埋的方式架设。电极装置采用固体不极化电极,深度为3.5 m,电极和铠装电缆均埋设在地表冻土层以下的潮湿土壤中,地电场布极装置方式如图2所示。

    图  2  大武地震台(旧)地电场观测布极图
    Figure  2.  Electrode distribution of electric field (old site) of Dawu seismic station

    大地电场具有日变波形特征,目前大地电场来源于地球日月潮汐作用和空间地球电离层两部分。而地壳中岩体内总存在含水裂隙,这些裂隙水或水中的电荷以日为周期沿裂隙往返渗流或移动,建立了大地电场的日变化的岩体裂隙水(电荷)渗流(移动)模型。即地下介质的应力积累会导致岩体裂隙结构的变化,从而使大地电场的强度或方位发生改变,因此岩体裂隙结构的优势方位基本就是大地电场的优势方位。

    在实际地电场观测中,设潮汐地电场(大地电场主要成分)为ET,场地裂隙水主体渗流方向为α,也称为地电场优势方位角。当台站地电场的NS测向与NW测向之间的相关性最高时,大地电场ET的优势方位角α(北偏东)的计算公式如下(谭大诚等,201220132019):

    $$ \alpha {\text{≈}} {180}- \frac{180}{\pi} {{\rm{arctan}}}\left(\sqrt{2}\frac{\displaystyle\sum\limits _{i=1}^{10}{A}_{{\rm{NW}} ( i ) }}{\displaystyle\sum\limits _{i=1}^{10}{A}_{{\rm{NS}} ( i ) }}-1\right) ,$$ (1)

    式中ANW(iANS(i分别为NW测向和NS测向的第i阶潮汐谐波振幅。应用谐波分析法对地电场分钟值数据(每天1 440个)开展信号处理,即对这些数据进行快速傅里叶变换,得到周期为24,12,8,6,4.8,4,3.4,3,2.7和2.4 h谐波的振幅(谭大诚等,2019)。

    此外,本文分析数据采用原始分钟值数据,减少了预处理造成的干扰,真实地反映异常的变化情况。

    利用大地电场优势方位角方法,基于2020年以来大武台地电场(新旧两台)观测数据,得到地电场优势方位角随时间的变化曲线如图3所示。由图可见:大武台(旧)得到的观测数据其优势方位角在2020年1—5月中旬变化不大,即Δα在20°以内跳变,而在2020年5月中旬以后,方位角跳变范围出现快速、持续偏转的趋势,其偏转范围最大接近45° (图3a),持续至2021年4月方位角跳变出现快速偏转回升,随后发生玛多MS7.4地震;大武台(新)得到的观测数据其优势方位角在2020年1—5月跳变范围稳定,即Δα跳动范围在10°以内,而在2020年5月中旬以后,方位角跳变范围也同步出现缓慢、持续偏转的趋势,其偏转范围增大接近90° (图3b),随后发震。从整个演化过程来看,两套地电场台的地电场优势方位角于2020年5月中旬同步出现显著的快速偏转现象,随后在震前两个月再次出现快速偏转回升至正常跳变范围,随后发震。

    图  3  2020年以来大武台地电场旧(a)、新(b)台的地电场优势方位角变化
    Figure  3.  The variation of the dominant azimuth of geoelectric field at old (a) and new (b) sites of Dawu station since 2020

    为进一步探求玛多MS7.4地震前大地电场优势方位角异常的空间演化特征,选取2020年以来玛多地震震中500 km范围内的八个地电场台站的观测资料进行分析。首先查阅各观测台站的工作日志,对资料进行核实和排查,确保异常的可信度;然后使用地电场优势方位角方法得到这八个地电台的地电场优势方位角变化,详见表1,从表中可见四川省甘孜台、甘肃玛曲台同时期的地电场优势方位角均出现较为同步的异常变化,如图4所示。可见:甘孜台地电场优势方位角在2020年6月初开始出现显著、快速、持续偏转的现象,其偏转范围最大接近90°,收缩成近直线,随后在震前两个月出现跳变增大现象(图4a);玛曲台在震前同时期也出现了异常现象,但因环境干扰较为严重,异常形态不显著,主要以持续突跳为主(图4b)。

