构造地震的局部内应力源模式

庄昆元, 刘文龙

庄昆元, 刘文龙. 1980: 构造地震的局部内应力源模式. 地震学报, 2(4): 404-412.
引用本文: 庄昆元, 刘文龙. 1980: 构造地震的局部内应力源模式. 地震学报, 2(4): 404-412.
ZHUANG KUN-YUAN, LIU WEN-LONG. 1980: A LOCAL INTERNAL STRESS MODEL OF TECTONIC EARTHQUAKES. Acta Seismologica Sinica, 2(4): 404-412.
Citation: ZHUANG KUN-YUAN, LIU WEN-LONG. 1980: A LOCAL INTERNAL STRESS MODEL OF TECTONIC EARTHQUAKES. Acta Seismologica Sinica, 2(4): 404-412.

构造地震的局部内应力源模式

A LOCAL INTERNAL STRESS MODEL OF TECTONIC EARTHQUAKES

  • 摘要: 本文根据断层在孕震过程中伴随有蠕动这一事实, 利用裂隙位错的数学理论, 提出了一个新的构造地震的震源模式——局部内应力源模式, 其特点是强调了在区域应力场基本不变的条件下因断层蠕动产生的局部内应力在孕震过程中的作用.文中推导了内应力随时间的变化及由此产生的二维准静态应力场和裂端塑性区线度, 并据此对强震前可能出现的前兆异常的时空特征作了估计.
    Abstract: Based on the fact that the process of development of an earthquake is usually accompanied by fault creeps, a new mechanical model——the local internal stress modelfor tectonic earthquakes is proposed here by means of the mathematical theory of crack dislocation. It emphasizes the effect of the local internal stress caused by fault creeps in the process of development of an earthquake when the regional stress field is kept essencially constant. Change of internal stress with time and a two-dimensional quasi-static stress field thus given rise and the dimensions of the plastic zone beyond the tip of the crack are derived. The time and space characteristics of the premonitory anomalies before the occurrence of strong earthquakes are discussed.
  • [1] 牛志仁、苏刚, 震源孕育的追赶模式, 地球物理学报, 19, 3, 1976.

    [2] 牛志仁, 构造地震的前兆理论, 地球物理学报, 21, 3, 1978.

    [3] 常隆庆, 四川迭溪地震调查记, 地质评论, 3, 3, 1938.

    [4] 陈运泰等, 用大地测量资料反演的1976年唐山地震的位错模式, 地球物理学报, 22, 3, 1978.

    [5] B. A. Bilby and J. D. Eshelby, Dislocation and the theory of fracture, Fracture, 1(A. Liebo—witz ed.).

    [6] 科特雷尔(A, H. Cottrell), 晶体中的位错和范性流变, 葛庭隧译, 科学出版社, 1960.

    [7] 藤井陽一郎, 地震发生前地形变持续时间与震级的关系, 地震, 27, 3, 1974.

    [8] A. Nur, The study of relations between deformation and forces in the earth (本文尚未发表).

    [9] B. A. Bilby, A. H. Cottrell and K. Swinden, The spread of plastic yield from a notch, Proo. Roy. Soc., 272, 1963.

    [10] 穆斯海里什维里, 奇异积分方程, 朱季访译, 上海科学技术出版社, 1966.

    [11] J. R. Rice, Mathematical analysis in the mechanics of fracture, Liebowitz, H., ed. Fracture; an advanced etreatise, V. 2: mathematical fundamentals, New York. Academic Pr., 1968.

    [12] J, Weertman, Continum distribution of dislocation on faults with finite friction, B. S. S. A., 1964.

    [13] 蜀水, 震源应力场, 岩石膨胀性和水的扩散作用, 地球物理学报, 19, 2, 1976.

    [14] Masakazu Ohtake, Change in the VP/VS atio related with occurrence of some shallow earthquakes in Japan, Journal of Physics of the Earth., 21, 2, 1973.

    [15] Christopher H. Scholz, Lyun R, Sykes, Yash P. Aggarwal, Earthquake prediction: a physical basis, Science, 181, 4102.

    [16] R. Brown, Precursory changes in VP/VS before Strike—slip events, Proceeding of the conference on tectonic problems of the san andreas fault system, 463—470, 1973.

    [17] T. Rikitake, Probability of earthquake occurrence as estimated from crustal strain, Tectonophysics, 23, 3, 1974.

    [18] T. Rikitake, Dilataney model and empirical formulas for an earthquake area, Pageoph, 113, 1975.
计量
  • 文章访问数:  925
  • HTML全文浏览量:  15
  • PDF下载量:  85
  • 被引次数: 0
出版历程
  • 发布日期:  2011-08-31

目录

    /

    返回文章
    返回