有限差分法合成地震图中的网格频散

Abdolrahim Javaherian

Abdolrahim Javaherian. 1994: 有限差分法合成地震图中的网格频散. 地震学报, 16(3): 310-319.
引用本文: Abdolrahim Javaherian. 1994: 有限差分法合成地震图中的网格频散. 地震学报, 16(3): 310-319.

有限差分法合成地震图中的网格频散

  • 摘要: 用有限差分法合成地震图时, 有限大小的地球模型必须分成许多小网格。如果和源信号的波长相比, 格子太大, 那么随着走时的增加, 波将产生频散。这一现象被称为网格频散, 也就是不同频率的波速度也不相同, 频率较高的信号比频率较低的信号速度慢。此时, 随着走时的增加, 信号将产生一个显着的尾区。这一现象将在如下情况发生:①网格间距太大: ②采样率太大: 或③震源波长和网格大小相比太短。换言之, 用有限差分法合成地震图的一个重要参数是, 每个震源信号波长上网格的点数。本文的工作表明:当P-SV波对经有限差分的弹性模型传播时, 源函数的频率对网格频散有很大的影响。文中所用的二维弹性模型包括:①正断层: ②半空间上单层模型。结果表明:用有限差分法合成地震图时, 如果对于介质的最低速度, 与震源信号的半功率频率相应的一个波长和格点间距之比超过10时, 网格频散将减小到满意的水平。
  • [1] Alford, R. M., Kelly, K. R. and Boore, D. M., 1974. Accuracy of finite——difference modeling of the acoustic wave equation. Geophysics, 39, 834——842.

    [2] Alterman, Z. S and Loewenthal, D., 1970. Seismic waves in a quarter and three quarter plane. Geophys. J. R. astr. Soc., 20, 101——126.

    [3] Boore, D. M., 1969. Finite——Difference Solutions to the Equatirnu of Elastic Wave Propagation, with Applications to Lone Waves (?uer Ih'pping Interfaces. Ph. D., Thesis, M. I. T., Mass.

    [4] Boore, D. M., 1970. Love waves in nonuniform wave guides: Finite——difference calculations. J. Geophys. Res., 75, 1512——1527.

    [5] Boore, D. M., 1972. Finite——difference methods for seismic wave propagation in heterogeneous materials. In: Alder, B., Fernback, S. and Rotenberg, M. (editors), Methods in Computational Physics, Vol. if, Academic Press.

    [6] Clayton. R. and Engquist, B., 1977. Absorbing boundary conditions for acoustic and elastic wave equations. Bull. Sei.s. Soc. Amer., 67, 1529——1540.

    [7] Javaherian, A., 1982. Eliminatirm of Spuriatts Re_flecti}na from Finite——Difference Synthetic Seismograms with Applicutitnts to the San Andrews Fault Zone. Ph. D. Thesis, University of Texas at Dallas.

    [8] Kelly, K. R., Ward. R. W., Treitlel, S. and Alford, M., 1976. Synthetic seismograms: A finite——difference approach. Geophysics, 41, 2——27.

    [1] Alford, R. M., Kelly, K. R. and Boore, D. M., 1974. Accuracy of finite——difference modeling of the acoustic wave equation. Geophysics, 39, 834——842.

    [2] Alterman, Z. S and Loewenthal, D., 1970. Seismic waves in a quarter and three quarter plane. Geophys. J. R. astr. Soc., 20, 101——126.

    [3] Boore, D. M., 1969. Finite——Difference Solutions to the Equatirnu of Elastic Wave Propagation, with Applications to Lone Waves (?uer Ih'pping Interfaces. Ph. D., Thesis, M. I. T., Mass.

    [4] Boore, D. M., 1970. Love waves in nonuniform wave guides: Finite——difference calculations. J. Geophys. Res., 75, 1512——1527.

    [5] Boore, D. M., 1972. Finite——difference methods for seismic wave propagation in heterogeneous materials. In: Alder, B., Fernback, S. and Rotenberg, M. (editors), Methods in Computational Physics, Vol. if, Academic Press.

    [6] Clayton. R. and Engquist, B., 1977. Absorbing boundary conditions for acoustic and elastic wave equations. Bull. Sei.s. Soc. Amer., 67, 1529——1540.

    [7] Javaherian, A., 1982. Eliminatirm of Spuriatts Re_flecti}na from Finite——Difference Synthetic Seismograms with Applicutitnts to the San Andrews Fault Zone. Ph. D. Thesis, University of Texas at Dallas.

    [8] Kelly, K. R., Ward. R. W., Treitlel, S. and Alford, M., 1976. Synthetic seismograms: A finite——difference approach. Geophysics, 41, 2——27.

计量
  • 文章访问数:  2176
  • HTML全文浏览量:  35
  • PDF下载量:  389
  • 被引次数: 0
出版历程
  • 发布日期:  2011-09-02

目录

    /

    返回文章
    返回