    表  1  玛多MS7.4地震前震中500 km内地电场优势方位角的变化特征
    Table  1.  Variation characteristic of the dominant azimuth based on geoelectric field before MS7.4 Maduo earthquake within 500 km
    地电场台站震中距/km异常形态异常出现日期
    年-月-日
    开始观测日期
    年-月-日
    大武(旧)170快速偏转,Δα≈45°2020-05-102014-12-12
    大武(新)169Δα增大至90° 2020-05-08 2020-01-01
    玛曲335Δα增大至60° 2020-05-04 2014-03-22
    甘孜360快速偏转,Δα≈90° 2020-05-15 2017-12-01
    都兰190无异常 2014-12-01
    白水河355无异常 2015-01-01
    金银滩256无异常 2019-06-04
    门源地电场433无异常2020-01-01
    下载: 导出CSV 
    | 显示表格
    图  4  2020年以来甘孜(a)、玛曲台(b)的地电场方位角异常变化
    Figure  4.  The variation of the dominant azimuth angle based on geoelectric field data at the seismic stations Garze (a) and Maqu (b) since 2020

    通过上述分析可以看出,地震前出现大地电场优势方位角异常现象是真实存在的,并且时间上具有一定准同步性,但场地具有选择性,例如:都兰台虽然距玛多地震震中仅190 km,但震前无异常现象,对该台有记录以来的数据分析也显示都兰台地电场使用该方法在以往地震前均无异常变化,目前认为这可能与其处于应力不敏感地区有关。根据詹艳(2008)利用大地电磁方法对巴颜喀拉地块探测的研究,大武台所处的巴颜喀拉地块内部的地壳上地幔电性结构具有成层性,中、强地震的震中多位于壳内低阻层的地层层段,埋深约20 km,这与本次地震的震源深度相似。此外,优势方位角未呈现异常现象的都兰台、白水河台、门源台和金银滩台处于柴达木地块以及祁连地块,而出现异常的玛曲台、甘孜台则与玛多地震共处于巴颜喀拉地块,可见,在玛多地震的孕育过程中,所处的巴颜喀拉地块存在电性结构的改变,而柴达木地块和祁连地块均未记录到明显的电性结构变化。综合分析认为,地电场优势方位角的变化显著受到构造的影响,异常响应多出现在同一地块内部或边缘。

    大武台(旧)自2014年改造后,已经积累了近六年的地电场观测资料。通过梳理历史数据可知,大武台(旧)地电场对周边中强震以上的地震反应较为敏感,即在地震前出现明显的地电场优势方位角跳变异常现象。2015年以来,大武台(旧)500 km范围内共记录到MS5.5以上地震共四组,其相关的地电场优势方位角变化详见表2,可见:在四组中强地震前有三组出现了地电场优势方位角异常现象,异常比例为75%,说明大武地震台的地电场优势方位角预报效能较高。异常主要表现为方位角跳变范围出现准同步的大幅度突跳或收缩以及发生偏转等现象,且持续一段时间,在异常时间出现四个月或异常恢复后三个月内,震中附近500 km范围发生M6以上地震(或连续两次M5左右地震)的可能较大,若单台场地岩体出现剪裂(方位角跳变偏转45°或90°),异常信度则更高。

    表  2  大武台周围500 km范围内MS5.5地震前地电场优势方位角的变化特征
    Table  2.  Variation characteristic of dominant azimuth based on geoelectric field before MS5.5 earthquakes within 500 km of Dawu station
    台站发震日期
    年-月-日
    发震地点MS震中距/km异常异常出现月份
    年-月
    备注
    大武台2016-01-21门源6.4380Δα增大2015-10多台同步
    2016-10-17杂多6.2500震前2个月快速偏转恢复 2016-08附近仅一台
    2017-08-08九寨沟7.0360
    2019-10-28夏河5.7240快速偏转2019-06多台同步
    2020-04-01石渠县5.6200 震前3个月快速偏转恢复 2020-01多台同步
    下载: 导出CSV 
    | 显示表格

    孕震过程中应力不断变化,理论上岩体裂隙结构会因应力的变化而变化。在实际场地中,岩体结构差异会使其裂隙结构对应力变化的响应出现差异,这导致了不同场地裂隙优势方位角α异常具有场地选择性现象。在部分场地,应力积累过程会导致岩体裂隙结构发生剧烈变化,使得该场地的大地电场优势方位角α发生显著变化,例如:α出现大幅度持续突跳、范围收窄、偏转等,而当岩石受压破裂时,剪裂会导致Δα发生约45°的变化,共轭剪裂会导致Δα发生90°左右的变化。此次异常与以往异常特征相似,方位角跳变出现偏转45°或90°,且多台出现准同步异常现象。

    通过大武台大地电场优势方位角计算和分析证实玛多MS7.4地震前多个场地出现准同步优势方位角跳变异常是真实存在的,真实反映了地下介质的变化,主要结论如下:

    1) 大武台新、旧两套地电场在2020年1月至5月中旬大地电场优势方位角的跳变范围即Δα在10°—20°之内,至2020年5月中旬两套方位角出现或快或慢的持续偏转,其偏转范围最大接近45°或90°,2021年4月方位角跳变出现快速偏转回升过程。随后发生玛多MS7.4地震,两套资料的异常具有准同步性。

    2) 对震中500 km范围内的八个地电场的优势方位角的计算表明,处于同一地块的甘孜台、玛曲台与大武台出现准同步异常现象,且异常形态相似,而其它地块的台站均无异常出现,说明地电场优势方位角异常受构造影响显著,异常响应多出现在同一地块内部或边缘。

    3) 自2014年大武台地电场观测以来,台站周围500 km范围内共记录到MS5.5以上地震四组。地电场优势方位角计算显示,在四组中强地震前有三组出现了大武台地电场优势方位角异常现象,异常占比为75%,异常主要表现为方位角跳变范围出现准同步的大幅度突跳、或收缩以及发生偏转等现象。地震主要发生在异常出现后四个月或异常恢复后三个月内,台站附近400 km范围存在发生M6以上地震的可能(或连续两次M5地震)。

    随着经济的发展和人类活动的加剧,地电场观测环境日益复杂,这使得从台站观测数据中识别相对较弱的地震电信号愈发困难,通过大地电场岩体裂隙水(电荷)渗流(移动)模型分析中强地震孕育前后附近场地岩体裂隙结构的变化特征,为异常提取提供了有效途径。但由于目前地电场场地稀疏且分布不均,导致样本量有限,不能完全真实地反映客观规律。今后随着地电观测的累积、震例的增加,应该加大对该方法的长期深入研究,从而更好地完善预测指标。

  • 期刊类型引用(8)

    1. 张丽琼,高曙德,李娜. 积石山M_S6.2地震前地电场异常特征. 大地测量与地球动力学. 2025(04): 367-372 . 百度学术
    2. 周瀚琳,赵玉红,徐恺晖,李国英. 格尔木地磁观测数据与中强地震关系研究. 高原地震. 2024(01): 39-45 . 百度学术
    3. 刘海洋,饶文,徐衍刚,艾萨·伊斯马伊力. 2024年1月23日乌什M_S7.1地震前新疆地电优势方位角变化特征分析. 内陆地震. 2024(02): 182-193 . 百度学术
    4. 孙召华,李军辉,李君,孙亮亮,张洋,张钧琪. 2015年安徽阜阳4.3级地震前地电场方位角异常分析. 中国地震. 2024(03): 690-699 . 百度学术
    5. 郭雨帆,杜晓辉,董磊,汤兰荣,赵爱平,王甘娇. 基于张衡一号卫星监测的2021年青海玛多7.4级地震前电离层效应. 地震. 2023(02): 85-102 . 百度学术
    6. 席继楼,赵家骝,高尚华,王晓蕾,李国佑,孟凡博. 长周期地电场变化特征及机理——以都兰地震台为例. 地震地质. 2023(05): 1092-1111 . 百度学术
    7. 赵玉红,李霞,冯丽丽,刘磊,张朋涛,卢嘉沁,孙玺皓. 2次门源地震前地电场优势方位角异常特征研究. 地震地磁观测与研究. 2023(S1): 199-202 . 百度学术
    8. 格根,张帆,陈立峰,梁沙沙,王磊. 内蒙古乌加河地电场异常特征研究. 地震地磁观测与研究. 2023(S1): 226-228 . 百度学术

    其他类型引用(0)

计量
  • 文章访问数:  959
  • HTML全文浏览量:  27
  • PDF下载量:  72
  • 被引次数: 8
出版历程
  • 发布日期:  2011-08-31

目录

/

返回文章
返回